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Resonant four-wave parametric interactions: Adiabatic formulation
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The density-matrix approach, in the quasistatic or adiabatic limit, is applied to the case of reso-

nant four-wave interactions in four-level systems resulting in explicit analytical expressions for the

nonlinear optical parametric and nonparametric polarizations, including ac Stark effects. The re-

sults are applicable to any closed-linkage diagram of this type but are applied only to the speci6c
case of resonant frequency tripling. The results revealed the presence of up to six Stark-shifted non-
parametric resonances and the presence of saturation and interference effects on the parametric sus-

ceptibility. In particular, the third-order susceptibility is shown to saturate to a very small value
under high-6eld conditions which restricts the range of useful pump intensities. Under near-
resonant to resonant conditions, these imply that because of either nonparametric loss present at the

pump or harmonic frequencies or power-dependent dispersive and saturation effects, conversion
ef6ciencies higher than 25% may be dif6cult to realize in practice.

I. INTRODUCTION

Four-wave parametric interactions occur under a
variety of experimental conditions and are used as a
means of frequency generation or conversion and as a
means of interrogating certain features of matter. It is
well known that the nonlinear optical constants are fre-
quency dependent and, as such, exhibit resonant enhance-
ments which are exploited for certain applications. For
example, resonantly enhanced frequency tripling in
phase-matched gases '3 and resonantly enhanced genera-
tion of tunable near-infrared radiation in gas-phase sam-
ples are but two common cases.

For the most part, the usual resonant enhancement
occurs with only one of the potentially many multiphoton
resonances which are possible in a system, two-photon
resonant being the most common. There are experimen-
tally accessible situations for which all waves can be on
resonance and for which one-, two-, and three-photon
nonparametric e8'ects exist under the same conditions as
the parametric efFect. Further complicating this situation
is the potential for strong-6eld level shifts and splittings
and simple population saturation. While adding great
complexity to the understanding of resonant four-wave
parametric interactions, a complete treatment of all these
features is desirable in order to understand and evaluate
the experiments and the potential utility of this type of
interaction.

The earliest treatments of four-wave parametric in-
teractions were based on a simple perturbative analysis
and perhaps modified to incorporate simple Stark effects.
There have been a few recent treatments of near-resonant
four-wave interactions, most of which consider only par-
tial resonance or some weak fields. Melikan and Saakyan
and others investigated sub-T2 pulse interactions in a
frequency-tripling scenario for which optical nutation
effects played a dominant role and found that, under cer-

tain conditions, full conversion of the pump into the third
harmonic was possible. This should be contrasted with
the experimental behavior of two-photon resonant third-
harmonic generation for which relatively low conversion
eSciencies are found because of the presence of non-
parametric eft'ects. ' Using as a basis the solutions for
resonant three-wave interactions in a four-level system,
Tsukakoshi considered a perturbative fourth wave
present under a nonperturbative pumping condition and
sho~ed, by direct calculations, some of the multitude of
nonparametric resonances which may be present. ' Ex-
panding upon earlier treatments of tunable Raman emis-
sion in four-level systems, Lin et al. studied the
equivalent problem of two strong and two weak 6elds
present in a four-wave parametric interaction and illus-
trated some Stark-shift effects. " Dick and Hochstrasser
investigated the problem of resonant three- and four-
wave interactions in three- and four-level systems and
presented some results for the latter only in selected
weak-field limits appropriate to CARS interactions. ' Ju-
lien et al. have used the general results, to be presented
here, to identify a naturally occurring four-wave para-
metric interaction in NH3 involving only one input
wave. ' Most recently, Levine et al. have outlined a nu-
merical diagonalization method for the resonant four-
wave problem, in the limit where relaxation can be ig-
nored, and illustrated some of the Stark multiplets which
are present in such systems. ' There have been other re-
ports on this topic along with observations of fully reso-
nant four-wave parametric interaction effects in molecu-
lar vapors, all of which suggest some interest and poten-
tial utility in this type of an effect. '

It is the purpose of this paper to present a general
density-matrix formulation of resonant four-eave in-
teractions in four-level systems appropriate to adiabatic
pumping conditions. %'e make no restrictions on the
relevant damping and dephasing parameters, so our re-
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suits are valid for fully resonant conditions. Aside from
documenting the analytical results, many for the first
time, our main interest is in exploring this e8'eet as a
means of cresting a large third-order nonlinearity for
which the nonparametric losses are at a tolerable level.
Qur approach closely follows an earlier study on resonant
three-wave parametric interactions in three-level systems,
for which it was discovered that full conversion of the
pump into the harmonic was possible under suitable con-
ditions, so one goal of this paper is to ascertain if similar
conditions exist for resonant frequency-tripling interac-
tions. ' Application of the results to other four-wave in-
teraction cases will be presented elsewhere. '

In outline, the general equations are presented in Sec.
II followed by a discussion of perturbative and strong-
pump efFects in Sec. III. Special emphasis is placed on
the separate parametric and nonparametric interactions
and the ac Stark-shifted multiplets. Explicit algebraic ex-
pressions are given for the multiplets and the parametric
gain. These are followed by a summary and an Appendix
which list the full algebraic solution for the coenlcients of
the nonlinear polarizations. Propagation issues are only
brie6y addressed in this paper.

IL BASIC EQUATIQNS

The linkage diagram appropriate to near-resonant
four-wave parametric interactions is shown in Fig. 1.
Figure l(a) is appropriate to resonant sum frequency or
frequency tripling, 1(b) is appropriate to tunable stimulat-
ed Raman emission scenarios in the far infrared, and 1(c)
is resonant CARS. Shown in Fig. 2 is an illustration of
the number of the diferent processes associated with the
co~ wave in Fig. 1(a) which can exist under resonant tun-
ing conditions. It is clear from these diagrams and Fig.
1(a) that there is one one-wave interaction or transition
2(a), two two-wave interactions 2(b) and 2(c), three three-
wave interactions 2(d)-2(f), and one four-wave interac-
tion, all of which may be important simultaneously.

The familiar density matrix p for this system contains
16 terms, four population or diagonal elements and 12
of-diagonal elements. Using the electric-dipole approxi-
mation with nonzero transition dipole moments po„p(2,
@23 and @03 the equations of motion for the off-diagonal
elements appropriate to Fig. 1 are, from Schrodinger s
equation p =[H,p]/i fi,

~pal/~ ( +01+1/+01)pal+[(poo Pll)I 01 E+P021 21 E P31803 E]/ ~

~P12/~t = —(tfI12+1«12)P12+[(P»—P22)V12 E+P131u3.2E Paulo —E]«&

~P23/~t = (iII23+ —1A'23)P23+ [(p22 —p33)@23 E+P2oF03 E—pa~20 E]/1 &,

dpo3/Bt = —(i003+ 1/r03)Po3+ [(Poo—P33)803 E+PoaP23 E—P2&02 E]/iR,

l)po /r)t (lII02+1/+02)P02+[(PolP'12 E+P03V'32 E P12P01

i3P13/Bt = (i 013—+ 1/&13)P13+ [(PloP03 E+P1ds23 E P2&12 E—Pa&10 E—)/i A,

(3)

(6)

where the phenomenological Tz dephasing times are labeled as ~,.J and where the sign-dependent transition frequency is
defined in terms of the eigenenergies E; as 0; =(E; E)/lit which —have sign dependence.

Similarly, the equations of evolution for the diagonal elements are found to be

~poo/~t= —(Poo —Pao)/&00+[(Pol Plo)810'E+(P03 P30)F30'E]/~

P11/~ (Pl 1 Pl 1 )/+11+ [(P12 P21)821 E+(Pla Pal )Pol E]

Bp /Bt = (p p' )/r —+[(p —p)It E+(p—, p, )p, E—]/fi,

~P33/~t = —(P33—P33)«33+ [(P30—P03)It03 E+ (P32 —P23)V23 E]/~ (10)

where the phenomenological T& decay times are labeled
as v, ,- with equilibrium diagonal elements p';;. The form of
the T& terms is appropriate to bathlike situations in mole-
cules and can be modi6ed to include other kinetic relaxa-
tion situations such as those found in atomic cases. The
specific form is not critical to our main results.

Next, we assume an optical-like interaction involving

copropagating traveling waves by setting

E= g E;cos(to, t —k, z+8;),
i=1

(b)

2

(C3

where 8,- are arbitrary phase factors and 8,. are real,
time-independent amplitudes with implied space depen-
dence and polarization unit vector &, . The latter is incor-

FIG. 1. Linkage diagram for four waves interacting in a
four-level system forming a closed parametric loop. The
diferent cases apply to {a) sum frequency generation and (b)

tunable Raman emission when co&
——a@4 and m&

——co3.
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(b)

FIG. 2. Partial linkage diagrams appropriate to Fig. 1(a)
showing separate multiphoton interactions involving the e4
wave; (a) one photon, (b) and {c)two photon, and (d), (e), and {f)
three photon.

t$67~t b t (AP4 —
AP~

—ETC)3)t

P12=P 12e +P 12e

E CTC03t b l (6174—GP
~
—(c02 )t

P23=P 23e +P 23e

l674t b i {fgP) +(co~+0+l3)t
P03

——P 03e P 03e

i(co)+/co~)t b i {a)4—crco3)t
P02=P 02e +P 02e

t{$~2+crm3)t b i(ca4 —m&)t

P13=P 13e +P 13e

(12)

where P &J- are adiabatic constants to be determined, and
cr =+1, (=+1 for the hnkage diagram shown in Fig.
1(a), cT = —1, /=+1 for Fig. 1(b), and cT =+1, g= —1

fof Flg. 1(c). With t11ese tile IIIost general reclllctloII of
Eqs. (11)-(16) occurs when c04&OII+ gc02+cTc03 As an.
aside, any other linkage diagram may be treated in a
straightforward manner by simply identifying the ap-

porated for generality so that level-degeneracy el'ects
may be included via the m dependence of the matrix ele-
rnents. 13 "

Consistent with the near-resonant nature of the in-
teraction, we assume that, for example, cp, is sufficiently
close to 010 so that the dominant Fourier coefBcients of
P()1 are at 6)1 and rL)g —N3 —N2. Using this observation and
the rotating-wave approximation, the dominant Fourier
contributions ofP; can be identified as

idlest b J (6)4—cTA73 —(A)2)t
P01 =P 01e +P 01e (11)

T01P 01 A03P 31 ~21P 02 &

T12P 12 ~10P 02 ~32P 13 &

T23P 23 A21P 13 ~03P 20 ~

T30P 30 A32P 20 ~IOP 31 ~

~ 02P 02 ~01P 12+A03P 32 A12P 01 ~32P03 &

~ 13P 13 A1QP03+A12P 23 A23P 12 A03P 10 &

~ 31P 31 A30P01+A32P 21 ~01P 30 ~21P 32 &

~ 20P 20 A21P 10+A23P 30 ~10P 21 ~30P 23 ~

L10P 10 Alp Ppp Pll +A12P 20 A3QP 13 &

L 21P 21 A21(Pl 1 P22) +A23P 31 A01P 20 &

L 32k 32= A32(P22 —P33)+AIQP 02
—AIIP 31

L 03P 03 A03(POO P33) A23P 02+ A01P 13

(18)

(20)

(21)

(23)

(25)

(28)

The remaining 12 equations are the complex conjugate of
these. For these, the complex detuning is defined as the
negative of the conjugate detuning (L, R or
T)a or Ip [(L g or T)a or Irj»

The interrelationship between the various diagonal and

propriate Floquet coefficients of Eqs. (11)-(16)which ul-
timately appear in the definition of complex detunings.

Equations (1)-(6) are subsequently reduced to a set of
algebraic equations by substituting into Eqs. (11)-(16),
multiplying by the appropriate conjugate phase factors
and using a short-time average to eliminate rapidly oscil-
lating terms. The resulting algebraic equations, 24 in
number, are expressed in terms of complex Rabi frequen-
CIes (Ajq =A(~J. )

i8& i/82
POI EI& /2~ A12 p'12 E2e

ia83 i 84
A23

——p, 23.E3e /2A', A03 ——F03.E4e '/2R

and complex detunings de5ned as

Lpl =QOI+~1 —I «01

L 12
=Q12 + (C02 —I /T12,

L 23 Q23+——CT C03 I /~2—3,
L 03 Q03——+034 I II—03

~ 02 Q02+I+~~2 I /+02

8;3 ——Q,3+gC02+CTC03 —I IT,),
A 02 =Qp2+C04 —O'C03 —I /702,b

8 13 =Q13+C04—Cpl —I /&13
b

Tpl —Qpl+ ~4 & 3 0 2 01 ~

b

TI2 =QI2+rd4 CTC03 0—3, i I—TI2,—b

T» Q23+ 034—(032 03,—i II—23, —b

'03 =Q03+ ~I+&~2+ crm3 I IT03-b
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off-diagonal terms is shown in the signal flow graph of
Fig. 3 which is a picture of Eqs. (17)—(28) and the conju-
gate equations and is discussed more fuHy elsewhere. '

The nodes in the graph represent the time-independent
Floquet coeScients of the ol'-diagonal elements and the
diagonal elements, which are independent variables in
these equations. The arrows point from the appropriate
node on the right-hand side of Eqs. (17)-(28) to the node,
or element in question and the label above the arrow is
the Rabi frequency multiplier in the equations. The
shorthand notation for the Rabi frequencies is that A, 8,
C, and D are Ao» A12, A23, and Ao3, respectively, for the
solid arrows and the conjugate of these for the open ar-
rows. The main utility of the graph is in the ease with
which the interrelationships between elements can be
visualized and in determining perturbative and nonper-
turbative solutions using a powerful graph algebra, which
is fully equivalent to Cramer's rule. Since the graph is a
picture of the original equations, it should not be con-
fused with other graph approaches which are pictures of

aolvlo &~&

aou3o. a~&

P 01A10+P 01A10

12~21+0 12~21F ~

-u 23&32+v &3~32~

P 03~30+P 03~30

(29)

(30)

(31)

(32)

one order of an interaction.
The obvious grouping of the equations into two decou-

pled sets of 12 equations occurs because of the dissection
of the individual off-diagonal elements into parametric
and nonparametric terms in Eqs. (11)—(16). While clearly
doubling the number of equations which must be treated,
this decomposition ultimately leads to a full separation of
the two different kinds of processes which might be
present, thus permitting a separate consideration of each.
The solution of the set of equations, in which population
difFerences appear as independent variables, is listed in
the Appendix.

The next step in the calculation entails the determina-
tion of the individual population values under the
influence of the fields. Using Eqs. (11)-(16)and a short-
time average, the four driving terms in the equations of
motion (1)-(6)become

where a phase factor has been defined as

F=exp[i(co4 ohio& —gro2 —co, )t-
i(k4 —

gorki
——/k' —k, )z] . (33)

-0 ~r ]k

The factor I' clearly labels the parametric terms in Eqs.
(29)—(32) and simply expresses the familiar degradation
of the interaction if conservation of energy and momen-
tum are both not satisfied between the interacting waves.
For purposes of graphical displays, I' will be replaced by
a real I,orentzian centered at the four-wave parametric
resonant frequency of co~=crco3+ gcop+coi.

The solution of Eqs. (7)-(10),which are performed nu-
merically, are then used to determine the specific value of
the ofF-diagonal elements under the influence of the fields
at some space point. The macroscopic polarization is
found from P =N Tr(P)1i), where N is the number density
of four-level systems. Since P is real as defined, the
equivalent complex macroscopic polarizations are
P1 +P lopol P2 +E 21P12 P3 +I 32P23 and P4
=%Is&0p03, where p,i are given by Eqs. (12)-(16). These
polarizations can be used to formally define a Beer's
coeScient, for nonparametric terms, or a conversion dis-
tance, for parametric terms, or used as source terms in
numerical simulations of propagation effects as illustrated
elsewhere. ' The multiphoton nature of the interaction in
terms of saturation and level splittings, and their effect on
the separate parametric and nonparametric polarizations
wi11 be now i11ustrated.

FIG. 3. Signal Sow graph representation of the original
density-matrix equations when reduced to a set of coupled alge-
braic equations. The nodes refer to the diagonal and off-
diagonal Floquet elements. The lines are labeled with the Rabi
frequencies appearing as multipliers in the equations vvhere the
solid and open arrows refers to the Rabi frequency or its conju-
gate.

III. LOCAL SOLUTIQNS

A. Perturbation limit

Although the formalism presented so far is applicable
to harmonic generation, sum and difFerence frequency
generation, and CARS, we specialize at this point to the
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spec16c case of third-hMGloDlc generation by set ting

co, =a)2=c03, E, =E2=E3, k, =k2=k3, 8, =82=83=0,
and o =(=+1. The relevant macroscopic polarization
driving the harmonic is

rco4t b i3m&t
P4=+Wo(Po3e +P 03e (34)

and is clearly separated into nonparametric, p03, and
parametric, p 03, terms.

The perturbation limit, which arises when all waves are
weak, may be extracted from the results in the Appendix
or directly from the signal flow graph. ' The lowest-
order contribution to the nonparametric element, p03, is
simply

A03(P33 —Poo)
8O3=

~03
(35)

1 I

pa pa02 13

822 —P11

L12

P33 P22'8 L13 23

(36)

The presence of the complex detunings reveals the condi-
tions for resonant enhancement. One such resonant
enhancement occurs, from T03, when the pump is at least
011 three-photon rcso11ancc, Q30 ——303,. If poo~poo ——1, a
second resonance enhancement occurs, from 802, when
the pump is on two-photon resonance, Q20 ——2roi, and a
third resonance enhancement is associated with Lo, when
the pump is on one-photon resonance, Q,o

——co, . If
poo=poo&1, then the three terms in the large square
brackets may interfere causing a local xninimum in the
nonlinear susceptibility with pump detuning. If
poo poo

——1 and the pump is on one- two-, and three-
photon resonance, the parametric term approaches a
maximum value of

3
P03 I +ol+02+03AOIAI2A23 ~

I Ei I

However, under these conditions, the harmonic and the
pump are experiencing large nonparametric losses which
can only be partially suppressed by increasing the pump

which is the one-photon absorption term since it is max-
ImuIYl When Q)4= 030.

For the parametric term p03 the perturbation solution
ls

b ~01~12A23 I 11 lt 00

03 02 01

field. In the strong-pump regime, this simple cubic scal-
ing of p03 and the nonparametric losses are both modified
because of population saturation and ac Stark shifts as
will be illustrated shortly.

In the case of resonant second-harmonic generation for
which a harmonic was tuned near Q20 in Fig. 1, it was
found that if p12g~p01, the dominant pump ac Stark
eN'ect was such that the 010 and Q20 transitions were split
into doublets such that the material was essentially trans-
parent to the pump and harmonic, but that under the
same conditions the parametric gain saturated to a very
large value. ' The obvious question is to ask if similar
circumstances can occur in this case. If so, then the fully
resonant case is a candidate scenario for efficient frequen-
cy tripling.

A30 P00~1
P 03 I A03~0

L g
03 1

—Aoeoo

L„„
(37)

where, setting A;- =A; A; =A;-A,*.
J. ,

B. Strong-pumy limit

The strong-pump and harmonic limits are contained in
the solutions listed in the Appendix. Of special interest is
the case of a weak harmonic, which might be thought of
as a probe of the optical properties of the system. Even
in this limit, the results are quite complex because of pop-
ulation saturation and strong-field level shifts so only a
limited amount of analytical manipulations are feasible
here.

As an aid in understanding the nonparametric spectra,
the location of the resonances can be determined by the
following method. Each off-diagonal element is linearly
dependent on the diagonal elements, which in turn are
nonlinearly dependent on the fields. Because of this
linear dependence, the superposition principle may be
used in reverse to simplify the expressions for the off-
diagonal elements ultimately yielding simplified results
for the spectra. To implement this, we choose the syn-
thetic condition obtained by setting poo

——1. The non-
parametric solution for this case will describe all transi-
tions associated with level

I
0) and will contain ac Stark

information but will not, clearly, yield the correct sa-
turated Beer's coefficient. ' The utility of this limit rests
with the ease with which the Stark-shifted resonances
may be determined.

In the limit A03~0 and poo~l, the nonparametric
part of the off-diagonal element, p03, responsible for the
optical properties sensed by the harmonic becomes

AO1 ~01 ~121—
~03~ 13 ~ 02~12 ~ 13T23

a b b b b b

AO1~12+ b b b b + b b b b
JR 028 13T12T23 8028 'j3 T01T23

~01~12
2 2

A12A23
2 2

a b b b b b b bI-03~ 02~ 13&01 ~02& 13&017'12

A 12 A23 A23 2A01A23
2 2 2 2 2

~ 02~01 ~03~ 02 ~ 13~12 ~03~ 02+ 13T12
b b a b b b a b b b

A12A23
2 2

A01
4

a b b b a b b b~03~ 02~ 13T23 ~03~ 02~ 13T12

A
a b b bL 03& 13~o2T12
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and where 5, is 5, with L03 replaced by ao. The total expression can be recast into some generalized complex detuning
function L„„with imphed Stark shifts. ' By definition, resonances are associated with those values of frequency 014

for which the denominator becomes purely complex. From the practical point of view, the Stark multiplet is only
resolvable if the splittings are greater than a linewidth. Anticipating this, L„„canbe simplified in the sharp-line limit
by setting the i /~, j terms to zero yielding what might be caHed a root equation

W(Z —W)(X —W)( Y+Z —W)(X+Z —W)(X+ Y —W)

=A2»W(X+Z —W)[(X —W)(X+ Y —W)+(Z —W)( Y+Z —W)]

+A01A12[(X+Z —W)(X+ Y —W) —W( Y+Z —W}]+(Y+Z —W)(X+ Y —W)(A01 —A23)

—A,', ( Y+Z —W}(X+Y —W)[(Z —W)(X+Z —W) —W(X —W)] —A4»W(X+Z —W)

—A»( Y+Z —W)(X+ Y —W}[(X—W}(X+Z—W}—W(Z —W)]

+A12A23[( Y+Z —W)(X+Z —W) —W(X+ Y —W)], (38)

where X=(Q,0
—co, ), Y=(Q2, —032), Z=(Q32 —co3), and W=(Q30 —034). The detunings on the left-hand side of this

equation, which specify the zero-field resonances, show that in the most general case, the equation is of sixth order in W
and thus leads to at most six resonances, one for each nonparametric resonance seen in Fig. 2.2 These resonances are
fully equivalent to the allowed transitions between the dressed states of the system, and the strength of each may be
found from Eq. (37), namely from Im(L„„' ).2' As an example, if the pump is on full resonance, the roots are simple to
obtain and are

Q„—~,=0,~ [ [(A„*A„)'+A'„]]'" .

Thus at full resonance, the
~
0)~

~
3) transition may be split into a quintet with a possible loss on parametric reso-

nance, 030—co4——0.
Under the same strong-pump, but weak-probe, conditions, the parametric contribution is found to be22

2 2
—b ol 12 23 Pll Poo 01 23 12

2'

1+
Tb g gaga gaga Luge

P22 Pl 1

P33 P22

INgQ
23 13

1 A12 1
1 —— + 1—

R,

A23 —Aol
2 2 2

+ g g g 2 7

L 12&02 L 01~02

A12

~01~ 02

(39)

A01 Ao1 A 12
2 2 2

~ 12~02 ~ 13T03 ~01~ 02

A01A12 A 12
2 2 4

L01~02~ 13~03 L01~02L23~ 13

AolA12 A12A23
2 2 2 2

~ 12~ 02~ 23~ 13 ~ 23~ 13~02T03

12 23 23 Ol 23
2 2 2 2 2

L23~ 13 ~ 02~03 L 12~ 13 L 12~ 02~ 13T03

A12A23 Aol
2 2 4

I 01~021 12~ 13 L'12~ 02~ 13TO3

A
a a a b~ 12~ 13~02T03

(40)

Since the detunings in Eq. (40) are independent of co4 then
from the factor I', P03 has an implied parametric reso-
nance when ~4——ul+m2+m3 ——3ml. The complex term
b 2 scales as 8" so that each diagonal element has a multi-
pllcl' which scales as 4 /4 01' C. Collsidcrlng sllllplc sat-
uration only, the diagonal element diR'erence is expected
to scale as 1/8 so that p03 is expected to scale as 1/@ in
the strong-5eld limit. This feature is in marked contrast
with the resonant second-harmonic generation case for
which the strong-pump parametric term approached a
constant. As a particular example, if the pump is on full
resonance and for roughly equal matrix elements

Aol A 12 A23 A and Tj —f"=T2, the parametric term
can be evaluated in closed form as

PO3= [S@—e'33+3(1o22 —Ã1 }]
30AT2

which shows that under fully saturated, strong-field con-
ditions, the parametric contribution becomes vanishingly
small, showing that any nonparametric losses present
cannot be arbitrarily overcome simply with larger pump-
ing Selds.

Figure 4 shows a family of plots of the spectral proper-
ties of the material under strong-pumping but weak-
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probing conditions. For these examples we have chosen
~;J=~„=Tz and poo=l. All frequency terms are ex-
pressed in units of T2 so that the ~~ detuning in these
figures is (Q3o co—»)Tz ——$VTz and the strong-field Rabi
frequencies are expressed as ATz so that (ATz } =I/I „
~here I, is the conventional saturation intensity of a
transition. The lower curve in Fig. 4 is Im(L„,( } from
Eq. (37) with a norm of unity and the ticks under this
curve show the resonances determined from Eq. (38);
however, only the optically active ones are shown for
clarity. The upper group of curves are as follows. The
real and imaginary parts of —po3/Ao3, with contribu-
tions from all states, control the dispersion (disp) and ab-
sorption (abs) at co» and are shown because of their im-
portance in phasing matching and attenuation. The abso-
lute value of three parametric terms (para) are displayed,
p o3p p ozp and p '„, and reflect the third-harmonic and two
possible second-harmonic polarizations. ' ' The latter
two are displayed shifted from the third-harmonic polar-
ization by —10 and +10 detuning units, respectively.
The upper group of numbers shown in the figure refer to
the pump wave Rabi frequencies in the order A0&T2,
A, 2T2 and A23T2, and the lower group of numbers refer
to the respective detunings in the order
(Q,o—(o, ) Tz XTz, (Qz, ——ozz) Tz ———FTz, and (Q3z —coz) Tz

ZT2 ~

Figure 4(a) is for the case of a fully resonant pump with
approximately equal matrix elements. As seen in this
figure, the third-harmomc parametric gain is almost zero
in accord with the implications of Eq. (41) leaving only
the possibility of a second-harmonic gain and s small
nonparsmetric gain near detunings of %8. The reso-
nances predicted by Eq. (38) are in excellent agreement
with direct calculations.

Figures 4(b) and 4(c) are also appropriate to a fully res-
onant pumping situation but with different matrix ele-
ments. For Fig. 4(b), piz is set to be 5 times higher than
geo(=pz3, while for Fig. 4(c), p, z3 is set to be 5 times
higher. For these, the strongest Rabi frequency should
dominate the Stark multiplet. For the conditions of Fig.
4(c), the (o& wave should split the Q3z trallsitioii into a
doublet which should result in s reduction of losses st the
harmonic, as seen, but also results in a very small para-
metric gain because of the interferenee effects from the
highly populated excited states. For the conditions of
Fig. 4(b), the (oz wave should split the Qz, transition into
a doublet which should result in reduced pump absorp-
tion and hence a minimum value of saturation. This is
indeed the case as evident by the large parametric gain
but also a very large nonparametric loss.

Figures 4(a), 4(d), and 4(e) show a sequence of results
when the pump is on three- (Q3o=(o(+(oz+(o3) and two-

(Qzo ——(o, +coz) photon resonance as the one-photon de-
tulllllg, (Qio —ci)()Tz = —(Qzi —coz)Tz, is valie(l As see'll.
in this sequence, the dispersion at parametric resonance
is small, the parametric amplitude increases somewhat
with detuning because of reduced saturation but there is
some nonparametric loss. In the far-wing limit of the de-
tuning, (Q,o

—(o()Tz & —100, there is little saturation and
the Stark shifts are dominated by ~3 such that 032 is split

into a doublet, thus splitting the nonparametric reso-
nance QM into a doublet, reducing the loss on parametric
resonance. However, because the pump is in the wing of
the main absorption line, there is an implied power
dependence to the pump dispersion. The scaling of the
parametric polarization in this hmit is most unusual, ap-
pI oachlng

A01~12A23+02+03POOP03=- cc g(,
«o(+~i )(1+Azz&o3&oz }

which was verified by direct simulation. This result is a
direct consequence of ac Stark degradation caused by the
resonant co3 wave.

Figures 4(f} and 4(g) show the results of a permutation
of the detuning conditions of Fig. 4(e). For Fig. 4(g), be-
cause of the detunings, saturation is slight resulting in s
very large loss on parametric resonance. For Fig. 4(f), be-
cause the ai, wave is on resonance, the lowest two states
are highly saturated resulting in a reduced parametric
gain and nonparametric loss. The far-wing limit of this
case is very similar to the results in Eq. (42},but half the
magnitude because of saturation. It is also of interest to
note that the second-harmonic polarization is not negligi-
ble in this case and reflects only one of the detuning com-
binations explored experimentally by Yngvesson and
Kollberg, for which efficient doubling was obtained. z5

Figure 4(h) shows the results for a detuning condition
for which the pump is only on triple resonance. For this
case, there is s signi6csnt parametric gain but also non-
parsmetllc loss and dIsperslon.

C. Implications

The results displayed in Fig. 4, while not exhaustive in
terms of ranges in the variables, strongly suggest that it
will be difficult to realize efficient, = 100%, frequency tri-
pling in general in this type of interaction. This con-
clusion follows from Fig. 4 in which are shown conditions
for which there is either a strong nonparametric loss
present at the harmonic or pump frequencies, or both, or
dispersion st the harmonic frequency with an implied
power-dependent phase-rnatch condition.

Some computer simulations of a propagation model of.
the frequency-tripling interaction were explored for con-
ditions siro.ilar to those in Fig. 4. The spatial growth of
the waves is governed by'

dAo(/4 =Rel ((Poi+P o(f—) (~b(p iz+P'(—z+)

—(~,(P»+P z3~)1

(}
I Ao, I

/()g = „R,Re[ —i(p o, +p (),F)e '],
1

where E is given in Eq. (33),

~b=I ».&1~V10 &1 R, =l 32-&1~I 10.&1

and

~a =
I I»3o &4 I / I I» io'~( I

The normalized spatial variable g is Nk(
I p, o e, I

z/2fie,



3366 T. A. DeTEMPLE, M. K. GURNICK, AND F. H. JULIEN 37

'IQQ = .-004

V
X
lLI

LL
LL
Ikl

1.0--

oX Q l

COI"
Qk

Q.Q 1-
0.1

—. 103 N

x
4C
l
lh

-~0~ C'

x

IK

=10' lg

x
C
V

r v e vvv&el v a e error $0f4O
~ ~ s r

orreal

~Q ~Q 100

FIG. 5. Numerical simulation of the coupled wave equations
for the pump and third harmonic for full resonance, poo

——I, and
matrix elements in the ratio p2] e]/p]0 E]——4, @32.E]/p, ]0 6]——3,
@30 &g/p, ]0 &]——1, ~;;——~I, ——T'2, and perfect phase matching is
assumed throughout the interaction length. The conversion
eSciency, II, ——( E4(f) ( / ( E&(0) ~, has a maximum value for
the indicated conversion distance, T2(. For distances beyond
these, both waves are attenuated further.

resonant conditions, either nonparametric loss or power-
dependent dispersive effects are present and act as ulti-
mate limits to eScient conversion, restricting the latter to
a maximum of about 25% under conditions which would
be difFicult to realize experimentally. It remains to be
determined if similar limitations exist for some of the oth-
er pump-emission combinations shown in Fig. I, particu-
larly those dominated by a four-wave parametric gain.

The solutions presented in this paper complete the sim-
plest treatment of multiple-wave interactions in four-level
systems which were arrived at by assuming adiabatic con-
ditions and monochromatic ffelds. The other two com-
binations involve either a serial three-wave interaction,
such as a three-photon absorption, or a parallel three-
wave interaction, such as a second, competing Raman
wave, and are easily understood using the same tech-
niques outlined in this paper.

Because of the distinct possibility of transcription er-
rors in the equations, interested readers may obtain either
a printed listing of the computer programs used in this

1.0

0.8—

where N is the number density of entities and z is the
real-space variable. For reference purposes, Tzg=az,
where a is the unsaturated field Beer's coefficient at line
center.

Under fully resonant conditions, there will be no
power-dependent dispersion caused by saturation or
Stark shifts of the transitions under consideration. These
equations can then be solved numerically by assuming a
perfect phase-matched condition by replacing F by a nar-
row I.orentzian. Figure 5 shows the results of one such
set of simulations for the conversion efficiency and con-
version distance for a near-optimized choice of matrix
elements. The saturation of the ef6ciency at a value of
24% rather than 100% is due exclusively to the saturated
absorption present under these resonant conditions.

Figure 6 iHustrates the far-wing limit of the case shown
in Fig. 4(e} both with' and without the power-dependent
dispersion. As seen in these results, the power-dependent
dispersion has a predictably major e8'ect on the overall
conversion efficiency, degrading it by a factor of 10. In-
terestingly, pump-induced dispersive effects were also
found to dominate two-photon resonant frequency-
tripling interactions and are thought to be present in
other four-wave systems.
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In summary, we have presented general analytical re-
sults for the nonlinear optical polarization appropriate to
the case of resonant four-wave interactions in a four-level
system in the adiabatic limit. The results mere applied to
the speci6c esse of frequency tripling with a goal of as-
sessing this interaction for ef5icient conversion. The most
important analytical results are expressed in Eqs.
(37)-(40). Regarding frequency tripling, under near to

FIG. 6. Numerical simulation of the evolution of the pump
and third harmonic for (a) perfect phase matching and (b)
power-dependent phase matching. The conditions are similar to
Fig. 4(e) and Fig. 5 except for the following: p».e]/p, ]0 e]=1,
@3' 6]/p]0 6]= 10 (Q]0—6)])T2 = 100 {Q2] —co2}T2= —100
aud AO, T2 4. Distance is in units of T2—$, and the intensities
are defiued by II, ——( Ek(g)

~

2/
~
E](0) (

', where k is the pump
or harmonic label.
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study or a copy on a Soppy disk (IBM 360k format) by
direct request from the first author (T.A.D.}.

Note added. The dressed-atom a~proach has recently
been used by Wang, Wang, and Fu to study the case of
Fig. 1(b) when only two of the waves are strong as in Ref.
11. Further, Tai, Deck, and Kim have recently present-
ed more data on frequency summation, 2~)+Q)3, in four-

level system in I2 and considered Stark efFects on the
nonlinear polarization in the wing limit of the detunings.
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APPENDIX

The full solution of Eqs. (17)-(28) is achieved by treat-
ing the diagonal elements as independent variables, ex-
pressing the ofF-diagonal elements in terms of these and
various coefficients, and then solving Eqs. (7)-(10) for the
actual value of the diagonal elements. The true diagonal
elements are thus found and may be used as source terms
in Maxwell's equations for example. The most complex
part of this is in the first step. Interestingly, algebraic
equivalents of FORTRAN are of no use since they invari-
ably yield a result in the form of some polynomial which
is not necessarily the most compact form nor even read-
able in some cases. Foe combinatorial problems such as
this one, a compact result often takes the form of a con-
tinued fraction, and the results below are in fact com-
binations of nested continued fractions.

Each oF-diagonal element will be expressed in terms of
coefficients which are multipliers to the four possible
diagonal-element difFerences associated with the four pos-
sible one-photon transitions. Thus, for example, the two
off-diagonal amplitudes in Eq. (14}become

P03 ~03(PQQ Pll)+803(Pll Pzz}

+Coi(Pzz P33)+Doi(Poo——P33»

P03 ~03 POO Pll +803(Pll P22}
b b

+Co3(Pzz —
P33 }+ao3 (Poo —P33»b b

where the coeScients are to be determined and where the
diagonal element dilerence under the inhuence of the
Selds is also to be determined.

Using standard and graph algebraic approaches, the
full set of coefficients have been determined. There are
certain combinations of Rabi frequencies and detunings
which appear often and merit new definitions of the fol-
lowing kind:

3 = AplA32(1/L 113+1/T 12 )

A
' = —A 10A23 ( I/L 03 + 1/Tbz ),

8 = —A12A113(1/Tbzi + 1/L 10 ),
'= —A21A30(1/T23+1/L ill),

C = A12A03(1/L 32+ 1 /Ttl )

C A21A3Q( 1 /L a32 + 1 /Tobl )

D = Alii—A32(1/Lzl +1/Tibp ),
O'= —A111A23(1/Lz, +1/Tip ),

and

13b — 13
— 01Alo/L Q3 A23A32/T 12

A12A21 /T23 A03A30 /L lo

XQzb 8 pz
—AplA10/Tiz —A12A21/Till

b b b

—Az3A3z /L o3
—Ao3A30/L 32

X20a 20 A01A I 0/L 21 A12A21 /L 10

A23A32 /T30 A03A30 /T23b b

X31g ~ 31 AplAip /T30 A12A21 /L 32

A23A32 /L 21 A03A30 01

The determinant of the coeScients of the conjugate of
Eqs. (17)-(28) is expressed compactly in terms of these as

/(X31gXpzb ) DD j(X31gX20a } 88 j(X20aX13b } ~ ~ j(X13bX02b }

—C'D'8~ j(X31oXzo XlibXozb } C~'8'D/(XozbX13bXzoaX3ia }

+ 3A DD /(X02bX13bX3laX20a )+88 CC /(X02bX13bX31gX20g )

Four of the off'-diagonal elements can be used as generators of the other eight in Eqs. (17)—(28). These four are P Qz,

p 3,, p 20, and p &3 which are found to have the foHowmg 16 coeScIents:

~ 02 (A10A21 /L 10)/8~ j X13bX02b )++Cj(X3laX02b ~ X20a~

+( A10A03 /L lp I ( ~ /X02b f 1 DD X31aX20a j+ D j(X20aX3laX02b }I (Xlib~ ) ~

802 (AzlA32 /L21 }I (C /X02b )l 1 88 j(X20aX13b )~

+D 8~ j(X2paX13bX02b )l j X31a~ + A10A21 /L 21 )

X I 8~ j(X13bX02b }+DCj(X31aX02b )~ j(X20a ~)
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C(]2 ( A32AQ3/L 32 )[1 88 /(X]3bX20g ) DD /(X3] X2Q ) ]/(XQ2b 6 )

+ ( —A21A32/L 32 ) I ( C lx02b )[ 1 —88 ' /( X2pax I 3b ) ]
+O'BA /(X2pax]3bXQ2b) j/(X3]gk)

A„A„/L;, ) I ( ~ /x02b )[1 DD—'I(x».X20. )]

+8 DC /(X20aX3]aXQ2b ) I /(X13b 5 ) + ( A32Ap3/L 03 )

&( [ 1 —8'8 /(X]3bX2p ) —DD'/(X2p X3] )]/(X02bk )

~ 31 ( A]OA03/L]0}[~c l(X02bx3]a }+8Dl(X20ax3la }ll(xl3b~}

+ (A]l]A2]/L ]0 )

x I (D/x„. )[1—a a '/(x~, x„„)]+8wc'/(X„, X„,X„.}]/(x„.s),
831 ( A]OA21/L2] }t(D /X3]a )[1—32 /(X02bX13b )]+BAC /(X]3bX02bX3]a )I /(X02a5) +( A2] A32 /L21 )

X [ 1 —2 2 /(X02bX13b ) —88 '/(X13bX20a ) ]/(X31a 6 )

C3] (A32A03/L32 )I(C IX3]a )[1 88 /(X]3bX20g )]+2 8 D/(X]3bX20aX3]a )I /(X02bk)+( A2]A32/L 32 )

y [1—A A'/(XI]2bX]3b ) —88'/(X]3bx20 )]/(X3] &)

D31 ( AIOA03/L03)[~C l(X02bx3la }+8Dl(X20ax3]a )]I(X]3b~}+(A32A03/L03 }

X I(C'/X3] )[1—88'/(X]3bX2p )]+3 '8'D/(X]3bX2p X3] )] I(X02bk)

~ 2]1 =( A]OA03/L 10 }I(8 IX20a )[1 C O X02bx3]a ]+~c D X02bx3]ax20a I X]3b~)+(A]QA2] IL 10 }

X [ 1 —O'C/(X02bxqia ) —2 3 '/(Xp2bX13b )]/(X2p 6 )

82P =( —AIPA21/L21 )[1—C C/(X02bx3]a )—& & /(XP2bX]3b )]/(X20a&)+(A2]A32/L2] )

&& t ( D '/X2]i, )[ 1 —32 '/(XQ2b X]3b )]+CA '8 '/(Xl]2b X]3bX2]1, ) ]/(X3], b ),
C2]1= (A32AIO/L 32 )[O'D'/(X3] X2]1 }+8 '8'l(x]3bx2p )]l(X02ba ) + ( A21A32/L 32 )

X I (D /X20a )[1 A A /(Xp2bX]3b )]+CA 8 /(Xp2bX]3bX20a ) ] /(X3] 6 )

D20 ( A]OA03/L03 )L(8 IX20a }[1 C Ol(X02bx3la }]+~C D l(X02bx3]ax20a }I/(X]3b~)+(A32A03/L03 }

~ [C D l(X3]ax20a }+~ 8 l(xl3b 20 )]l(X02b}
~ 13 A]OA03 L 10 )[1 C O (X31 X02b } DD (X20 X31 }] (X13b~}+ AIOA21 10 }

&& I (8 /x]3b )[1 O'C l(X3]a—X02b )]+D C~ I(X3lax02bx]3b )] /(X20a~) ~

813 (A2]A32/L21 )[D 8 l(X20axl3b }+C~ l(X02bxl3b )ll(X3]a~ }+( AIOA21/L 21 }

+ t(8/x]3b }[1 CC l(X3]ax02b )]+Dc~ l(X31ax02bxl3b }Il(X20a}
C]3 (A32A03/L32)(( ~ lx]3b }[1 DD l(X3]ax20a }]+CD Bl(X31ax20ax]3b }Ij(X02b~}+( A21A32/L32 }

&( [D'8 /(X20 X13b )+CA '/(Xp2bX]3b )]/(X3]a&)

D ]3 ( AIQAQ3/L Q3 )[1 —CC'/(X3], X02b ) —DD' /(X3],X2]i, )]/(X]3b +}+( A32AQ3/L Q3 }

X I ( 3 '/X13b )[1—DD'/(X31aX20a )]+O'D'8 /(X31aX2paX13b ) I /(Xp2b&)

Given these, the remaining 32 coeScients for the other eight oftdiagonal elements are found to be

A Q]
——( AQ3 3 3] —A2, 3 02 ) /TQ], ~ ]o =(A]o/L ]o }+(A]2~2o

—A3o~ ]3 }IL]o

Bob, ——(A 38'] —A2]8(12)/Tli], 8]li ——(A, 2820 —A3p8, 3 )/L;I],

co] =«03C3] —A2]co2 }/To] O]o =«]2O2o —A3oc]3 }ILIO

Dpl (A03D31 A2]D02 )ITO] ~ D]0 (A12D20 A3QP 13 ) IL 10
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~ 12 (Alo~ 02 A32~ 13 )/T12» ~21 (A23~ 31 Aol ~ 20)/~21

B12 (Alo 02 A32B13 )/Tbl2 B21 (A21/~21 )+(A23B31 A01B20 )/~21

C12 =(AloC112 —
A32C13 ) /T 12, C21 ——(A23C31 AolC2o )/L

D12 (Alo 02 A32D13 )/T12~ D21 (A23D31 A01D20)/~21

A 23 =(A21A 13
—A03 A 211 )/T23 ~ 32 (A30~02 A12~ 31)/~32

B23 (A21B13 A03B20)/T23 B32 (A30 02 AI2B31 )/~ 32

C23 (A21C13 A03C20 )/T23& C32 (A32/~ 32 )+(A30 02 A12 31 )/~ 32

D23 =(A21D 13
—Ao3D2o)/T23 * D32 =(A30Do2 —A12D3»/L 32

~ 30 ( A32 ~ 20 Alo ~ 31 )/T30b a a b ~ 03 (Aol ~ 13 A23 03 )/~03

B30 (A32B20 Alo 31)/T30& B03 (A01B13 A23B02)/~03

C30 = 32 20 10 31 30 ~ C03 (A01C13 A23 02 03

D30 (A32+20 A1 431)/T30& D03 ( A03 ~03)+(A01D13 A23D02)/~03

Because P is Hermitian, the 12 conjugate o8'-diagonal elements fo11ow automatically.
The next stage entails the determination of the saturated diagonal elements. Since all interesting multiphoton spec-

troscopy is contained in the above coeScients, we only outline the steps used to proceed with this part. As an illustra-
tion, one driving term for poo in Eq. (7) is (Po, —P,o)p, o E/1, which, with the help of Eq. (29), becomes

21m(ploA10+P toA10F)=2Imt A 0[(A 1+F30 )(Poo P )+(B 1+FB )(P P 2)

+ ( Col +FC01 )(P22 P33 ) + ( D 0l +FD 01 )(POO P33 ) 1 I

=Q1(Pm —P 1 1)+Q2(P11 —P22)+ Q3(P22 —P»)+ Q4(Pm —P»»

where the Q, are constants and can be most easily evalu-
ated numerically along with the saturated value of the di-
agonal elements. The actual value of the off-diagonal ele-
ment then follows from the above coeScients and the sa-
turated value of the diagonal elements. As a convenience
to the interested reader, we list be1ow the equivalents to

l

Eqs. (37) and (39) for the remaining three waves. The fol-
lowing table lists the substitutions which are used to
transform the equations so that they are appropriate to
one of the other three waves, when it is weak ( A, B, C,
and D are Ao„A, 2, A23, and A03, respectively):

Ao3 ~0
P03

Ao1 ~0
P01

A,2~0
b

P12

A23~0
P23

A03 ~0
Po3

Ao1 ~0
Po1

A, 2~0
P12

A23~0
P23

P33

LO1

L12

8 02

T03
b

P33

P11

LO3

L32

LZ1

~O2

831
TO1

b

P33

P22

L 1O

LO3

L32

T12

P22

P»

P33

LZ1

L 10

Lo3

20

T23
b

Poo

T01

T12

T23

~O2
bR13

LO3

Poo
b

T03

T32

T21
b

R O2

bR31

Lo,

P11
b

T10

T03

T32

813
R 02

I- 12

P22

T21
b

T 10

T03
b820

813
L23
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