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The nonlinear evolution of a free-electron laser (FEL) amplifier is investigated for a configuration
in which an electron beam propagates through an overmoded rectangular waveguide in the presence
of a planar wiggler with parabolically tapered pole pieces. The analysis is fully three dimensional
and describes the evolution of an arbitrary number of resonant TE and/or TM modes of the rec-
tangular guide as well as the trajectories of an ensemble of electrons. Numerical simulations are
conducted for parameters consistent with the 35-6Hz amplifier experiment performed by
Orzechowski and co-workers [Phys. Rev. Lett. 54, 889 (1985); 57, 2172 (1986)], in which the TEO, ,
TE», and TM» modes were observed. The theory is found to be in good agreement with the experi-
ment. Surprisingly, comparison with a single-mode analysis shows that the enhancement of the
eSciency of the TEO] mode obtained by means of a tapered wiggler is significantly greater (as well as
being in substantial agreement with the experiment) when the TE» and TM» modes are included in
the simulation.

I. VnRODUCnOX

The free-electron laser (FEL) has been shown to be a
high-power radiation source over a broad spectrum ex-
tending from microwave' ' through optical' ' wave-
lengths. For operation at relatively low beam energies
(typically below about 500 keV) and long wavelengths,
the device is termed a Ubitron' and the interaction
occurs in the vicinity of the lowest-order waveguide
cutofF'. As a consequence, the system can be designed in
such a way that the beam is resonant only with the
lowest-order waveguide mode, and a single-mode analysis
is sufFicient to describe many aspects of the interaction.
However, at higher energies and shorter wavelengths, the
interaction is overmoded in the sense that the electron
beam can be resonant with several (perhaps many) modes,
and the competition and interaction between the modes
has important consequences for the interaction.

The motivation for the present work is to develop a
multimode nonlinear theory and simulation code for a
Ubitron FEL amplifier which employs a planar wiggler.
This general configuration has been extensively studied in
the linear regime. The present nonlinear analysis is
based on previously described single-mode nonlinear
analyses of a helical-wiggler-axial-guide-field 3' and
planar-wiggler configurations. The development of a
multimode analysis represents a straightforward generali-
zation of the single-mode theories, and involves the cal-
culation of l-E for each mode as mell as the integration of
electron trajectories in the aggregate field composed of
the sum of all the resonant modes. The particular
configuration considered in the present work is that of a
planar-wiggler geometry in which the electron beam
propagates through a rectangular waveguide, although
multimode analyses can also be developed for optical
Gaussian resonator modes. The detailed wiggler
mode1 we employ includes the e6'ect of parabolically
shaped pole pieces in order to provide for electron focus-

ing in the plane of the bulk wiggler motion, ' and we
model the injection of the electron beam into the wiggler
by allowing the wiggler amplitude to increase adiabatical-
ly from zero to a constant level. In addition, we consider
the efFect of a tapered wiggler amplitude on efficiency
enhancement in overmoded systems. As in the case of
the single-mode analysis, the overlap between the elec-
tron beam and the transverse-mode structure of either
TE or TM modes is included in a self-consistent way, and
no arbitrary "filling factor" is necessary. Although the
problem of interest is that of an overmoded FEL
amplifier which requires a multimode treatment, only
single-frequency propagation need be considered. As a
result, Maxwell's equations may be averaged over a wave
period which results in the elimination of the fast-time-
scale phenomena from the formulation.

The. organization of the paper is as follows. The gen-
eral formulation is described in Sec. II, and allows for the
inclusion of an arbitrary number of modes of TE and/or
TM polarization, subject to the restriction that all are
propagating modes at the same frequency. A direct ap-
plication of the multimode analysis is to the description
of a recent experiment by Orzechowski and co-
workers, ' in which the TEo, , TE2, , and TM2, modes of
a rectangular waveguide were observed. Numerical ex-
amples appropriate to this experiment are discussed in
Sec. III, and good agreement with the experiment is
found. A summary and discussion is given in Sec. IV.

II. GKNKRAI. FQRMULATIGN

The configuration we employ is that of an electron
beam propagating through an overmoded rectangular
waveguide in the presence of a planar-wiggler field gen-
erated by a magnet array with parabolically tapered pole
pieces. ' As a result, the wiggler field is assumed to be
of the form
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describes the slope of the taper. Since the fringing fields
associated with the tapered wiggler amplitude are
neglected, this representation requires the slopes of the
taper to be small (i.e., N must be large and

~ s„~ && 1).
The boundary conditions at the waveguide wall may be

satisfied by expanding the vector potential in terms of the
orthogonal basis functions of the vacuum waveguide.
Thus we write the vector potential of the radiation in the
form

5A(x, t)= g 5Ai„(z)eI„"(x,y)cosa
I, n =0

for the TE modes and

(4)
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where 8 denotes the wiggler amplitude and k
(:—2m/A, ) is the wiggler wave number. The injection of
the beam into the wiggler is modeled by an adiabatic in-

crease in the wiggler amplitude over N„periods. In addi-
tion, since the enhancement of the efficiency by means of
a tapered wiggler is also studied, the wiggler amplitude
will be tapered downward starting at some point zo
downstream from the entry region in a linear fashion.
For this purpose we choose
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are the polarization vectors. In this representation, the
waveguide is assumed to be centered at the origin and
bounded by —a/2 & x & a/2 and —b/2 &y & b/2. As a
consequence, X—=x +a/2, F=y +b/2, and

lz 2

kI„=—m (9)g2 $2

(10)

and

denotes the cuto8' wave vector. It is implicitly assumed
that both 5&i„(z) and k(z) vary slowly over a wave
period.

The multimode treatment includes an arbitrary num-
ber of propagating modes of TE and/or TM polarization.
The detailed equations which describe the evolution of
the amplitudes and wave numbers of these modes are
identical to those derived in the single-mode analysis,
and we merely restate the results here. The equations
which govern the evolution of the TEt„mode are
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number k (z),
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In addition, g' indicates that l and n are not both zero,
and

where 5at„=e5At„/m—c, tob=4mnse /m (where nb is
the bulk density of the beam)vis , the instantaneous elec-
tron velocity, and I'I„—=—,

' when either l =0 or n =0, and

unity otherwise. For the TMI„mode we obtain a similar
result,
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where we note that there is no nontrivial TM-mode solution when I =0 and n =0.
Equations (10}-(13)are equivalent to a calculation of J 5E&„ for each mode. The averaging operator (( . )) is

defined over the initial conditions of the beam, and includes the e8'ect of an initio/ momentum spread by means of the
distribution function

«po}= ~ exp[ —(p,o
—po }'/~p,']5(po' —p io —p,'o»(p, o» (14)

where po and bp, describe the initial bulk momentum and momentum spread, H(x) is the Heaviside function, and the
normalization constant is

~o
A = m f dp, oexp[ —(p,o

—po) /bp, 2] (15)
0

Observe that this distribution is monoenergetic, but contains a pitch-angle spread which describes an axial energy
spread given approximately by

hp,=1— 1+2(yo—1)
Vo Po

where yo—:(1+po /m c )'~ . As a result, the averaging operator takes the form

(16)

(( )) = " f"dy,f 'dp, g«exp[ (p,—o po—) /bp, ]f droll(po) f dx, f dZoo, (x„Zo)( ~ },

where Po (= —toto) is the initial ponderomotive phase,
No=tan (Pyo/P o), P«=u, o/c, and o ll(go) and
o' i(x oy o} describe the initial-beam distributions in phase
alld ill the cross sectioil.

The phase variation of each mode can be analyzed by
the addition of an equation to integrate the relative
phase:

4(z)= f dz'[k(z') —ko], (18)
0

where ko—= (co /c —k&„)'~, is the wave number of the
vacuum guide. Since the departure of k (z) from the vac-
uum wave number describes the efFect of the wave-
particle interaction, 4(z} represents a measure of the
dielectric effect of the FEI interaction. Thus we in-
tegrate the additional equation

U, g=U&,
z

P=k+k„——,N

dz

which describe the evolution of ponderomotive phase

f=fo+ f dz' k+k
0 U

III. NUMERICAL ANALYSIS

(23)

(24)

(25)

(26)

for each TE and TM mode.
Each mode will interact resonantly with the electrons

and be coupled through the electron motion in the com-
bined wiggler and bulk radiation fields. Thus in order to
complete the formulation, the electron orbit equations
must also be specified. Since we describe an amplifier
model, we choose to integrate in z, and write the Lorentz
force equations in the form

u, p= —e5E ——v&&(8 +58),
dz c

(20)

58=Vx g 5Ai„.
all modes

Finally the electron coordinates obey the equations

(22)

where 8 is given by Eq. (1) and the radiation fields are
given by

5E= ———g 5 A,„
1

C ~~ a]~modes

The dynamical equations for the particles and fields de-
scribed in Sec. II are now solved for an overmoded
amplifier configuration in which several modes may be in
resonance with the beam at a fixed frequency co. The nu-
merical problem involves the solution of a set of
6NT+4XM ordinary diff'erential equations (where ET is
the number of particles and NM is the number of modes)
as an initial-value problem. Observe that equations for
the amplitude, growth rate, wave number, and phase are
integrated for each mode. The integration is accom-
plished by means of a fourth-order Runge-Kutta-Gill
technique, and the particle average described in Eq. (17)
is performed by and ¹h-order Gaussian quadrature in
each of the initial variables. The initial conditions on the
fields are chosen to model the injection of an arbitrary
power level of each mode, and the initial wave numbers
correspond to the vacuum state [i.e., k (z =0)=ko]. Fur-
ther, the initial value of the relative phase of each mode is
zero, and both the wiggler field and growth rate are ini-
tially zero. The initial state of the electron beam is
chosen to model the injection of a continuous, axisym-
metric electron beam with a uniform cross section so that
oil 1 for m &f ~ and oi=l for ro&Rb Amore.



3374 H. P. FREUND 37

detailed description of the procedure is to be found in
Refs. 22 and 26.

The particular example we consider is that of a 35-
GHz amph6er employing an electron beam with an ener-

gy of 3.5 MeV, a current of 850 A, and an initial radius of
1.0 cm propagating through a waveguide characterized
by a =9.8 cm and b =2.9 cm. %ave-particle resonance
is obtained in the vicinity of 35-GHz for a wiggler field of
3.72-kG amplitude and a 9.8-cm period, and beam injec-
tion is accomplished over an entry with a length of five

wiggler periods. For this choice of parameters three
wave modes are resonant; specifically, the TE01, TE21,
and TM21 modes. The multimode results described
herein will be compared with a previous single-mode
treatment. In addition, the parameters correspond with
an experiment conducted by Orzechowski and co-
workers, ' and a comparison of the simulation with the
experiment will be given in Sec. IV.

The detailed evolution of the total wave po~er as a
function of axial position is shown in Fig. 1 for an axial
energy spread of hy, /yo= 1.5% on the beam and the in-
jection of a signal at co/ck =11.3 (34.6 GHz) composed
of the TED, mode at 50kW, the TE2, mode at 500 W, and
the TM2& mode at 100 %'. As shown in the figure, satura-
tion of the total signal occurs at k z =96 (1.5 m) at a
power level of 201 M% for a total efhciency of
g=6. 87%. It is also evident that although the TE01
mode was the overwhelming dominant mode upon injec-
tion, it comprises only about 60% of the signal at satura-
tion. The remaining power is composed primarily of the
TEzi mode (at 37% of the signal) with only a relatively
small contribution of the TMO1 mode. As discussed in

Ref. 32, the reason for this is that at this frequency the
growth rate of the TE21 mode exceeds that of the TEO,
mode, and compensates for the lower initial power level.
Due to the polarization of the TM21 mode, the growth
rate and eSciency are smaller than for the TE modes,
and the TM2, mode never accounts for more than about 7
M%. The rapid oscillation shown in the figure has a
period of approximately A, /2 and occurs because the
evolution of J E for a planar wiggler exhibits both a slow
variation corresponding to the ponderomotive phase and
a rapid oscillation at A, /2. 3 Observe that the single-
mode analysis showed a saturated power of 162 MW for
the TE01 mode, 126 M% for the TE21 mode, and 25 M%
for the TM21 mode. Thus while the total power of the
signal in the multimode analysis somewhat exceeds that
shown in the single-mode cases (for the TE modes), the
power levels of the individual modes are lower.

The phase variation of each of these modes is shown in
Fig. 2 as a function of axial position, where the arrow
denotes the point at which the total power saturates. Of
these modes, the TED, mode qualitatively behaves in the
same way as in the single-mode case. Specifically, the
bulk phase at this frequency (apart from the rapid oscilla-
tion at I, /2) increases monotonically with axial position
through, and beyond, the saturation point. In contrast,
the relative phases of both the TE21 and TM21 modes are
decidedly not monotonic and exhibit a decrease with axi-
al position starting at a point somewhat beyond satura-
tion. This is a multimode efFect since the relative phases

e TE21 and TM21 modes also exhibit a monotonic in-
crease with axial position at this frequency in the single-
mode analysis. Finally, we observe that the curves of rel-
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FIG. 1. Evolution of the wave power (both total and TEo, model) with axial position.
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ative phase for the TE2, and TM2& modes Rre almost
identical. The reason for this is that the dispersion
curves for the TEI„Rnd TMI„modes are degenerate in a
rectangular waveguide.

The e8ect of an initial momentum spread on the satu-
ration ef5ciency of the total signal Rnd the TEO, and TEz&
mode components is shown in Fig. 3. The TM2& mode is

excluded from the 6gure because it composes such a
small fraction of the signal. As shown in the figure, the
saturation efficiency is relatiuely insensitive to the axial
energy spread over the range by, /yoS2. 5%, and de-
creases from il = 8.6% at b,y, =0 to il =5.9% at
by, /y0=2. 5%. The reason for this is that the coupling
coefficient (and, hence„ the growth rate} depends upon the
product of the wiggler amplitude and period. Since this
product is large for the present choice of parameters, the
growth rate is large and the interaction can accept a rela-
tively large axial energy spread without sufkring a severe

de gradation.
The saturation efficiency is known to scale as the cube

root of the beam current at the frequency of peak growth
from the idealized one-dimensional theory of the high-
gain Compton (i.e., the strong-pump) regime, and this

type of scaling law was also found from the three-
dimensional single-mode simulation of this configuration.
The scaling of the total power as R function of beam
current for the multimode analysis is shown in Fig. 4 for

by, =0 and by, /y0=1%, and the efficiency is found to
scale approximately Rs xf Ib

Turning to the question of the enhancement of the
efficiency by means of a tapered wiggler, we plot the evo-
lution of the power with axial position in Fig. 5 for pa-
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FIG. 4. Graph showing the scaling of the eiciency of the to-
tal signal with beam current for 6 y, lyo ——0 and 1%.

rameters corresponding to those shown in Fig. 1. The
optimal start-taper point for this case is k z0=86, and
we choose a slope of e = —0.007, which was also studied
for the single-mode analysis. The central conclusion to
be drawn from the fIIgure is that it is possible to selective-
ly enhance the TED, mode. The uniform wiggler interac-
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FIG. 3. Variations of the saturation eSciencies of the total
signal and the TE modes vs axial energy spread.

FIG. 5. Plot sho~ing the evolution of the total signal and the
TE modes for a tapered wiggler interaction characterized by
e = —0.007and k zo ——86.
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FIG. 6. Graph of the evolution of the relative phase of the TED, mode during the course of the tapered wiggler interaction.

tion for this example yields a total eSciency of 6.8%, of
which the TEoi mode comprises only 60% of the signal.
By contrast, careful choice of both the start-taper point
and the slope of the taper shows that the efficiency can be
enhanced to i1,„=41.29% (if the wiggler field is tapered
to zero) with 99% of the power in the TEo, mode. Both
the TEz, and TMz, (not shown in the figure) modes ulti-
mately decay to extremely low intensities. One surprising
result of the present multimode analysis is that the max-
imum efficiency to be obtained by tapered wiggler fields is
enhanced relative to the single-mode analysis. By com-
parison, the single-node analysis for these parameters
yields a maximum efficiency of rl,„=34%, which is sub-
stantially lower than the 41.29% found in the multimode
simulation. The phase variation of the TEO& mode for
this example is shown in Fig. 6, and exhibits the same
qualitative variation as in the single-mode analysis.
Another characteristic of the tapered wiggler interaction
observed in the single-mode treatment is that the overall
ef6ciency appears to be relatively insensitive to the axial
energy spread. As shown in Fig. 7, in which we plot the
maximum obtainable efficiency versus hy, /yo, this is
also found to be the case in the multimode analysis. As
shown in the 6gure, the maximum eiciency decreases
from 43.6% at y, =0 to as much as 39.4% at
b,y, /ye=2%. This is a much lower proportional sensi-
tivity to the axial energy spread than is iHustratcd in Fig.
3 for the uniform wiggl'er case.

Finally, we address the question of the sensitivity of
the tapered wiggler interaction to fluctuations in the bulk
energy of the beam. The reason for concern with this is-
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FIG. 7. Illustration of the effect of an axial energy spread on
the tapered wiggler interaction. Observe that each point corre-
sponds to the optimal start-taper point of the associated b y, .
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(g = 9.8 cm; b = 2.9 cm; a&/ck~ = 11.3) fluctuation of the order of 8.6% without severe degrada-
tion in performance for these parameters.
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FIG, 8. Variation in the eSciency of the tapered wiggler in-
teraction with fluctuations in the bulk energy of the beam.

sue is that the tapered wiggler interaction is known to be
sensitive to the start-taper point. In particular, the taper
should begin at a point shortly prior to saturation (for the
untapered wiggler), corresponding to the trapping of the
bulk of the beam in the ponderomotive potential.
Changes or ffuctuations in the beam energy at a ffxed fre-
quency are equivalent to the variation of the frequency at
fixed energy, and result in shifts in the growth rate and
saturation point. For this reason it might be expected
that the tapered wiggler interaction is sensitive to ffuctua-
tions in the bulk energy of the beam. In order to address
this question, the variation in the eSciency has been stud-
ied as a function of beam energy, and the results are
shown in Fig. 8. For convenience, this figure has been
generated for the limiting case of zero axial energy spread
for which the optimal start-taper point is k zo ——83 at a
beam energy of 3.5 MCV. Hence, choosing e = —0.007
and the aformentioned start-taper point, Fig. 8 describes
the variation in the efficiency with beam energy when (1)
the wiggler is tapered to zero (b,8 /8 =1)and (2) when
the wiggler is tapered to half its ambient level
(h8 /8 =0.5). As shown in the figure, there is a sharp
dccllnc 1Q thc cScicncy above, approximately, 3.55 McV.
In contrast, there is a more gradual decrease in the
cScicncy for energies down to 3.3 MCV, below which the
resonant interaction at ~/ck =11.3 is lost. As a result,
the tapered wiggler interaction will tolerate a bulk energy

IV. SUMMARY AND MSCUSSION

In this paper a multimode analysis and siIDulation of
FEL amplifiers in three dimensions has been given for a
configuration in which a relativistic electron beam propa-
gates through an overmoded rectangular waveguide in
the presence of a planar wiggler generated by means of an
array of magnets with tapered pole pieces. The mul-
timode analysis is accomplished by expansion of the radi-
ation field in terms of the vacuum waveguide modes, and
an arbitrary number of propagating TE and/or TM
modes is included in the analysis. Although multiple
modes are included in the analysis, the problem of in-
terest is that of an amplifier and single-frequency propa-
gation. As a result, the field equations are averaged over
a wave period in order to eliminate the fast-time-scale
phenomena. However, no average of the orbit equations
was performed, and the electron dynamics were treated
by means of the fully three-dimensional Lorentz force
equations. As a result, the efFects of the adiabatic injec-
tion process, bulk wiggler motion, Betatron oscillations,
velocity shear, beam focusing due to the wiggler gra-
dients, and phase trapping of the beam in the pondero-
motive potential formed by the beating of the wiggler and
radiation fields are all included in a self-consistent
manner.

The numerical example describes a 3S-GHz amplifier
which employs a 3.5-MCU-850-A electron beam with a
1.0-cm initial radius propagating through a rectangular
waveguide with dimensions a =9.8 cm and b =2.9 cm in
the presence of a wiggler field with a 3.72-kG amplitude
and 9.8 cm period. Three distinct wave modes are found
to be resonant; specifically, the TED„TEz,, and TM2,
modes. The simulation is carried out under the assump-
tion that the injected signal consists primarily of the TED,
mode at a 50 k% power level, the TE2& mode at 500 W,
and the TMz& mode at 100 %. Results indicate that al-
though the TEzi mode was at a relatively low initial
power level, it comprises upwards of 37% of the saturat-
ed signal. The coupling between the beam and the TM2,
mode was weaker than for the TE modes, and never ac-
counted for more than a few percent of the total signal.
Comparison with a previous single-mode analysis indi-
cates that the e%ciency of the total signal is somewhat
higher than that found for single modes in the case of a
uniform wiggler. A more dramatic difference between
the multimode and single-mode treatments is found for a
tapered wiggler interaction. In this case, it is found that
the selective enhancement of the TQ, mode is possible
and, indeed, has been experimentally observed. ' Howev-
er, the power levels to be obtained in the TED, mode
through the multimode tapered wiggler interaction werc
found to be substantially higher than found in the single-
mode simulation. This constitutes an important question
for future study.

The configuration and parameters described in this pa-
per nominally correspond to the experiment performed
by Orzechowski and co-workers. ' The principal



37 MULTIMODE NONLINEAR ANALYSIS OF FREE-ELECTRON. . . 3379

differences between the analytical configuration and the
experiment are that in the experiment (1) the beam was
injected into the wiggler through an entry taper region
one-wiggler-period long and (2) a quadrupole field was
used to provide additional electron focusing instead of
parabolically tapered pole pieces. Since the fringing 6elds
associated with the wiggler Seld in the entry taper region
are not included in the analytical remodel, it would be in-
valid to apply the analysis for X =1. However, the
choice of N =S is made as a compromise and gives good
agreement with experiment, subject to the additional as-
sumption of an axial energy spread of b,y, lyo= 1.S%.
This is within an upper bound of 2% on the axial energy
spread estabhshed by means of an electron spectrometer
measurement. The experixnental measurement for a
uniform wiggler interaction resulted in a saturated power
level of 180 M% over a length of 1.3 m. As shown by
Fig. 1, the simulation gives a peak power of 204 MW,
which, if we average over the fast A, j2 oscillation, is re-
duced to 185 M%. Given the experimental uncertainties
in high-power measurements, the latter 6gure is more
relevant for comparison and is in substantial agreement
with the experiment. The saturation length found from
simulation (that is, the length of the uniform wiggler re-
gion plus one wiggler period to account for the entry
taper region) is 1.1 m, which is also in good agreement
with the experiment. Note that rapid oscillation in the
power and relative phase at a period of A, /2 is likely to
introduce a 10-20% uncertainty in the measurement of

r)max = ~'6+
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~IHIP

O 800-

Vb = 3.5 MeV
lb = 850 A

Rb = 1.0 cm
biz—= 1.5%
Yo

Bw = 3.72 kG
k~ = 98cm
N = 5
&w = -0.00~

kw

FIG. 9. Plot of the evolution of the total signal and the TE
modes for a tapered wiggler chtaracterized by e = —0.0078 and
k zo ——86.

TE~ Mode (e = $.8 cm; b = 2.$ cm; a&/ck~ = 11.3)
I

I I
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FIG. l0. graph of the evolution of the relative phase for a tapered wiggler interaction characterized by e = —0.0078 and

k zo ——86.
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these quantities. A comparison can also be made with
the tapered wiggler experiment' in which the wiggler
field was decreased by 55% (68„/8„=0.55) over a
length of 1.1 m (i.e., e'~ = —0.0078) and the efficiency was
found to increase to 34% for a total power of 1 GW. The
evolution of the total signal power, and that of the TE
modes, is shown in Fig. 9 for parameters consistent with
the tapered wiggler experiment (the optimal start-taper
point found in simulation was k z0=86). As shown in

the figure, the maximum efficiency obtained by tapering
the wiggler field to zero is approximately 40.6%, of
which more than 95% of the power is contained in the

TED, mode. However, over a length of only 1.1 m beyond
the start-taper point (i.e., k z —k zo =70.5) the
efficiency is 34%, of which approximately 90% of the
power is in the TEci mode. The evolution of the relative
phase for this case is shown i.n Fig. 10, in which the rela-

tive phase saturates at a value in the neighborhood of
120' downstream from the start-taper point. This is in
good agreement with reported measurements of the evo-
lution of the relative phase in the tapered wiggler experi-
ment. Thus within the uncertainties imposed by the
choices of N„and d y„ the nonlinear analysis is found to
be in good agreement with the experimental measure-
ments for both uniform and tapered wiggler interactions.
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