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We derive an infinite-order correction to the adiabatic approximation for the polarization in-
duced in a two-level system by nearly resonant laser irradiation in the low-Rabi-frequency limit for
two general classes of field envelopes. We find that Rabi oscillations at the resonant sideband fre-
quency are a general occurrence and study the influence of the pulse shape on the form of the
asymptotically decreasing amplitude of the Rabi oscillations as a function of the detuning and time
constant. We go beyond the low-Rabi-frequency limit by comparing the analytic solution with nu-
merical solutions of Schrédinger’s time-dependent equation. For symmetric laser-pulse envelopes,
the numerical solutions predict eigenvalues of the pulse area at which the amplitude of the Rabi os-
cillations is zero. The phase of the temporal oscillations changes by 7 at these eigenvalues. For the
special case of a hyperbolic-secant envelope, these eigenvalues correspond to the 2nm-area pulses of
self-induced transparency. For large-area pulses, the central region of the polarization as a function
of time contains additional oscillations, the number of oscillations being determined by the number
of pulse-area eigenvalues. For a propagating pulse, these oscillations are impressed on the field and
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amplified, thereby initiating pulse breakup (nonresonant self-induced transparency).

I. INTRODUCTION

In the adiabatic approximation of quantum mechanics
a system remains in an eigenstate of a Hamiltonian of
which one or more parameters vary slowly in time.'?
The adiabatic approximation is exact in the limit of
infinitely slow parametric change. In this limit there are
no Rabi oscillations.! For any finite rate of change, the
system is in a superposition of eigenstates of the instan-
taneous Hamiltonian, so that the expectation value of an
off-diagonal operator such as the dipole moment displays
complex oscillations. In this paper we study the depen-
dence of the amplitude and phase of these oscillations on
the time history of the Hamiltonian for the specific exam-
ple of a two-level system irradiated by a laser pulse. The
adiabatic approximation discussed here and in Ref. 1
should not be confused with the quasisteady-state ap-
proximation in which coherent laser driving is in dynam-
ic equilibrium with collisional and other damping pro-
cesses.

The results presented here are the foundation for a
physical, as well as quantitative, understanding of several
coherent laser propagation phenomena. When the con-
tribution of the nonlinear polarization to the laser propa-
gation equation is large compared to the contribution of
diffraction, as in many experiments on nearly resonant
propagation in atomic vapors, different parts of the wave
front propagate nearly independently. In this case the
possibly small intensity- and phase-dependent corrections
to the adiabatic approximation have a major effect on the
evolution of a propagating pulse since these oscillatory
corrections are impressed upon the pulse and are
amplified in subsequent layers of the medium. We shall
describe the application of our results to the explanation
of frsquency-shifted conical emission in a future publica-
tion.

The adiabatic approximation has usefully been applied
to problems in the propagation of nearly resonant light in
two-level vapors.®~!° If the field envelope varies slowly
compared to the precessional period and if the pulse is
sufficiently short that the relaxation times T, and T} can
be considered to be infinite, then the atomic system
remains approximately in the quantum-mechanical state
that evolves continuously out of the zero-field eigenstate.
To the extent that this approximation is valid, no new
frequencies are generated. Thus the atomic response can
be expressed as a nonlinear dielectric susceptibility, obvi-
ating the need for integration of the complete set of
quantum-mechanical equations of motion. The adiabatic
approximation for the induced polarization in two-level
systems was derived phenomenologically by Grischkow-
sky,” who used it to explain certain experimental results
of laser propagation. Subsequently, Crisp® provided an
analytic derivation and obtained an explicit quadrature
for the error. We have extended Crisp’s results by mak-
ing a systematic study of the error for a variety of pulse
shapes and parameters.

In this paper we derive analytic solutions for an
infinite-order near-adiabatic approximation for the in-
duced polarization of an undamped two-level system in
the low-Rabi-frequency limit for two general classes of
field envelopes. These solutions, which may also be
viewed as providing infinite-order corrections to the adia-
batic approximation, involve various special functions.
For complex arguments the special functions begin oscil-
lating at a finite time and continue to oscillate indefinitely
with constant amplitude. We call these the “tail oscilla-
tions.” From Messiah’s discussion of adiabaticity,2 it is
known that the adiabatic approximation is asymptotic.
Crisp established its validity for | A|7>>1, where A is
the detuning from resonance and 7 is a characteristic
time. The analytic solutions we obtain describe the func-
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tional dependence of the asymptotically decreasing am-
plitude of oscillation on the detuning and time constant.
However, the induced polarization contains Rabi oscilla-
tions at the resonant sideband frequency (—A) for all
finite values of | A | .

In the near-adiabatic regime, the infinite-order correc-
tion is much smaller than the adiabatic polarization. In
order to extend the range of | A | 7 over which nonadia-
batic effects are visible in graphs, it is useful to subtract
low-order approximations from the total polarization.
For this application we derive the first five orders of ap-
proximation in Appendix A using a technique introduced
by Crisp® which does not invoke the low-Rabi-frequency
limit. The first two orders of approximation are also de-
rived for a complex field envelope, yielding results that
differ from previously published results*® for a real field
envelope. The complex formulation is essential in analyz-
ing laser propagation where self-phase modulation causes
an initially real field to become complex.

The numerical solution of the two-level time-dependent
Schrodinger equation is complicated by imaginary eigen-
values, improper initial conditions (at f = — « ), and adia-
baticity requirements. We describe the numerical tech-
niques used to solve Schridinger’s time-dependent equa-
tion and compare the numerical solutions with the ana-
lytic solutions to show that our infinite-order approxima-
tion is valid for a wide range of | A | 7. We then use the
numerical method to survey the new effects that occur at
higher Rabi frequencies than those to which the analytic
solutions apply. For symmetric pulse envelopes, the nu-
merical solutions predict eigenvalues of the pulse area at
which the amplitude of the tail oscillations is zero. The
phase of the temporal oscillations changes by 7 at these
eigenvalues. For the special case of a hyperbolic-secant
envelope, these eigenvalues correspond to the 2nm-area
pulses of self-induced transparency. Asymmetric pulses
have similar but less sharply defined behavior. For
large-area pulses the central region of the polarization
(corresponding to the maximum of the incident pulse)
contains additional oscillations, the number of oscilla-
tions being determined by the number of pulse-area ei-
genvalues. For a propagating pulse, these oscillations are
impressed on the field and amplified, thereby initiating
pulse breakup (nonresonant self-induced transparency).

II. COMPLEX POLARIZATION

In this paper we are concerned with the excitation of
an ensemble of atoms or molecules with two energy levels
connected by an electric dipole transition, the frequency
(e/#i) of which is nearly equal to the laser frequency. In
order to make the underlying physics more apparent, we
use the undamped time-dependent Schrdodinger equation
rather than the Bloch equations. This is permitted be-
cause the pulse is assumed to be short enough that T,
and T can be neglected. In the rotating-wave approxi-
mation for a system with a ground state and one excited
level interacting via an electric dipole transition with an
external, classical, time-varying field E (¢)cos(—wt +¢)
[where the complex field envelope E(t) is supposed to
vary slowly on the time scale of the period 27 /w], the
time-dependent Schrodinger equation takes the form!!°

ac, E(2)*

Yo _pEQ@)”
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ac, E(1)

9 _ uE(1) :

ot =1 2% 50+1A81 ’ (2)

where A is the detuning of the laser frequency from reso-
nance, A=w—¢/#; p is the matrix element of the dipole
operator; and ¢, and ¢, are the probability amplitudes of
the ground state and excited state, respectively. The
complex polarization

P=2iNut iz, (3)

is proportional to the source term of the wave equation
describing the spatial propagation of a laser pulse in the
slowly varying amplitude and phase approxima-
tion.*!® The complex polarization is related to the Bloch
vector components by P=iNu(u —iv). The time deriva-
tive of the complex polarization is

de, | deg
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dP
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Substituting (2) and the conjugate of (1) into (4) and let-
ting Z=|¢,|2— |, |? be the inversion results in the
first-order linear differential equation

2
4P i ap_NE g7 | (5)
dt #i

which has the integrating factor exp(—iAt). With the
initial condition P(— oo )=0, the polarization is

2 -

P=2E [ Bzl —id —0ldr . ©
t'=—c0

Making the change of variable x =¢ —t’ yields the exact

expression

2 X=c0
P(t)=‘,—v1ﬁu—f CE(—x)Z( —xexplidx)dx , (D)
which is equivalent to a result obtained by Crisp.}

Equation (7) is completely general. For a nearly adia-
batic pulse, the expression for the inversion derived in
Appendix A,>°

g E[A]
(A24+u? | E | 2772

can be substituted into the integral. (The minus sign is
used for systems starting in the ground state and the plus
sign for systems starting in the excited state.) If
A?>>pu? | E |2, /# (low-Rabi-frequency limit), then the
inversion is nearly constant and can be brought outside
the integral, resulting in the approximate expression

2 x o
P(t)zﬁ"-;lf "Bt —x)expliAx )dx . (8)

For a given field envelope, the integral in Eq. (8) is gen-
erally a special function with a complex argument. The
technique of solution is to find an integral representation
of a special function or a tabulated definite integral that
corresponds to (8). To illustrate the method and to de-
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scribe the resulting physics we evaluate the integral for
the important cases of a generalized Gaussian and a gen-
eralized hyperbolic-secant field envelope. Experimental-
ists often strive to obtain a pulse that is Gaussian in time,
while the hyperbolic-secant pulse has long been known to
play a special role in the propagation of laser pulses.'!

Both the Gaussian and the hyperbolic secant are sym-
metric about a maximum. Real pulses, especially those
modified as the result of propagation, may be asymmetric
and may have acquired a small modulation at other fre-
quencies than the center frequency w of the laser pulse.
In order to allow for these physically important cases, we
multiply the originally symmetric unmodulated pulse en-
velope by the factor exp[(u +iv)t]. The parameter u al-
lows consideration of asymmetric envelopes such as
would occur for a self-steepened pulse. The oscillating
component should be thought of as a perturbation of the
basic envelope [1+¢€exp(ivt)], where € is a real ampli-
tude small compared to 1, rather than an oscillation of
the entire envelope. Provided that the amplitude € is
sufficiently small, this allows for an input sideband of
nearly arbitrary frequency without violating the adiabatic
condition.!

III. ANALYTIC SOLUTIONS

A. Gaussian envelope

Consider the generalized Gaussian field envelope

2

E(t)=Egexp[(u +iv)t]exp >,
-

) 9)

with u, v, and 7, real, and 7> 0. Since the peak of the en-
velope is located at ¢, =ut?, we define the normalized
amplitude as E{=Ejexp(—u?r/2). By Eq. (8), the
complex polarization is

NUE(Z xew .
P(t)~———’,;—fx=0 exp[(u +iv)(t—x)]
wexp | - g X X2
I A &
Xexp(iAx )dx . (10

With the subsititutions B=7>/2 and y=u—t/7
+i(v—A) one converts the integral to

Nu’E\Z ¢2
l)y~———— _—— v )t
P(1) 7 CXP ) +(u +iv)
x [7F X d (1
‘=0 exp | — 4 yx |dx .

In terms of known special functions the result is'?

Nu’E; 2
P(t)z—ﬁ%—o—z-exp ~;t;2—+(u+iu)t
X V'mBexp(By?lerfc(yVB) . (12)
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The above integral is simply a special case of an integral
representation of the parabolic cylinder function.'?
Because the argument of the complementary error
function is complex, the properties of the solution are
more apparent if we utilize the so-called complementary
error function of complex argument, W, which is defined

as”

W(z)=e"2erfc(—iz) . (13)
The general solution to (11) becomes
Nu’E\Z

P(t)z—~—ﬁ-——exp

2

—-t—+(u +iv)t

VaBWl(iyVB
2 mBW(iyVB),

(14)

while the polarization for the generalized Gaussian field
envelope (9) is

172 2

TNWEVZ [ 4 ‘ .
)= P > exp —32 +(u +iv)t
(A—v)r  .t—ut
X W 7 —1i 5 (15)

The major part of the polarization given by Eq. (15) is a
scaled image of the original pulse modified by the com-
plementary error function of complex argument, W.

Because W exhibits smoothly varying behavior if the
imaginary part of the argument is positive and complicat-
ed behavior if the imaginary part is negative we use the
identity'*

W(x —iy)=2exp(y?—x2+2ixy)—[W(x +ip)]* (16)
to divide (15) into a solution valid for t < u7*:
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and a solution valid for ¢ > u 7%
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In order to investigate the most fundamental proper-
ties of the solution we consider the symmetric Gaussian
envelope by taking u =v=0. Perhaps the most interest-
ing feature of the solution is the occurrence of Rabi oscil-
lations at the resonant sideband frequency (—A) begin-
ning at the peak of the envelope, =0, and persisting
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indefinitely in time with constant amplitude. The overall
phase of these oscillations is the same as the phase of E,.
In this infinite-order low-Rabi-frequency approximation,
the amplitude of these oscillations is proportional to 7
exp(—A?7?/2), whereas the adiabatic approximation
(A19) predicts no oscillations and is valid only if
| A]7>>1 (Ref. 3).

Nonzero values of ¥ and v move the peak of the pulse
to u7* and introduce a phase factor exp[iu (v —A)] that
fixes the node of the Rabi oscillations at the peak. The
amplitude of the Rabi oscillations is now proportional to

u?r?
2

Texp —~72i(A~u)2 exp (19)

For an asymmetric pulse, the amplitude of the tail oscil-
lations depends on the magnitude, but not the sign, of the
asymmetry. Constructive interference occurs when v and
A have the same sign, and destructive interference occurs
when they have opposite sign. In particular, if v =A then
the amplitude of the Rabi oscillations no longer asymp-
totically decreases with A7, but increases with 7 for the
fraction £/(1+¢€) of the pulse that is oscillating initially.
The second term in (18) is also oscillatory when the ini-
tial field contains oscillations at frequency v. The com-
plementary error function of complex argument intro-
duces a-phase of 0 to sgn(A —v)m /2 for t <u7? and from
sgn(A—v)mr/2 to sgn(A—v)m for t > ur>. The physically
significant result is that during propagation any input
sideband oscillations occurring before the peak are
amplified and those occurring after the peak are attenuat-
ed. The phase approaches the limiting values slowly so
that the effect is very small. Further, we have assumed
that the fraction of the pulse with input oscillations is
small, making the effect much smaller than the tail oscil-

o
o

o
©

POLARIZATION (picostatvolts/cm)

TIME (ns)

FIG. 1. Polarization for a real, symmetric Gaussian pulse
demonstrating the tail Rabi oscillations. The solid line
represents the real part of the polarization, the short-
dashed -long-dashed line represents the purely imaginary adia-
batic polarization, and the dashed line represents the higher-
order imaginary polarization. The parameters are Av=0.1
cm™!, 7=0.183 ns, E =50 statvolts/cm, p=10"2
statcoulombs cm, and N=5x 10" cm 3 (v=1/A).
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lations resulting from the first term in (18), which
operates on the entire pulse envelope.

The result of calculating'’ the polarization from Egs.
(17) and (18) for a real symmetric Gaussian pulse is
shown in Fig. 1. The first-order adiabatic polarization
(A19) was subtracted from the total polarization in order
to make the effects of the higher-order terms more discer-
nible. The tail oscillations are clearly visible in the figure.
This figure also shows the asymmetry of the even terms in
the expansion which gives rise to pulse reshaping under
propagation.

B. Hyperbolic-secant envelope

Consider the generalized hyperbolic-secant field en-
velope

E(t)=FEyexp[(u +iv)t ]sech(t /1) , (20)

with a, 7, u, and v real, a and 7>0, and u > —a /7. If
u <a /7, then the peak of the envelope is located at
to=[In(1+ur/a)—In(1—ur/a)]r/2. We define the
normalized amplitude

Eo=Eyexp(—uty)cosh™(t,/7) .

By Eq. (8), the complex polarization is

_ N‘qu(’)Z fx:oo expl(u +iv)(t—x)]

P(t)=~ i Ax )dx .
#i x=0 cosht/T—x /1) explidx )dx

(21)

Making the exponential substitution for the hyperbolic
cosine and defining z = —exp(2t /7), we obtain

2°Nu2ELZ

P(t)= P exp[(u+a/r+iv)t]

v fx:eo exp{ —[u+a/r+i(v—A)]x} dx

x=0 [1—zexp(—2x/7)]°
(22)
The change of variable y =2x /7 and the substitution
b=[u+a/7-+i(u—A)]T 23)
2
convert (22) to
2° " TNU’E,
P(t)z————ﬁi-—ggexp[(u +a/r+iv)t]
Xfy=w exp(—by) ’ (24)
y=0 [1—zexp(—ypy)]°
which can be expressed as
291 Nu2E,
P(t)z———iﬁexp[(u+a/r+iu)t] 1
#i b
X, Fila,b;b+1;z) (25)

using an integral representation of the hypergeometric
function.!® If >0 then |z | > 1, and the infinite series
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for the hypergeometric function does not converge.
However, the function can be evaluated by analytic con-
tinuation, 6

Fi(@,bsb +12)= 72— (—2)~¢

X,F, |a,a -b;a—b+l;% ‘

bI'(b)I'(a —b)

_ _\—b
) (—2z)=7,

(26)
where use has been made of the identity ,F,(a,0;c;z)=1.
Then the solution is, for t <0,

29TNu’E;

& Ila+n)
X Z "

exp[(u +iv)t]Jexplat /7)

(—1)"exp(2nt /7)
[a+2n+ur+ilv—A)r]n!

27

and for ¢t >0,

2°rNu’E;
Pi=~=F

7 exp[(u +iv)t Jexp( —at /1)

@

>

n=0

I'(a +n)
I'(a)

(—1)"*+lexp(—2nt /1)
[a+2n —ur—i(v—A)r]n!

N 2°"YTNWEGZ T(b)[(a —b)
# I'(a)

exp(iAt) . (28)

The factorials are simplified if we consider only the
case where a =1. Then the solution is, for <0,

2t

2TNu’E
P(t)= P exp[(u +iv)t Jexp(t /7)
had (—1)"exp(2nt /7)
X n§0 1+2n+ur+ilv—A)T 29
and for ¢t > 0,
27NU2E; .
t)z-———ﬁ————exp[(u +iv)t]lexp(—t /1)
i (—1)"*lexp(—2nt /7)
weto 14+2n—ut—i(v—A)7
TNU?E;
+———’£——£exp(iAt)7r
#
mrv—A) iurtw
— 30
X sech 2 > (30)

The physical properties of this solution have much in
common with the results given for the Gaussian pulse.
The polarization contains Rabi oscillations at the reso-
nant sideband frequency that begin at a finite time and
continue indefinitely with constant amplitude. The oscil-
lations have an amplitude that is an exponentially de-
creasing function of | A | 7 and which demonstrates con-
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structive or destructive interference with an input side-
band. The phase ¢ of the oscillations is determined by
the phase of E, and by the asymmetry constant u
through the expression

tan($)=tanh 1’—’—(32—“—“—) tan | 427 (31)
The magnitude of the oscillations is proportional to
—172
7 | cosh? flvz_—Al —sin? u;ﬂ , (32)

which again depends on the magnitude, but not the sign,
of the asymmetry constant u.

An important special case of the input pulse (20)
occurs when @ =1 and u =1/7. The pulse shape is then
a Fermi pulse and the oscillation magnitude becomes pro-
portional to | rcsch[7r(v —A)/2] |, which asymptotical-
ly approaches o as the argument approachs zero,
demonstrating considerable interference between the
Rabi oscillations and the input sideband.

Figure 2 shows real hyperbolic-secant pulses with posi-
tive (u=+2.1) and negative (¥ =—2.1) asymmetry.
Equations (29) and (30) were evaluated for these pulses.
In both cases, the first-order adiabatic polarization was
subtracted from the total polarization in order to make
the effects of the higher-order terms more discernible.
The results are shown in Fig. 3 for the positive-
asymmetry case and in Fig. 4 for the negative-asymmetry
case, where the solid line is the real polarization and the
dashed line is the higher-order imaginary polarization.
The purely imaginary, first-order adiabatic polarization,
which is not shown, is an inverted image of the electric
field with magnitude 1.26 picostatvolts/cm.

IV. NUMERICAL METHOD

In this section we describe the numerical method used
to solve the time-dependent Schrodinger equation [Egs.

50

N (&3] »
o (@] o

FIELD STRENGTH (statvolts/cm)

o

0 2.5 5
TIME (ns)

FIG. 2. Hyperbolic-secant pulses with positive (solid line)
and negative (dashed line) asymmetry. The parameters are
7=0.31 ns, E; =50 statvolts/cm, and u =+2.1.
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FIG. 3. Polarization for the real, positive asymmetry,

hyperbolic-secant pulse shown in Fig. 2. The solid line
represents the real part of the polarization and the dashed line
represents the higher-order imaginary polarization. The param-
eters are Av=0.1 cm~!, pu=10"2 statcoulombs cm, and
N=5x10"cm~>.

(1) and (2)] in order to verify the applicability of the ana-
Iytic solutions which were derived assuming near-
adiabaticity and low-Rabi-frequency limit, and to extend
the solution beyond the range of validity of the adiabatic
and low-Rabi-frequency approximations. The most
significant aspect of the differential equations (1) and (2),
from a numerical point of view, is that they have imagi-
nary eigenvalues. Because of these imaginary eigenval-
ues, it is surprisingly difficult to obtain accurate numeri-
cal solutions for an arbitrary time-dependent field en-
velop E(t). Several well-known methods for solving sys-

0.14

o
(@)
<

I
©
o
=}

POLARIZATION (picostatvolts/cm)

-0.07% " .
-5 -2.5 0 2.5 5

TIME (ns)

FIG. 4. Polarization for the real, negative asymmetry,
hyperbolic-secant pulse shown in Fig. 2. The solid line
represents the real part of the polarization and the dashed line
represents the higher-order imaginary polarization. The param-
eters are the same as for Fig. 3.
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tems of ordinary differential equations are actually unsta-
ble for equations with purely imaginary eigenvalues. Chu
and Cantrell!” present a method for solving the time-
dependent Schrodinger equation that has a very small lo-
cal error and high computational speed. The finite-
difference equations for their multistep method are

Yn41=0.43y,—0.35y, _,+0.92p, _3+2.38hy,
—1.59hy. _, +2.28hy. _,—0.01hy) 5 , (33)

with a stability limit of 0.6i. For the numerical results
presented here, the multistep finite-difference method was
started with an Euler predictor and an iterated tra-
pezoidal corrector. This starter is stable but is not suit-
able for the complete solution due to the amount of itera-
tion required to achieve acceptable accuracy.

At the end of the numerical calculations it is necessary
to verify the accuracy of the solution by calculating the
norm of the state vector |, |2+ |, | % which must be
unity to within a prescribed error range. A standard
technique for determining the required accuracy of a
finite-difference method is to compare the solution for a
given step size with the solution for a half-step size. The
error range 0.9999< |, |2+ |2, |?<1.0001 was con-
sistent with repeatable results when a smaller step size
was used. Due to small-scale structure at the generalized
Rabi frequency,

Q'(t)=(A2+pu? | E(1) | /8%, (34)

the number of time points required to achieve this level of
accuracy was often considerably greater than the Nyquist
limit based on the detuning frequency alone. We note
that this physical structure is present in the total polar-
ization when | A | 7 is large, but may not be visible graph-
ically. Techniques that can be used to make it visible in-
clude subtraction of the low-order polarization (Appen-
dix A) and truncation of larger features. The origin and
characteristics of this small-scale, high-frequency struc-
ture are discussed in Sec. V.

An additional numerical difficulty is the imposition of
an initial value that is defined at t = — . Since the field
varies slowly from t = — « to the point where the calcu-
lations begin, we can use the dressed state (eigenstate of
the effective Hamiltonian) that is correlated with the ini-
tial zero-field state as the initial value for solving Egs. (1)
and (2), provided the logarithmic derivative of E is also
small." In order to meet the second part of the adiabatic
criterion, which limits the logarithmic derivative of E (¢),
a small field of constant amplitude, which we call a pede-
stal, is added to the field.

For the system of Egs. (1) and (2), the effective Hamil-
tonian is given by

0 QO*

eff __
HY=1g a

, (35)

where Q=uE /2#. The eigenvalue of (35) corresponding
to the ground state is

2

172
] ) (36)
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and a corresponding normalized dressed-state eigenvec-
tor is
172

AZ
: , (37)

|Q2+A3
Ao

™

1=

(38)

Co

Due to a small amount of nonadiabaticity, the system is
not precisely in the dressed state (37) and (38). It is there-
fore necessary to start the calculations when the field is
quite small and almost constant in order to allow the
parasitic roots of the finite-difference method!’ to die
away before the field becomes significant. The derivative
of the phase of a propagated field is used as a sensitive in-
dicator to verify that the calculations were started adia-
batically. If the derivative of the phase is not smooth,
then the parasitic roots have not died off rapidly enough
and the physical small-scale structure may have been lost,
even though the accuracy criterion has been met.

V. NUMERICAL RESULTS

The finite-difference solution of Schrodinger’s equation
described in Sec. IV was used to test the validity of the
analytic solutions and to extend these results to higher in-
tensities. For all numerical calculations, the system was
started in the ground state and the pedestal was 5x 1073
statvolts/cm (intensity =3 X 10~% kW/cm?).

The analytic solutions (17) and (18), and (29) and (30),
were evaluated numerically and compared with the
finite-difference solutions. A dipole moment of 10~
statcoulombscm [compared to 6.49X107'® statcoul-
ombscm for the (32S,,,-3%P,,,)D, transition of Na]
and a field strength of 50 statvolts/cm (intensity =300
kW/cm?) were chosen as a representative of the low-
Rabi-frequency limit. In order to facilitate comparisons,
the first-order adiabatic polarization (A19) was subtract-
ed from the total polarization. No discernible difference
was found between the finite-difference solution and the
analytic solutions over the entire range of parameters
tested, except near the origin, where, for certain ranges of
the parameters, the infinite series in Egs. (29) and (30) did
not converge sufficiently fast. The range of At was from
5.00, where the Rabi oscillations were barely observable,
to 0.001, where the oscillations dominate the higher-
order polarization.

For values of uE that violate the low-Rabi-frequency
limit considered in the previous paragraph, the finite-
difference and analytic solutions begin to diverge. The
frequency of oscillation was investigated for positive
asymmetry pulses where the generalized Rabi frequency
decreases slowly from (A24u?E3/#*)!/? at the peak of
the pulse, asymptotically approaching A at large time. It
was found that the oscillations occur at the instantaneous
generalized Rabi frequency.

The finite-difference solution to Schrodinger’s equation
was also used to make a systematic study of the variation
in the amplitude of the tail oscillations for larger intensi-
ties. A parameter of interest is the pulse area, which is
important in pulse propagation!' and is proportional to
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1E,. The pulse area O, defined as the angle through
which the pseudodipole rotates during the pulse when the
detuning is zero, is given by the expression

t=w pE(t)
o=["" E=Zar. (39)

For symmetric pulses, there exist eigenvalues of pulse
area at which the amplitude of the tail oscillations is zero.
For resonant pulses, these eigenvalues occur at a pulse
area of 2n, where the pseudodipole makes n complete
revolutions and the medium is returned to its initial state.
For nonresonant pulses, the pulse-area eigenvalues de-
pend on the pulse shape; the pulse area must be such that
the energy absorbed during the rise of the pulse is reemit-
ted into the tail at a rate that exactly follows the fall of
the pulse. If there are no tail oscillations, then no energy
remains in the medium after the pulse has passed.

The hyperbolic-secant pulse is a special case where the
eigenvalues of the pulse area at which the amplitude of
the oscillations is zero occur at integer multiples of 27 for
all values of detuning and time constant. The eigenvalues
of a symmetric, Gaussian pulse exhibit more complex be-
havior. Figure 5 shows the variation of the first few ei-
genvalues with A. Only positive detunings are shown
since the eigenvalues are symmetric about the resonance.
For small A, the pulse-area eigenvalues asymptotically
approach the 2nm area expected for resonance. For
nonzero detuning, the eigenvalues also approach 2nw
asymptotically with decreasing .

Figure 6 shows plots of the oscillation amplitude (zero
to peak of the out-of-phase quadrature) versus E, for
several values of asymmetry of a real hyperbolic-secant
pulse. The dashed line corresponding to a very small
asymmetry is visible as a rounding of the cusps of the am-
plitude, displaying the sensitivity of the eigenvalue behav-
ior to asymmetry. In Fig. 7 we present the phase of the
oscillation as a function of E for the same pulses. The
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FIG. 5. Eigenvalues of pulse area, as u is varied, as a func-
tion of detuning for a real, symmetric, Gaussian pulse. The ei-
genvalues are symmetric with respect to the detuning. The pa-
rameters are 7=0.212 ns, E, = 50 statvolts/cm, and N =5x 10"
cm™3,
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N (o]

POLARIZATION (millistatvolts/cm)
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Eo (statvolts/cm)

FIG. 6. Amplitude of Rabi oscillations in the polarization as
a function of E, for five values of asymmetry for a real
hyperbolic-secant pulse. The values of u are u =0.0 (solid line),
u=10.1 (dashed line), and u==%1.0 (short-dashed-long-
dashed line). Additional parameters: N=5X10" cm~
= 10""® statcoulombs cm, 7=0.2 ns, and A¥=0.032 cm ™.

eigenvalues of the Schrddinger equation discussed here
are distinct from the bound-state eigenvalues of the cou-
pled Maxwell-Bloch equations'® which determine the
asymptotic result of uniform plane-wave propagation.

In the nearly adiabatic regime, the pseudodipole
precesses in a narrow cone about the slowly evolving
effective field (torque vector) in Bloch space.'® This pre-
cession induces oscillations in the polarization, with an
asymptotically small amplitude, at the instantaneous gen-
eralized Rabi frequency. When the torque vector
changes its direction very slowly compared with the rate

17.5

12.5 -

7.5 Y

PHASE (rad)
\

0 10 20 30
Eo (statvolts/cm)

FIG. 7. Phase of the Rabi oscillations as a function of E, for
five values of asymmetry for the same pulse as Fig. 6. The
values of u are u =0.0 (solid line), ¥ =0.1 (upper dashed line),
u = 1.0 (upper short-dashed-long-dashed line), u = —0.1 (lower
dashed line), and u = —1.0 (lower short-dashed-long-dashed
line).
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of precession, the trajectory of the tip of the pseudodipole
is approximately equivalent to rotation in a plane. Fur-
ther, the plane of rotation must slowly change its orienta-
tion in order to remain perpendicular to the torque vec-
tor. For nonresonant pulses, the oscillations in the polar-
ization have both in-phase and out-of-phase components
because the plane of rotation is not parallel to the v-z
plane in Bloch space. An example is shown in Fig. 8,
where the oscillations are made visible by subtracting out
the fifth-order approximation (A35) to the polarization.
The ratio of the amplitude of the imaginary component
of the oscillations to the amplitude of the real component
is given by the absolute value of the sine of the angle be-
tween the effective field and the u axis,

Ai _ 1A]
A, (A 4[Q(OP)2

(40)

When viewed from the origin, the pseudodipole rotates
clockwise about the torque vector. The oscillating por-
tions of the Bloch vector components are

Uy =—5gn(A)A; cos(Q't) (41)
and
Vose = A, sin(Q'1) . (42)
The complex polarization P=iNu(u —iv) becomes
INuA,
2

_ A —iQ't
QI

P=P,— e

1

(43)

where P, is the contribution of the nonoscillating com-
ponents due to the evolution of the effective field. From
this equation we see that the sideband on the resonance
side of the center frequency is larger than the opposite
sideband for nonresonant pulses.

The central oscillations are the origin of pulse breakup

12

POLARIZATION (microstatvolts /cm)

—12% ' .
-35 0 35
TIME (ns)

FIG. 8. Higher-order real (dashed line) and imaginary (solid
line) polarization for a real, symmetric Gaussian pulse demon-
strating relative amplitudes of the central oscillations. The pa-
rameters are Av=0.0478 cm~!, 7=1.06 ns, E,=50
statvolts/cm, u = 1078 statcoulombs cm, and N =5X 10"* cm 3.
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-1.1

P (millistatcoulombs cm)

(statvolts/cm)

5.0

TIME (ns)

FIG. 9. Polarization as a function of E, for a real, symmetric Gaussian pulse demonstrating addition of lobes at the pulse-area ei-
genvalues. The polarization axis is inverted to expose features. The parameters are A¥=0.0239 cm~!, 7=0.743 ns, u=4x10""

statcoulombs cm, and N=5X 10" cm~3.

into subpulses. A lobe is added to the polarization for
each eigenvalue of pulse area, as shown in Fig. 9. As the
pulse propagates the oscillations in the polarization are
impressed on the field and then amplified by several
mechanisms, including those discussed in Sec. III. The
rate at which pulse breakup develops depends strongly on
A and 7 in accordance with the amplitude of the central
oscillations.

VI. SUMMARY

The analytic solutions for the infinite-order near-
adiabatic polarization explicitly detail the manner in
which physical phenomena develop from the adiabatic
limit for low-Rabi-frequency pulses. In addition, they are
a useful starting point for determining how near-
adiabatic effects are affected by the Rabi frequency and
what additional effects develop that are not contained in
the near-adiabatic, low-Rabi-frequency limit.
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APPENDIX A

The derivation of the adiabatic approximation by in-
tegrating the polarization integral (6) by parts is due to
Crisp,’ who derived the first-order approximation to the
inversion and two orders of approximation to the polar-
ization for real field envelopes. In this appendix, expres-
sions for the first-order through fifth-order approxima-
tions to the inversion and polarization are derived for
real field envelopes. Making higher-order approxima-
tions to the inversion, as well as the polarization, results
in a significant improvement in the accuracy of this ap-
proximation technique. First- and second-order approxi-
mations to the inversion and polarization are also derived
for complex field envelopes. The complex formulation is
essential in analyzing laser propagation where self-phase
modulation causes an initially real field to become com-
plex. In what follows the subscript (n) is used to indicate
the order of the approximation of the inversion Z and the
polarization P ; unsubscripted variables imply the exact
expression. Repeatedly integrating the polarization in-
tegral (6) by parts, defining the radiative coupling
Q=pE /2%, and dividing by 2iNpu results in an expres-
sion for  §¢,:
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etz o QZ 1 dQZ) 1 d%QZ)  _i d¥QZ)
NTA A2 dr A arr T At ar
1 d%QZz)
e e .« .. Al
+A5 i + (A1)
Allowing for a complex field, the derivatives
%—:21'(9505:—9*533. ), (A2)
d(Tgsey) .
—=—i(QZ —-A? §T,), (A3)
dt
and
d(t,e})
——dt—‘=+i(ﬂ‘Z~—AZ‘0i*f) (A4)

are obtained by using the time-dependent Schrodinger
equation to eliminate the derivatives of the Schrodinger
coefficients. Specializing to a purely real field and using
Eqgs. (A2)-(A4) to eliminate derivates of the inversion,
the terms of the expansion (A1) are recast in terms of the
inversion and the Schrodinger coefficients:

i d(QZ) i dQ 202
— =227 | =
ATt AT dr £ TE0% T
20?
+&T T | (A5)
_ 1 d%ez)_, |40 1 d’0
A dr? A AY 4r?
202 .60 dQ
rese "F*’F”d}”]
202 . 6Q dQ
+&C 1 7 i a | (A6)
- 3
+XII—"d ;?32) =iAZ +¢3¢,(—B+iC)+&,¢ }(B+iC) ,
(A7)
and
4
Xls‘—'-—*d :1?42) =DZ +¢ §¢,(F+iG)+2,¢ }(F—iG) .
(A8)
The temporary variables are defined as follows:
240240 1 d3Q
=TTAY dr T At g (A9)
2
p_20%07 6 |do | 80 4’0 AL
a* At | at AY drt
€= 12? dj?‘ ’ (A1D)
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2
_40°Q7 600 (dQ | 4007 d’Q 1 d*Q
A AS | dt AS dr? A art’
(A12)
20202 16 [da |*, 180 d%0
F=— — |== , Al13
At At | ar A% dr? (At
and
140 da 80Q° dQ@ 20 dQ d’Q 100 4°Q

’

AS dt di? AS dfd
(A14)

A3 dt AS dt

where (' is the (instantaneous) generalized Rabi frequen-
cy Q'(t)={A+4[Q(1)]}} 2

The first-order (adiabatic) approximation consists of as-
suming that the field and inversion vary slowly such that
only the first term in the expansion (A1) is significant:

'Q'Z(l)
———A .

Multiplying the previous equation by the complex-
conjugate equation and by 4 yields

_ 40°
415y % e, iZz—A—zf” .

o

(A15)

‘~
o1~

> (A16)
Expanding Z? in terms of the Schrddinger probability
amplitudes and adding it to both sides of the previous
equation, one obtains

407
180 1*+2(20 |22, |2+ |2, |4z——A—2—Z(2,)+22 . (A17)
The left-hand side of the preceding equation is

(12|24 |2, |»*=1. Making the approximation Z
~Z,, and solving for Z;, results in the usual expression

for the inversion in the adiabatic approximation,>°
1 A
Zy=t 77 =% |57 (A18)
402 Q
1+ A2

In Eq. (A18), and all subsequent equations for the inver-
sion, the negative sign is appropriate for a system starting
from the ground state at t= — oo (attenuator) and the
positive sign is appropriate for a system starting in the
excited state (amplifier). The first-order (adiabatic) polar-
ization is simply Eq. (A15) multiplied by 2iNpu:
p 2INuQZ |,
(m= A .

The second-order approximation consists of the first

two terms on the right-hand side of (A1). Making the ap-

proximations Z~Z,, and (dZ /dt)~=(dZ,,/dt) allows
Eq. (A5) to be used for the second term:

(A19)
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Grouping coefficients of ¢ ¢, and using the complex con-
jugate of the resulting equation to eliminate &,¢ | gives

40? O 40? i dQ
eie |1+ |~Ee |y M T ar
(A21)

Multiplying by the complex-conjugate equation and by 4,
expanding Z? in terms of the Schrodinger probability am-
plitudes and adding it to both sides of the resulting equa-
tion, making the approximation Z =Z,,, and solving for
Z,,) yields

21-122

A 4A* | dQ
Zoy=t | 1+_le i (A22)
The second-order polarization
. Q i dQ
P =2iNpZ,, N (A23)

is obtained from Eq. (A21).

In the next order of approximation, the first three
terms on the right-hand side of (A1) are used. Making
the approximations Z =~Z 3, (dZ /dt)=(dZ,,/dt), and
(d®Z /dt*)=~(d?Z 3, /dt?), and using Egs. (A5) and (A6)
to eliminate the derivatives of the inversion, one obtains

Q 490° 1 d0 i dQ
* ~ — e e — — ——— —
coti=Za |5 |1t AZ AS di? Al dt
- |49 6iQ dQ _ . 6iQ dQ
—CoCy AL T AY dr | ST gy
(A24)

Grouping coefficients of ¢ §¢, and using the complex con-
jugate of the resulting equation to eliminate ¢,¢ | gives

N 40?
651 1+ A2
2
~7. |2 1+i@i _ _1_d29+_i_ifl
SN N A? A3 di? T A dt
2
402 | 120 |40
X |1+=5 5 | ar (A25)

Multiplying by the complex-conjugate equation and by 4,
expanding Z? in terms of the Schrdinger probability am-
plitudes and adding it to both sides of the resulting equa-
tion, making the approximation Z =Z3,, and solving for
Z 3, yields

2 2

A 4A% 1 dQ 9602 | dQ
Zay~t|— | |1+ — &= EA LA
3 Q|| T s | ar Q' | dt
2
960 (4 | d’a  8Q d’Q
Q8 | dt dr> Q"% dr?
2 —
4 a2 | 57602 [aa ']
Q6 | di? Q1 | dr

(A26)
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The third-order polarization
2

. Q 120 (dQ 1 d*
Py =2IiNuZ s, N AQ” | dr -AQ'Z dr?
_ 49 (A27)
Q" dt

is obtained from Eq. (A25).

While each order of approximation can be derived in-
dependently by the techniques presented here, it is con-
venient to begin with the expression for ¢ ¢, from the
previous order and add the next term in the expansion.
This is permissible because the derivatives of Z were used
to approximate the derivates of Z,,. Therefore we re-
place Z 3, by Z,, in Eq. (A27), divide by 2iNu, and add
the fourth term (A7) in the expansion (A1) to get

2
Q 120 | dQ 1 dQ
*x Ll a1
?Oa’l~z(4) A + AQI4 dt AQ'Z dt2
i dQ .
o7 di +iA

(A28)

To simplify the algebra we define the temporary variables

2
Q  12Q |dQ 1 dQ
=2 + AQ” | dr — AQ? di? (A29)
and
_ 1 dQ
E=—gi g T4 (A30)

The approximate inversion and polarization are obtained
by the same manipulations as before, with the results
21-1/2

=Z42IC
Zgy~+t [14+47244 | =T~
(4) + + 1428 (A31)
and
. .=42I'C
~2iINuZ Fr+i———— A32
Pyy=2NpZy T +i 1128 (A32)

For the fifth-order approximation we define the addi-
tional temporary variable

=—=1++2% (A33)

The approximate inversion and polarization are obtained
by the same manipulations as before, with the results

21-1,2
D+T —-2GA
Z~% | 144N 44 | T —=2 0
(5) + 127 (A34)
and
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D+T —-2GA .

P(5)=2iN‘LLZ(5) 1—2F +1A (A35)

The method of approximation for the real field can be
generalized to a complex field, with the results

Zy==* : 77 = —A—, , (A36)
410 2 l Q
1+ 7
A
2iN[.l,QZ“)
(= A ) (A37)
J
Q 1 dQ 20 dQ*
P —=2i Q |1 49
(2)=2INpZ,, A ! a2 dr AZQ’Z[ dt

where Q' is the generalized Rabi frequency for a complex
field, Q'(1)=[A%+4|Q(t)|%]"/2. The term QdQ*/dt
—QO*dQ/dt is purely imaginary and can be a significant
portion of the approximation for self-phase modulated
pulses, especially if the Rabi frequency is large and/or if
the detuning is small.

APPENDIX B

The graphical results can be applied to related prob-
lems and physical understanding can be enhanced by
scaling Schrédinger’s equation. Define a dimensionless
time T=1IT, and a dimensionless field e=pyE T, /2#, where

7, is a characteristic pulse time. Equations (1) and (2) be-

come
oc, .
_..aT =ie*c, , (B1)
ac,
-aT—=iATpZ"1 +iecy , (B2)

—QO*
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A

Q'

4A% 4O dO*
Q% dt dt

8A24+16|Q |2
AZQ'(:

Z,=~t 1+

2
dQ* ., da
x| dt —a dt l

. —1/2
4i

_+_ —_—
AQ™?

dQ* LdQ
dt -0 dt }

(A38)
and

gl

f

(A39)

respectively. Equations (B1) and (B2) show that when the
problem is stated in terms of the dimensionless indepen-
dent variable 7, the answer is completely determined by
the dimensionless constants (i) uE,7, /2% and (ii) A7, for
the same form of pulse envelope. The polarization result-
ing from the solution to (B1) and (B2) then scales as Np.
Condition (i), requiring a constant pulse area, and condi-
tion (ii), which requires that the angular motion of the
pseudodipole about the effective field in a coordinate sys-
tem rotating with the effective field also remain constant,
can be combined to obtain other constant, dimensionless
relationships; (iii) wE, /A% and

271172

’

KE,
A#i

(iv) 2

“A— 1+

Conditions (iii) and (iv) require that the Rabi frequency
and the generalized Rabi frequency scaled by the detun-
ing frequency remain constant. Thus all frequencies
maintain a constant relationship to one another.
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