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%'e have investigated 6ne-structure-changing collisions of short-lived (20-ns} Ne* atoms in the

(aj—:((2p)'(3p) I multiplet with ground-state He atoms. A newly designed cross-beam apparatus
]Mk ]

allows the measurement of accurate polarized cross sections QI » for the Ia)»~taII transition.
In the experiment, the initial [a )» state is prepared with a well-defined asymptotic orientation M»

of its electronic angular momentum J, through excitation of metastable Ne* atoms with a polarized
laser. The reported transitions are mainly between states in the I aI4. ..group (Pascheu number-

ing), at approximately 100 meV center-of-mass energy. Some of these exhibit very strong polariza-
I MI, ( I Ml, I

tiou efFects, with differences between QI » and Q, „ofup to a factor 4. Fully quantum-

mechanical coupled-channel calculations on a diabatic basis, with the Ne -He model potentials of
Hennecart and Masnou-Seeuws as input, prove successful in reproducing experimental results.
Cross-section behavior may be qualitatively understood from the presence of avoided crossings be-

tween the adiabatic potentials, indicative of strong radial coupling. The restraint of reflection sym-

metry is strongly felt here. In addition, the e8'ects of rotational coupling can be readily identified.

I. INTRODUCTION

Inelastic collisions of atoms in short-lived, electronical-
ly excited states presently are the focus of attention of
both theorists' 4 and experimentahsts. ' ' A recent re-
view of the field has been given by Hertel et al. ' The
dependence of the outcome of the collision process on the
initial orientation of the electronic angular momentum
with respect to the initial relative velocity of the collision
partners has proven to reveal many interesting features of
the potential surfaces and collision dynamics. ' So far,

I

most experiments have been performed in bulk. Only re-
cently, crossed-beam experiments with a much better
defined initial relative velocity have been reported, ' re-
sulting in more reliable results on these polarization
effects. Until now, the rather simple one-electron alkali-
metal ' ' and two-electron alkaline-earth ' ' sys-
tems have received most attention, with less emphasis be-
ing put on noble gas atoms. ' '

In this paper we report the first crossed-beam study of
inelastic, fine-structure-changing collisions for the sys-
tem

Ne" [!(2p) ( 3p) l»
' Jk ]+He Ne f I (2p) ( 3p ) l t

' Jt ]+He+ b' E». t

involving beams that are well characterized with respect
to direction, velocity, and excited-state polarization.
Strong, interesting polarization elects have been ob-
served and absolute values of cross sections have been
determined with a high accuracy of 25%. We have
touched upon this subject already in an earlier Letter. '

In a study of this sort, He is a "natural" choice as a col-
lision partner for the short-lived Ne" atoms. Some of
the reasons for this may be deduced from the energy-level
scheme in Fig. 1, which shows the first- and second-
excited multiplets, plus the ionization limit, of the rare-
gas atoms from He to Xe. It will be apparent that, at
other than very high energies, a collision partner of either
lighter or equal mass precludes the possibility of process-
es like Penning ionization or excitation transfer obscuring
the intramultiplet mixing picture. So, for Ne' +He (and
Ne" +Ne), the ground-state atom can be assumed to
remain in the ground state. Likewise, there will be no

chance of other than the short-lived Ne" states playing
a part.

Typical lifetimes of the I a I;:—[ (2p) (3p) j; states, with
i running from 1 to 10 with decreasing energy, are ~=20
ns. The total energy spread of the multiplet is
AE, &0

——S84 meV. The Ne states are shown in Fig. 2.
Although a large number g,'o i(J, +1)=23 of molecular
states is involved, which complicates the analysis of the
observed transitions, the Ne"-He system has two major
advantages, besides the ones already cited. Firstly, the
process of intramultiplet mixing has been investigated in
detail in the afterglow of gas discharges, resulting in a
suitable set of reference rate constants for Ne and He as
collision partners. " Secondly, model potentials are
available for the Ne"-He system, ' allowing a direct com-
parison of theory and experiment by means of fully
quantum-mechanical coupled-channel calculations. In
the Ne"-Ne case such a calculation is complicated by
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the presence of additional symmetries, due to equal
charges for Ne"- Ne, and to both equal charges and
identical particles for Ne"- Ne. For the present pa-
per we limit our discussion to the Ne**-He case.

II. COI.I.ISIGN DYNAMICS

A. Scattering process

The Hamiltonian governing the process of Eq. (1) con-
sists of the kinetic energy operator of nuclear motion T„,
with radial and rotational components T„d and T„„and
the electronic molecular Hamiltonian H ", which con-
tains the atomic Hamiltonians H ' and H ' as well as
the molecular interaction V '
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FIG. 1. Energy levels of the rare gases from He through Xe,
plus N2 as a typical molecule. Indicated are the Srst (ns) and
second (np) excited multiplets, as well as the ionization limit.

+HNe +HHc+ yNe -He

The relative motion of the nuclei results in a rotational
angular momentum N. At the same time, both the Ne*'
atom and its collision partner may in principle possess an
intrinsic angular momentum J. In fact, as we have seen,
the He atom remains in the ground state, and we will at
all times have total electronic angular momentum
J=J ++. Electronic and rotational angular momentum

couple to total angular momentum P=N+ J, which is a
conserved quantity. The initial and 6nal Ne'* atomic
states may have diferent J. Within the limits posed by
P=N+J, X will change accordingly. Due to inversion
symmetry, the total parity m is a conserved quantity as
well.

At the present collision energies of less than 0.5 eV,
relative velocities of the colliding atoms are small com-
pared to electron velocities. Consequently, the electronic
wave function will be able to adapt itself more or less adi-
abatically to the orientation of the internuclear axis. The
picture that thus emerges is that of a quasimolecular sys-
tern. The interaction between the collision partners is apt
to be governed by the molecular potential curves. How-
ever, other than in the completely adiabatic Born-
Oppenheimer approach, the molecular states are still
coupled by the nuclear motion.

It is apparent from the above that the molecular quan-
tum number 0=

~
MJ ~, with M~ the magnetic quan-

z' Z

turn number with respect to the body-6xed internuclear
axis z', will have relevance at small distances. We note
that the J,. operator does not commute with N, so that a
description in terms of the quantum number N of nuclear
rotational motion then becomes infeasible. Naturally, the
above adiabatic, i.e., molecular, picture does not rule out
a description in diabatic, i.e., atomic, terms, as long as a
suScient number of basis states are included in either
description. Indeed, atomic terms are naturally associat-
ed with the asymptotic state of the system, which ulti-
mately decides the outcome of the scattering experiment.

J=O 3=1 J-2 J 3
FIG. 2. Energy-level diagram of the Ne*

I (2p) (3s) I

(Russell-Saunders notation) and Ne [(2p)'(3p) I
= (aI

(Paschen numbering) excited states, grouped by their electronic
angular momentum quantum number J.

8. Model potential method for Ne -He

The atoms in our collision experiment constitute a
quasimolecular system. The experiment may be inter-
preted through the relevant molecular potential curves,
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i.e., eigenvalues of the molecular Hamiltonian 0 ".
%ith regard to these, ab initio~ and configuration-
interaction calculations for the Ne'-Ne system have
met with limited success. For the case of the Na-Ne in-
teraction, the model potential method, which solves a
one-electron Schrodinger equation for the motion of the
valence electron in the effective potential of the two
cores, gives fairly accurate results.

To extend the model potential method to the Ne"-
rare gas systems, the coupling of angular momentum (or-
bital and spin) of the (3p) valence electron and the (2p }
open shell core has to be included, and may be expected
to have considerable elect. The de6nition of an
effective potential takes proportionally more effort. This
problem has been solved by Hennecart and Masnou-
Seeuws' and Hennecart" for Ne"-He at internuclear
distances R & 4.5ao, using an iterative, first-order pertur-
bation treatment. For a start, they solve the one-electron
problem for an effective zero-order molecular interaction
potential V;„, that contains only the spherical part 0, of
the atomic electron-core interaction, as well as the molec-
ular electron-He and electron-core-He interactions. This
results in eigenvalues V (R) and V (8) for the
(3p},

~
m&

~

=0 and (3p), ( m,
~

=1 molecular states, re-
spectively, with m& the magnetic subquantum number for
the orbital angular momentum of the valence electron.
Comparison of calculated atomic and molecular electron
orbitals indicates that the (2p) ' core orbital is not
modi6ed by the presence of the perturbing rare gas atom
and that the modification of the (3s) and (3p) valence-
electron wave functions is limited to a small region
around the perturber. For internuclear distances
R &4.5ao, which is the lower limit of the V (R) and
V„(R) calculation by Hennecart and Masnou-Seeuws,
this places the modification well outside the core region.

The spin-orbit couphng and the nonspherical part of
the electron-core interaction can thus be calculated by
first-order perturbation theory in an atomic

~
LSJMz)

basis, with L,S, and J the orbital, spin, and total Ne an-
gular momentum quantum numbers. In the same

~
LSJM~) basis, the matrix elements of V;„, have been

calculated by Hennecart and Masnou-Seeuws' and Hen-
necart" through the method of representing V;„, in terms
of irreducible tensor operators. The matrix elements are
given by linear combinations of V (R ) and V (8 ).

Hennecart and Masnou-Seeuws then assume a diagonal
charge-induced dipole core-He interaction V "(R) =
—C4/R . Thereby the electronic Hamiltonian 0 " for
R & 4.5ao is completely determined. %'ith the expansion
of the {a I k atomic states in the

~
LSJMz )-basis known,

H "may be transformed to the
~ aJMz) representation.

Diagonalization yields the molecular, adiabatic, eigen-
states

~
aJQ(R)) and potential curves Vi", (R). The 23

adiabatic potential curves are, of course, divided into 0
manifolds. Additionally, for 0=0 the constraint of
reflection symmetry generates distinct + and —classes,
containing the even and odd J states, respectively.

The above potentials, given for R & 4.5ao, can only be
used as input for a full coupled-channel calculation
through the addition of a hard wall at the cutoff distance.

He- Ne (3pj valence electron He-Ne (2p) ~ core hole

(3p) va1cncc electron (cross-hatched) and (2p)
core hole (hatched) charge distributions associated vvith the ~
and cr states of the e -He and Ne+-He systems. The
attractive-repulsive character of the valence electron m.- and o-
orientation potentials is reversed in the case of the core hole.

In the case of an adiabatic potential curve of a repulsive
nature, this is a reasonable assumption, especially at low
energies. For the curves which are attractive at
R =4.5ao, this procedure is more debatable. To investi-

gate the importance of the inner potential regions for the
calculated inelastic cross sections, we have extended the
potentials to smaller distances. This was done both for
the valence electron-He interaction (in a simple empirical
way) and for the core-He interaction.

We first consider the general character of the valence-
electron and core potentials at smaB distances. As was
the case for the valence electron, different core orienta-
tions will result in different core-He potentials: V""'(R)
and V""(R) for the (2p) ',

~
m,

~

=0 and

(2p) ',
~

mt
~

=1 molecular states (see Fig. 3). For the
(3p) valence electron, the repulsive forces arising from
the overlap of wave functions will be more important at a
given separation for the o state than for the m state, due
to the o -wave function being oriented towards the
ground-state atom. For the (2p) ' core hole this situa-
tion is reversed: The n potential will be more repulsive
than the o potential. Moreover, due to the smaller spa-
tial extension of the (2p) ' wave function, the corre-
sponding repulsive forces will be of shorter range. At
large distances, where the weakly attractive dispersion in-
teraction becomes dominant, V will be slightly more at-
tractive than V„, due to the greater polarizability of the
o orbital. At these distances, any effect of the core orien-
tation will be negligible. The potentials of Hennecart and
Masnou-Seeuws for the valence electron, given for
4.5az & R & 15ao, indeed display the expected short-
range behavior, while V is still slightly repulsive at
R =15ao.

The extension of the V and V valence-electron po-
tentials was performed in the following way. To V we
added a repulsive exponential core; V was extrapolated
on the basis of an electrostatical model for the contribu-
tion of the two lobes of the norbital to. the charge-
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III. COUPLED-CHANNEL CALCULATION B. 0-adiabatic basis

Hf(r, R)=Ef(r,R},

with E the total energy in the center-of-mass system and
the Hamiltonian H being given by Eq. (2). Solutions to
Eq. (3) must of course obey the usual asymptotic outgo-
ing wave boundary conditions.

In coupled-channel theory, g(r, R) is expanded in an
orthonormal basis of channel functions

I y; &, character-
ized by the collective quantum number i, resulting in

F;(R)
g(r, R)= g

t

(4)

From Eqs. (3) and (4), by bracketing with & y, I, a set of
coupled second-order radial differential equations is ob-
tained for the radial wave functions of nuclear motion
F, (R). For the basis set I I p; & j we choose diabatic basis
functions that are eigenfunctions of the atomic part
H ' +H"' of the Hamiltonian H of Eq. (2).

The coupled equations are then given by

d2F, (R)

dR
+ "(E—F.

""' E"'}F(R}— .

+&&; I ~,.i I e, &-F,(R}

A. Coupled-c;hannel theory

The stationary state Ne"-He wave function f(r, R},
where r represents all electron coordinates and R is the
internuclear radius vector, satis5es the time-independent
Schrodinger equation

We will now discuss our diabatic basis set, as well as its
implementation in our coupled-channel code. Asymptot-
ically, an obvious choice of electron basis functions is
that of atomic eigenfunctions

IaJM, &N' I's, &"'=—IaJM, &,
z 2

with the magnetic quantum number Mz taken with

respect to the space-axed z axis (i.e., the asymptotic rela
tive velocity}. These may be coupled with the space-fixed
eigenfunctions

I NM~ & of the rotational energy operator

T„, =N /2pR to form N-diabatic basis functions with

total angular momentum quantum number P and well-
defined parity n=( —.1),

= I maJNPMp& .

For smaller values of the internuclear distance R, s
body jxed c-oordinate system, with the z' axis along the
internuclear axis, is more appropriate (V ' ' being
known in the

I
aJQ & representation}. We repeat that the

quantum number N is not compatible with MJ, essential-
Z

ly because a rotation of the internuclear axis implies a
change of the quantization axis for MJ . We therefore gog'

to a new basis of common eigenfunctions
I
PMpMJ & of

z'

the P, P„and P,.=J, operators, coupled with atomic

eigenfunctions
I
aJM~ &. This gives basis states

g'

I
aJMJ PMP &. To also provide for definitive parity, we

g

subsequently combine opposite MJ to form Q diabatic-
z'

basis functions, where Q —=
I MJ, I,

I p, &"=
I
maJQPMp & .

Our coupled-channel calculations are performed in the
Q basis. Leaving out the superscript Q for simplicity, the
coupled equations of Eq. (5) are in this representation,

P(P +1)+J(J +'1 ) —2Q'

dR R
i

The operator T„, provides rotational coupling; "physi-
ca1" coupling occurs by the interaction V ' '. This is
in contrast to the adiabatic approach of Hennecart and
Masnou-Seeuws, where coupling is caused by the opera-
tors T„d snd T„,.

The adiabatic and diabstic approaches of course yield
equivalent results for equivalent basis sets. Generally
speaking, however, where coupling is limited to a few

(quasi) molecular states, a fair description is possible with
s smaller number of adiabatic states than diabatic states.
%here this is not so, no preference exists for either basis
in terms of the number of coupled equations to be solved.
However, in terms of numerical stability, the adiabatic
approach hss the disadvantage of involving the calcula-
tion of the radial coupling matrix elements by numerical
differentiation. This is especisBy troublesome near so-
called avoided crossings of adiabatic potentials. In addi-
tion, a diabatic basis set obviates the need for the calcula-
tion of adiabatic eigenfunctions.

&q), IP+J +P J+ Ip, &

2pR

&&F,(R),

with
I q&; &

—=
I
maJQPM~ & the channel functions used, k;

the asymptotic wave number [given by k, =2@f4 (&
F.;N' —E ')j, and P+—P„+iP and ——J+ J„+iJ», —— .

the body-fixed ladder operators for the total and electron-
ic angular momenta. The dilferential equations of Eq. (6)
are uncoupled with respect to P and parity m. For the ten
states

I a„J„& of the Ne" multiplet (with
k = 1,2, . . . , 10), it follows directly from Q=0, 1, . . . , J
that we have 23 basis functions

I y, &. In the region
where the nondiagonal elements of the physical coupling
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matrix become zero, i.e., V ' '=0 for i&j, it is
pro6table to switch to the X representation, with basis
functions

~
naJNPMi ), so that the rotational coupling

matrix elements also vanish. In this basis the equations
of Eq. (5) become completely uncoupled, and we have the
usual radial equations for elastic scattering o8'a spherical
long-range potential, namely the diagonal elements of the
V ' ' matrix. %hen these too disappear, the radial
equations yield the ana1ytical solutions of spherica1
Hankel functions of the 6rst and second kind. They
make the matching to the asymptotic boundary condition
a simple matter.

An interesting aspect of our description of the scatter-
ing of Ne*' by ground-state He is its analogy to the
scattering of particles from an axially symmetric rigid ro-
tor. ' Coupling of the particle angular momentum with
the angular momentum of the rotor to a total angular
momentum leads to a coupling of particle and rotor
motion, in the same way that the coupling of J and N to
P results in the coupling of electron and nuclear motion
in the Ne"-He case.

In the actual coupled-channel program, the calculation
of S-matrix elements proceeds in several stages. Firstly,
for a total number of M channels

~ yj ) =
~
naJQPM~ )

in the 0-diabatic representation, we have M linearly in-
dependent "mathematical" solution vectors F, (R), which
vanish at the origin. In practice, these are obtained by
starting up F, in channel i at a radius Ro, ideally in the
classically forbidden region (hard wall at Ro). The cou-
pled differential equations are numerically integrated
with a modified Numerov method to a point R, where

the physical coupling has disappeared: V;. ' '=0
(i&j) for R &R, —hR. The Q-diabatic solutions at R,
and R, —AR are transformed to the N-diabatic

~ y, )
—:

~

maJNPM ) representation. From there on the com-
ponents of each vector behave independently, as de-
scribed by the decoupled equations in the N representa-
tion. Rather than integrating the latter outward to the
asymptotic matching radius R2, where V ' '=0, we

adopt the more stable procedure of integrating inward
from R2, starting with spherical Bessel- and Neumann-
like functions. This allows us to express each component
of F; as a linear combination of basis solutions I;(R) and

O, (R) with ingoing and outgoing spherical wave behavior
at in6nity, respectively. The M mathematical solution
vectors F; are finally combined linearly to construct M
"physical" solution vectors f; such that

( f; ) =I (R ) —S;0 (R ) .

The open-channel matrix of "refiection" coeScients is
the desired S matrix.

C. Program performance

In any coupled-channel calculation a choice has to be
made concerning starting point, stepsize, and basis set.
Bernstein gives an expose on this subject. As to the
starting point, the model potentials of Hennecart and
Masnou-Seeuws discussed earlier are given for R &4.5ao
only. The posting of a hard mall at R =4.5ao is the obvi-

ous answer to this problem. This has been done, even
though from Fig. 5 it is clear that E. =4.5ao is not yet in-
side the classically forbidden region. However, for the
transitions of interest (mainly those with the taj45 s 7

group}, it has been verified by varying the starting point
that the solutions are quite insensitive to this. Calcula-
tions with our extended potentials, made for the exphcit
purpose of evaluating the importance of the inner poten-
tial regions, con5rm this. As wi11 be seen relevant cross
sections difFer by at most 25% from the hard-wall results.
In this connection, it is worth noting that especially for
small R values a problem arises. without specific precau-
tions, part of the S-matrix elements obtained would be
highly unreliable due to the tendency to linear depen-
dence of solution vectors within the numerical noise level
which builds up as a function of R. To avoid this we
form M new suitable linear combinations of mathemati-
cal solution vectors at one or more values of R.

The stepsize, which is of course related to the wave-
length A, for the lowest significant I a Is state, was arrived
at empirically by evaluating cross-section precision and
S-matrix symmetry for a limited number of P values. A
stepsize b,R =0.02ao was chosen.

The Ne"-He system comprises QIO, (J;+1)=23
molecular states

~

aJQ). If all ten fine-structure levels in
the Ne" ( I a I;;J; ) multiplet are included„we have a max-
imum of 18 coupled equations for each value of total an-
gular momentum P and parity m =+1. Energy distance
to the states of interest being no reliable criterion for the
omission of basis states, we have expanded every molec-
ular state

~

aJQ(R)) in its atomic component states

~

aJ ). An example of this is given in Fig. 6. The relative
unimportance of the Iaji and IaI& components of the

I a) 4 s s 7 molecular states might lead one to drop these
from the calculation. Since these are J=0 states, only
two 0-diabatic basis states are saved, which is hardly
worthwhile.

(

10

R (Unih Of ao)

FIG. 6. Coeflicients
~

C;"
~

of the (aj; components of the
adiabatic Ne -He eigenstate

~
ta17, Q=O ) as a function of

the internuclear distance E.. The position R& 7 of the avoided
crossing between the V&

= and V&
= adiabatic potentials coin-

cides vrith a significant change in character of the adiabatic
eigenstate.
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The question of the number of I' values to be included
in the calculation is more straightforward. %e can limit
the calculation to those values of P corresponding to im-

pact parameters b =P K & 15ao (where VN' H'=0),
with K the de Broglie wavelength in the incoming chan-
nel. For an energy E= 100 meV this amounts to I' & 100.
A complete coupled-channel calculation with appropriate
integration stepsize hR =0.02ao then requires about 2 h

on a Burroughs 87900 mainframe computer.

D. Polal ized cross sections

Solving the coupled-channel equations yields the S-
matrix elements, which in the N representation are
de6ned as

S(« =—(, mal JINIPMp! S!7Ta«J«N«PMp &

A representative 5-matrix element is displayed in Fig.
7. In general, we have S(P)=!S(P)

l expIiy[S(P)]I.
Here the phase (p(S) has been plotted as a continuous
function of the total angular momentum quantum num-
ber P, rather than being limited to n&—q&(S) &+m. We
note that "zero points" of the norm

l S! of an S-matrix
element correspond to n jumps of the phase p(S). A pas-
sage of S(P), between P and P+ 1, almost through the

origin of the complex plane into the opposing quadrant
implies a phase change b,(p(S)= +n. or —m.

The single-Mk state polarized cross section QI k for
the

I ak J«M« & ~
I aIJI & transition is given by

Q)' «" =, z(»+ I)ql ." '(P),
kk P

q( k" (P)= g g g i
" " (J«M«P —Mp! N«0)

X( Nk Nk,

X (Jk M«P —Mp ! Nk 0)

with qI «(P) the transition probability for a certain PIMk I

value. From P=J+N, it follows directly that the sum-
mation over N values is between ! P J! and—P +J. Of
course, this is implied by the Clebsch-Gordan coeScients
(JkMkP Mk I

Nk0) and (JkMkP Mk IN« o).
Mp =Mk. Because of the conjugation e in Eq. (8), both
phase and absolute value of the complex S-matrix ele-
ments are of importance for the polarized cross sections.
This is contrary to the unpolarized case, where summa-
tion over all orientations ! Mk ! of the initial state yields

0.15
(n]q = (n)p

QI k=, g(2P+I)qI «(P»
kk P

0.10

k

e «(P)= ~2Jk 12J +1 q(-«(P)

0.05
l

l

]
l

l

]

]

[
(

I

=XX(»+1)IS)« ~...„~N,N„!'
l k

It is for this reason that polarization experiments are ulti-
mately more informative. In Fig. 8 we show the inelastic
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P

I
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FIG. 7. Absolute value
~

S (P)
~

and phase (p[$(P)] of an S-
matrix element for the la],~ [a], transition over the fu11 range
of total angular momentum quantum numbers P [calculation
I(a) of Table III]. The phase has been plotted as a continuous
function. The dotted lines connect the "zeros" of

~
5

~
with the

"n.jumps" in g(S).

25 50
P

100

FIG. 8. Contributions EQ7 q to the pure state polarized
lg l

lhf5 I

cross section Q, , for the Ia],~[a]~ transition [calculation
I(a) of Table ID].
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TABLE I. Rudimentary comparison between the calculations of the present work snd those of Hennecart snd Masnou-Seeuws
and Hennecart, illustrating the large inhuence of rotational coupling on cross-section values.

Reference

Hennecart and Masnou-Seeuws
and Hennecart
This work'

Input'

Two adiabatic states„
no rotational coupling
All states,
all couplings

jaj,

32

j~j3 t~14 a4~a5

5.3

Hennecart and Masnou-Seeuws
and Hennecartb
This work

This work

Two adiabatic states,
no rotational coupling
[+j 3, 4, s, 6, 7 only~

no rotational coupling
I~j34 s 67 &denly

all couplings

32

32

8.7

4.2

'All calculations with hard wall at 8 =4.5ao.
Interpolated values {Refs. 1 snd 11).

'Calculation II.

I & j ~~",
u j 7 cross-section contribution per P value,

bQ& 5' (P) for ~M& j
=0 and ~M5

~

=1. The asymp-
totic orientation of the Ne'* atom is seen to have great
inhuence.

In their two-channel coupled-channel calculations, per-
formed in an adiabatic basis, as opposed to our diabatic
basis, Hennecart and Masnou-Seeuws' and Hennecart"
do not take into account the rotational coupling (nor the
diagonal [J(J+1)—0 ]/R term of the couphng matrix
in the 0-diabatic basis). This prototypical 0-conserving
approach is equivalent to "locking" the electronic angu-
lar momentum J to the body-Axed internuclear axis.
However, we observe a tendency of J to remain space
fixed down to intermediate E. values. Furthermore, of
course, in this way it becomes impossible to explain tran-
sitions like the I a j 3

—+ I a j 5 transition. "
In an Cavort to quantify the differences between the two

approaches, we have juxtaposed some results for both
types of calculation in Table I. Comparing our calcula-
tion at E6=100 meV (all states, all couplings, hard wall)
with the calculations of Hennecart and Masnou-Seeuws
for the Iaj3~(aj4 and Iaj4~Iaj~ transitions at the
appropriate energies, we find fair agreement. %'e note
tllat Q 4 3 & Q ~3', while for the other transition the situ-
ation is reversed: Q5~ &Q5~'. To determine to what
extent this must be attributed to the presence or absence
of rotational coupling, or to the implicit di8'erence in
basis sets, an additional fuO coupled-channel calculation
would be required. We have limited ourselves to less ex-
tensive calculations with a basis set consisting of I a j ~,

Ia j 4, I a j ~, Ia j6, and I o; j 7 only. With this basis set and
leaving out rotational coupling, the results of Hennecart
and Masnou-Seeuws for the Iaj3~Iaj4 transition are
reproduced quite mell. This is true over the energy range
O~E ~250 meV. The same cannot be said for the
Iaj4~Iaj~ transition. Even the much larger cross-

section value, obtained with rotational coupling, is some-
what too small. Rotational coupling causes the
(a j ~~ I a j 4 transition to be larger as well, but to a lesser
degree. Whereas, of course, the material at hand is too
slight to warrant a general conclusion, the above is at
least indicative of the importance of rotational coupling.
A similar remark can be made concerning the difference
in results, obtained from our calculations with full and
truncated basis sets.

Ik =nk&k~k
~ gli=ni&k~a nzI, QI k

U)

(10a)

(10b)

with gk and q& the photon detection ef5ciency for the
direct and collision-induced fluorescence, Xk (s ) the
Bow of initial state particles through the scattering
volume, U& the primary-beam velocity, g the relative ve-
locity of the collision partners, n2 the secondary-beam
density, /, =U, ~I,

——U, /Ak the lifepath of the initial state

IV. EXPERIMENTAL SETUP

A. Design

The design of a crossed-beam experiment for the inves-
tigation of inelastic collision processes with short-lived,
electronically excited atoms has to be considered very
carefully. The more so when the reaction products can
only be detected through their radiative decay. We as-
sume a configuration of primary beam, secondary beam,
and laser beam crossing at right angles. The major exper-
imental problems encountered follow directly from the
expressions for the count rates II, for the direct Quores-
cence from the initial state Ia j k, without a secondary
beam, and I& for the collision-induced fluorescence from
the final state I a j I, respectively. These are given by
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particles, and Qi k the total inelastic cross section for
the I a I k ~ I a ) &

transition. Through the factor
Rk-I/(I —Ak;/Ak) we take into account that a frac-
tion Ak; /Ak of the atoms in the initial short-lived (a j k

state is recycled via the metastable Ne ( Pz) lower level
of the optical pumping transition. With appropriate laser
power, almost all of the Ne'( P~) atoms in the primary
beam are excited to the I a ) „state, resulting in

CJXN Q( J) with CJ the relative population of the
metastable state used for the Ne 'tajk production. In
Eq. (10b) for the colhsion-induced Iluorescence signal we
recognize the usual "nlQ" product of a crossed-beam ex-
periment, modified by the use of the lifepath I, instead of
the length of the scattering volume.

From Eq. (10) we can deduce the practical problems
which our particular experiment presents. Both the
lifepath l, of the short-lived atoms and the transition
cross section Q, „are very small: l, =20 pm, Q, i, =1
A . This means that it takes considerable effort to obtain
a measurable collision-induced fluorescence signal, i.e., a
signal that can be separated from the inevitable back-
ground. Firstly, we must maximize primary-beam Bow

and secondary-beam density n2, Secondly, ex-

tremely eScient detection of Auorescence photons is
needed, that is to say high values of the optical detection
efficiency ill. As to background radiation, from Eqs.
(10a) and (10b) it follows that at all times the direct
fluorescence radiation Nk will be several orders of magni-
tude larger than the inelastic fluorescence XI. This calls
for almost complete suppression of Nk. Of course the
same goes for other sources of background radiation.

The above experimental requirements have led us to
design a novel crossed-beam apparatus, of which a
schematic view is given in Fig. 9. The primary beam of
metastable Ne* atoms originates in a discharge excited
supersonic expansion, or thermal metastable source
(TMS). The differentially pumped source chamber is con-
nected to the main vacuum chamber by a 0.5-mm P skim-
mer. The maximum centerline Ne'( P2) intensity for the
TMS, operated with pure neon, is about j;o
=10' s 'sr ', the P2. I'0 ratio is roughly 5:1. Down-
stream of the skimmer, all charged particles are removed
by condenser plates. A high density of metastable Ne*
atoms in the collision region is obtained by virtue of the
small distance to the TMS. The collision region being sit-
uated about 90 mm downstream of the TMS, we have a
primary beam density n + -10' m . Metastable par-

ticle flow X + through the collision region is determined

by the 1-mm P primary beam defining diaphragm at 60
mm from the skimmer. This geometry results in

g -2/10' s

The primary beam of metastable Ne' atoms is crossed
at right angles by the laser beam from a cw single-mode
dye laser system. The laser frequency is stabilized to
within 0.5-MHz rms deviation of the transition frequency
v;„. Laser power (P &0.2 mW in the collision region) is
controlled and stabilized with an electro-optical modula-
tor. The laser bea~ has a waist in the collision region
(1/e radius, %=0.5 mm). Because of the short life-

10

l00-

0-

laser
bea01

6g)

5 0 3

.r Ne+

k 2

FIG. 9. Schematic view of the experimental setup. The scale
is in millimeters. (1) Primary-beam source; (2) skimmer; (3) con-
denser plates; (4}primary-beam diaphragms; (5) secondary-beam
nozzle; (6) parabolic mirror; (7) Plexiglass light guide; (8) in-

terference and cuto6'Alters; (9) lens; (10) photomultiplier.

times of the Ne" Iajk atoms, produced in the optical
pumping process, it is the laser beam that determines the
lateral position of the collision region. The secondary
beam has to pass through the crossing point of the laser
and primary beams.

A skimmerless supersonic expansion (nozzle diameter
28„=50 LMm) forms the secondary beam. This allows a
very small distance from the nozzle to the collision re-
gion, and a correspondingly high secondary-beam densi-
ty. In our apparatus the distance may be adjusted from
0-12 mm, but is typically 2 mm. In that case, for noble-
gas atoms, the secondary beam density is given by super-
sonic expansion theory as n2-3)&10 m . In sum-

mary, we have fu1611ed the first experimental requirement
of high primary- and secondary-beam densities by situat-
ing both primary- and secondary-beam sources as close to
the collision region as possible.

The demands made of the optical detection system, i.e.,
a large detection eSciency g and e8'ective suppression of
the direct Auorescence radiation, have been met by em-
ploying narrow-band interference filters for wavelength
selection [2-nm full width at half maximum (FWHM),
10-nm FW at 10 transmission]. With these we may
monitor a single line of either the collision-induced
Auorescence from the final state I a I, or the direct
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fluorescence from the initial state I a I k. More in particu-
lar, as the interference 61ters require perpendicular in-
cidence, the collision region is situated near the focal
point of a parabolic mirror. Thus a substantial portion of
the lluorescence radiation is imaged into a (nearly) paral-
lel beam. Solid angle eSciency of the parabolic mirror is
approximately 0.40, i.e., a solid angle of 1.6m is collected.
The condition of (nearly) perpendicular incidence on the
interference 5lters poses no serious limitation to the ac-
ceptance of the optical system. The optical phase volume
of the parabolic mirror-interference Slter combination is
very much larger than may be attained with a monochro-
mator. Additional suppression of background light is
achieved by the use of colored glass cutoff filters. After
passing through the filters, the photons are focused onto
the 9-mm ((} cathode of an S20 photomultiplier in a
cooled housing. Quantum efficienc of the photomulti-
plier is a low 3-5%, depending on the wavelength.
%hen measuring direct fluorescence radiation, grey 61ters
are added to the optical system in order to guarantee a
linear response of the photomultiplier. In the present
configuration the overall detection efficiency of the opti-
cal system is typically r)=10 per photon (A, =650 nm)
produced in the collision region. The overall figure of
merit in the thermal energy range is about 1 kHz/A, for
the number of counts per unit of inelastic total cross sec-
tion. The background count rate ranges from 2 to 15
kHz and is due mainly to the line emission from the
discharge in the TMS.

8. Performance

Of the several noteworthy features of this experiment
we here note only 2, both related to the use of a free-jet
expansion for our secondary beam. Firstly, before the
primary beam ever reaches the scattering center, it is at-
tenuated up to 70% by secondary beam particles, both in
the expansion itself and in the form of residual gas. This
results in a transmission factor T„, depending upon the
position x along the primary-beam axis, that is given by

Tk(x) =Nk(x)/Nk( —oo )

x g(x')=exp n2(x')Q dx'
U)

The small size of the scattering region, as determined by
the density profile n„(r) of the short-lived IaIk atoms,
ensures that Eq. (13) is indeed a fair approximation of Eq.
(12}.

Since we are concerned only with the ratio I, /I„, nei-
ther the potentially troublesome attenuation phenomenon
nor a number of other unknown common factors preclude
the possibility of obtaining absolute cross section values.
This is illustrated by Figs. 10 and 11. Figure 10 shows
T&, measured by looking at the direct fiuorescence signal
Ik as a function of secondary-beam reservoir pressure

pH, . Agreement with Eq. (11) is very good. By inserting
into Eq. (11) the secondary-beam density profile, we find' 2from these and other measurements that Q=100 A,
which is a reasonable value for hard-sphere scattering. In
Fig. 11 we have plotted the ratio I&/Ii, of collision-
induced and direct fluorescence signals as a function of
the pr essure p H, . The linear dependence of
If /It rt 2 I Qt k on pH„ in contrast to the behavior of
Tk, provides convincing evidence of the soundness of the
principles embodied in our experiment.

As a second characteristic of our present setup, the
scattering center position is ultimately determined by
laser beam alignment. Since secondary-beam density,
among others, does not factor out from the ratio of
fluorescence signals, this alignment takes on a critical im-
portance, as evidenced by Fig. 12 of the ratio I, /Ik
versus laser beam position along the primary-beam axis.

Given the position of the scattering center, either Eq.
(12) or Eq. (13) can be used to obtain absolute cross-
section values. Of the quantities in these equations, the
secondary-beam density n2 is directly related to the

Il 9l g
2 ~~I~knh~~

'9k
(13}

Here Q is the effective total cross section for elastic
scattering of Ne' atoms by He atoms. Of course, this
factor enters into both signals Ii and Ik for collision-
induced and direct fluorescence, respectively. For the ra-
tio of these two signals we have, in more speci6c terms
than offered by Eq. (10),

qirnkrn2rg r I zgdr
(12)

A„J rik(r)ni, (r)dr

the integral being taken over the scattering volume V. To
first order, and in keeping with Eq. (10), this reduces to

I

200

pH& (Torr)

I

300

FIG. 10. Primary-beam transmission factor Tk as a function
of secondary-beam reservoir pressure pH, . The observed ex-
ponential attenuation conforms with Eq. (11},with a cross sec-

0
tion Q=100A' for Ne ('Po)-He collisions.
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0.20—

0.10-

source density n H, through the shape of the radially ex-

panding How 6eld. For monoatomic gases, with the noz-
zle shape used in our setup, experiments and theory are
in good agreement. The position dependence of the
detection eSciency g was calculated, following a separate
calibration of the optical system's various components.
To our advantage, only the ratio i), /qz is of importance.
Under the simplifying assumption of monoenergetic par-
ticle beams, the position dependence of the relative veloc-
ity g is purely a matter of geometry. For use in Eq. (13),
model calculations for the optical pumping process yield
the distribution nk of the short-lived atoms over the
scattering volume. %'e find that cross sections, calculated
with Eq. (13), differ by typically 20% from those follow-
ing from Eq. (12).

I

100
I

200

pH~ (Tof'I')

300

FIG, 11. Collision-induced to direct fluorescence ratio II/Iq
as a function of secondary-beam reservoir pressure pH, . As ex-
pected from Eq. (12), the ratio II/II, does not depend on the
primary-beam transmission factor Tk, but is proportional to
&2-PHe

C. Measuring routine

Our aim is to determine the collision-induced and
direct fluorescence signals II and Ik, as defined in Eq.
(12). Ideally, this would involve two measurements only,
with different optics (interference filters). In practice,
however, we will have to correct for background light
which cannot be entirely suppressed by the optical sys-
tem.

In order to correct for background contributions, two
further diagnostics are employed in addition to the use of
different filters for direct and collision-induced fluores-
cence. The first of these is modulation of the optical
pumping process by which the initial Ne" Iajk atoms
are produced. Rather than simply turning the laser "on"
and "oF', which allows for no easy correction for stray
laser light, the laser is tuned and detuned sufficiently
(about 100 MHz) to preclude excitation of the metastable
Ne'( PJ) atoms. The slight accompanying wavelength
change makes no difference to the optical system. The
second additional diagnostic is modulation of the secon-
&ary beam, by simply turning it on and off. Of course,
this also influences the attenuation of the primary beam
by secondary-beam particles. By combining these three
modulation techniques, which are all under computer
control, we can easily design a strategy to eliminate all
background contributions.

A paper, offering a more detailed description of the
design of the apparatus and the execution of the measure-
ments, is forthcoming.

V. EXPERIMENTAL RESULTS
FOR POLARIZED CROSS SECTIONS

0

FIG. 12. Collision-induced to direct fluorescence ratio II/Ik
as a function of' laser beam position xl along the primary-beam
axis. The result rejects mainly the secondary-beam density
profile.

In our experiment, the short-lived Ne*' (a I k atoms are
prepared in a polarized state, consisting of an incoherent
distribution over substates

~
ak Jkmk ) with respect to the

excitation process quantization axis. The associated
probabilities are g . As a linearly polarized laser is used

to excite the metastable Ne* atoms, the natural excitation
axis for the optical pumping process is along the laser
electric field E. The quantization axis for the collision
process is the asymptotic relative velocity g of the col-
lision partners. For a given angle P between E and g, and
suitable orientations of the remaining axes perpendicular
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to the quantization axis, the initial state
I ak Jk mk ) @ can

be written as

I ~k Jk~k ~E= g d „M„(» I ~k JkMk &s

with d the usual rotation matrices or reduced %igner D
functions. The observed total cross section Qt' k is now
found to be an incoherent sum over the single Mk-state

polarized cross sections QI k of Eq. ( ),
~MA, ~

QP k=gg „g(d ",M„(P»'Qi k"

mk Mk

This incoherence with respect to Mk is essentially due to
the fact that the 6nal atomic polarization and direction of
motion are not observed. The unpolarized cross section

/
/

/
/p

I

I BE
I

/ l

g

I

l

I

I

I

nozzle

1 )Mk )

Ql k 2J 1
g Ql~kk+ Mk

is of course independent of the quantization axis.

A. The ( j a ) ~, J, = 1) initial state

(16)
FIG. 13. Newton diagram of the collision process, with v&

and v2 the primary- and secondary-beam velocities. Upstream
of the secondary-beam nozzle, the relative velocity g is high;
downstream, it is low. 'The angle P between the relative velocity

g and the laser electric Geld vector 8 has been indicated.

gm, =0=1 (17a)

glm (=&=0. (17b)

We will first discuss a number of transitions which
have in common the I u J 5 initial state, as produced from
the Ne'( Po ) metastable state. For this J~ = 1 state, dis-

tribution over the magnetic substates will be according to

states have been detected by observing the radiative de-
cay at k=667. 8, 693.2, and 653.3 nm, respectively. In
Fi s. 14, 15, and 16 we show the experimental results

Q k for the ja)~~jaI4, jaI6, and jaj7 transitions, ob-
tained by scanning the angle 8E over the fu11 range
—105' & 8E & 105'.

Among the pictured transitions with I a I ~ as an initial
state, the whole gamut of possible polarization effects is

The cross section Qt' k of Eq. (15) now becomes

QL» = l (QI"k+4 '), )+ l (Qi "k QI 'k )c—os(2p»

)MI, jwhere ultimately the polarized cross sections Q& k are
of interest. As may be seen from Eq. (18) for Jk —1, mea-
surement of Qt'=k and Qlk suffices to determine Q&~ J
and Q ~

' Both from the standpoint of detecting unfore-
seen physical effects and for the additional check it pro-
vides in the crucial matter of laser beam alignment, the
coverage of a more extensive range of p values is desir-
able.

In Fig. 13 we show the diagram of velocity vectors in
the laboratory system. The relation between p and the
laser polarization angle 8E depends on the scattering
center position x„relative to the centerline of the secon-
dary beam. Equation (18) can help us calibrate the zero
of the x scale. For a given position, the extrema of Q,
as a function of 8z correspond to p=O and m j2, with
only the identification of the extremum belonging to p=O
left open. This problem can be solved unequivocally by
measuring Q& k for some different positions x, and
primary-beam velocities v, . Once this calibration has
been performed the x scale is permanently coupled to the
scale of the laser beam translator. 39

The experiments under discussion have been performed
by pumping the ja]5 level through the Ne ( Po)~ juI5
transition at A, =626.6 nm. The jaI~, jaj6, and jaI7

0 0
Q I

10-

)Mg)-0 lM)l 1

I

I

1

I

1I:/2

FIG. 14. Experimental results for the observed cross section

QL& as a function of the angle p between the electric field E of
the laser and the relative velocity g at a center-of-mass energy

E& ——100 meV. The statistica1 errors are smaller than the size of
the data points. The observed dependence on p reflects the non-

isotropic distribution of collision-induced Auorescence radia-
tion. The solid line ( ) therefore indicates the average
value of the data points and docs not represent a curve fit ac-
cording to Eq. (18). The other lines are the results of calcula-
tions with the model potentials of Hennecart and Masnou-

Seeuws I ———) and the extended potentials ( —.—~ —.)
Sec. II 8 as input.
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TABLE II. Observed and calculated polarized cross sections
(M

Q, „' at center-of-mass energy E =100 meV. The potentials
used in the ca1eulations [I(a), I(b), II(a), and II(b)] are described
in Table III.

0
-m/0

jebel-0
l

I

I

1

0
l

m/4

P(I ad)

FIG. 15. Experimental results for the observed cross section
Qs6 s as a function of the angle P between the electric field E of
the laser and the relative velocity g at a center-of-mass energy
E& ——100 meV. Statistical errors only have been indicated. The
solid line t, ) represents a curve fit of the data points ac-
cording to Eq. (18). The other hnes are the results of calcula-
tions with the model potentials of Hennecart and Masnou-
Seeuws ( ———) and the extended potentials of Sec. IIB
( ———j as input.

observed. At the present enerIII we find that
Q„=Q, Q gQ, and Q s pQ &. The po-lol I&l Iol I&l I I &I

larization efFect in the Ia)s~ I a)7 transition is particu-
larly pronounced. The Qf s and Q~~ s clearly conform
to the cos2P expression of Eq. (18). The somewhat devi-
ating behavior of the Q4 s cross section appears to be
caused by the nonisotropic distribution of collision-
induced 6uorescence radiation, for which at present we
do not correct and which takes on importance in the ab-
sence of a real polarization efFect. The shifted extrema, at
approximately ez ——0 and sr/2, are traceable to the sym-
metry axis of the apparatus at (9=0 and not to the initial
Jk orientation. As to the cross-section magnitude, the
variation there is considerable as well, with Q4 s and

Qs s at opposite ends of the scale. The resulting experi-

mental polarized cross sections Q& k, derived from aIp I

least-squares St of the data points to Eq. (18), have been
summarized in Table II.

With our coupled-channel code, we have computed po-
IMk I

Qi i" (A')
Calculated

( a ] k t a ] i j Mi
~

Experimental [I(a), I(b)] [II(a), II(b)]

(&Is-tol4

]~!s-(~I.

]~]s t~l7

!~l~-l~]7

13.2
12.5
0.50
0.97
7.0
2.0
8.3
6.3
3.1

14.0
13.7
0.50
0.84
5.8
1.8
7.3
7.1

3.0

14.4
13.7
0.66
0.93
7.1

1.9
7.8
6.0
3.1

larized cross sections Q& „. at energies Es =100 meV
[calculation I(a)] and E6=100 meV [(calculation I{b)],
relative to the indicated initial state. The model poten-
tials of Hennecart and Masnou-Seeuws' and Hennecart"
were used. Of necessity, a hard wall at R =4.5ao was in-
troduced. In additional calculations at E~=100 meV
[II{a)]and Es =100 meV [II(b)], the extended potentials
of Fig. 4 were used. The characteristics of the coupled-
channel calculations have been summarized in Table III.
The results of these calculations are given in Figs. 14-16,
as well as in Table II.

As far as the Iajs~Ia]& transitions are concerned,
there is excellent agreement between theory and experi-
ment: not only the polarization effects Q) j/Q)' 'r„but
even the absolute cross-section values are reproduced
well. Cross sections from the preliminary calculation
with model potentials extended down to R =2ao differ
from the hard-wall results by 30%%uo at most, which is of
the order of the experimental errors. We have thus ex-
plicitly verified the relative unimportance of the inner re-
gion (R &4.Sao) of the Ne"-He potentials for the above
transitions and energies.

To obtain a qualitative insight into the rnechanisrns un-
derlying the surprisingly large polarization efFects, we
have to consider the salient features of the adiabatic po-
tential curves involved, as calculated by Hennecart and
Masnou-Seeuws' and Hennecart" with a model potential
method. Indeed, the choice of the [ajar s & 7 states as ob-
jects of our primary interest was dictated by the presence
of several clear-cut avoided crossings between their adia-
batic potentials.

We Iirst discuss the (a]s~ taIi transition of Fig. 16.

TABLE III. Characteristics of the coupled-channel calcula-
tions, performed in this work.

0-
-m/0

INg~l 1

l

l

%/P

FIG. 16. Experimental results for the observed cross section

Q$ s. See caption of Fig. 1S for further detail.

Calculation

I(a)
I(b)
II{a)

Energy
(meV)

F.g
——100

F.6 ——100
E5 ——100
F.6 ——100

Potentials

Hard wall
Hard wall
Extended
Extended
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Both the {a j 5 and {a j 2 states, but the former in particu-
lar, show only a small spbtting between the Q=O and 1

molecular potentials. To indicate the probed range of in-

ternuclear distances R: at E =100 meV the classical
turning point for both Q potentials of the {ajs state is

R, =6ao for an imPact Parameter b =0 and Rf ——7. lao
for b =6ao. For 0=0 the adiabatic electronic states are
divided into 0+ and 0 classes, depending on the
reAection symmetry. The 0=0 class contains the

{a j 2 5 7 9,o odd-J states and there is a strong coupling of
the {a)5and {a)2states. This coupling can be identified
as an avoided crossing at R, =7.0ao, with a Landau-
Zener-type coupling matrix element Hi7 =22 meV (half
the smallest separation of the potential curve), which is
very large in comparison with the energy dilerence
b,E52 =80.7 meV of the (a js and {a)2 states at infinity.
For 0= 1 there is no symmetry constraint and the inter-
mediate {aj 6 state disturbs the coupling of the {a}5 to
the {a)2 state. We now observe an avoided crossing of
the {a)6 and {a)2 states at R, =7.5ao with H67 3 5

meV. Moreover, the imtial {a)5 state is now coupled to
the {a)4 state by an avoided crossing with H45 ——1.0 meV
at R, =8.5ao. The contribution of the A=1 orientation
to the {a) 5~ {a )2 transition is small due to the strong
coupling of both the initial and final state to the {a) ~ and

{a j 6 states, respectively, which is absent for the
0=0 adiabatic potentials. The large coupling matrix
element 857 for Q=O is consistent with a main contri-
bution to the cross section from small impact parameters,
where radial velocities are large. Even without "locking"
of the initial 0=

~
Mz

~

orientation to the internuclear
axis this orientation will then be largely conserved at the
crossing radius. This explains the large polarization
effect Q2 5 ))Q2IoI III

The picture that thus emerges is con6rmed by the
{aj ~~ {a)4 transition, for which the results are shown in

Fig. 14, %e note the absence of a significant polarization
effect. This is in apparent contradiction with the simul-

taneous presence of an avoided crossing of the {a j 5 and

{a) 4 states for the 0=1 orientation, and the absence of
any coupling at all for 0=0, where initial and final states
are in difFerent symmetry classes. However, because of
the small splitting of the Q=O and 1 adiabatic potentials
for the {a j 5 state, the locking of the initial orientation to
the internuclear axis constitutes only a minor e6'ect. The
asymptotic

~
MJ {

=0 orientation will thus be partially
rotated at the crossing radius into a local 0=1 state,
which does couple with the final {a)~ state. This effect
mill be most pronounced for large impact parameters.
Because of the ver'y small couplmg matrix eleQlent H45,
which requires small values of the radial velocity for op-
timum coupling, we indeed expect a predominant contri-
bution from large impact parameters. Hence the absence
of a polarization effect, Q~'5 =Q~' 5, is qualitatively un-

derstood. A similar reasoning may be applied to the oth-
er transitions within the {a j 4 $ s 7 group.

t „=o=O

l

Im~ I
=] =6

2
~I I, I=2=

(19a)

(19b)

for the (time-integrated) distribution over magnetic sub-
states in the scattering volume, to be substituted in the
general formula

B. The ((a)6,J6 =2) initial state

As opposed to the {a j s state where J5 = 1, the {a j 6
state has J6=2, and must be excited from the Ne'( P2)
state. From the metastable Ne"(2P2) state we may in
principle excite states {aj k with either Jk —1, 2, or 3.
For Z&

——1, however, an isotropic distribution over mk
substates will result. For Jk ——2, in the assumed absence
of a magnetic 6eld, we 6nd

QP k 64 {[(22go+24gl + Igg2 )Ql )c +(24go+64gl +40g2)QI )c +( Igg +040gl +70g2 )QI

+[(24go —24g2)QI' f+(32g, —32g2)QI''j+( —24go —32g, +56g2)Q, '

J, ]cos2p

+ [( Iggo 24gl + 6g2)QI f(+ ( 24go+ 32g 1 gg2 )QI )c +(6go gg 1 + 2g 2 )QI )c ]cos4) j (20)

The experimental results for the {a j 6~ {a j 7 transition
are displayed in Fig. 17. The (a j 6 state was excited from
the Ne'( P2 ) state at A, =614.3 nm. Detection took place
at A, =692.3 and 653.3 nm for the {a)6and {a)2 states,
respectively. The center-of-mass energy was approxi-
mately E6 =95 meV, rather than 100 meV as in the {a j~
measurements, due to a small difference in laser beam
alignment. We observe that in Q~2 6 the presence of the
higher-order cos4P term of Eq. (20) is not immediately
apparent. The experimental polarized cross sections

Q2 6, derived using Eqs. (19) and (20), are given in

Table II.
Comparison with the results of the coupled-channel

)

calculations, also given in Table II, again shows excellent

agreement. This is true both for the calculation using the
hard wall potentials [I(b)] and for that using the extended
potentials [II(b)], but for the latter in particular. Strictly
speaking, of course, for a more balanced judgment a de-
tailed examination of the distribution parameters g of
Eq. (19) is needed. Developments which will enable us to
perform this kind of calculation, taking into account the
presence of small magnetic 6elds, are under way.

For a better understanding of the relatively small po-
larization effect Q7 '6/Q2 6, it is sufficient to point to
the similarity of the avoided crossing for the {a)6 and

{a) 7 states for 0= 1 to that for the {a j 4 and {a j 5 states.
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cb
b

Qt
-rr, /0 m/2

100 150

FIG. 17. Experimental results for the observed cross section

Qf 6 Curv. e fit of data points ( ) according to Eq. (19).
See caption of Fig. 15 for further detail.

K (meV)

FIG. 19. Energy dependence of the polarized cross sections

Q,~o', and Q,'
'

~, . See caption of Fig. 18 for further detail.

Once again, a grazing impact is favored, at slightly
higher radial velocities. The smaller crossing radius is
bound to lead to smaller cross sections than for the
tuI~~IaI4 transition, though in itself not by the
amount evidenced by the experimental cross sections.

VI. ENERGY DEPENDENCE AND ABSOLUTE
VALUES

A. Energy d.ependence

We have performed measurements of the energy
l~5 l

dependence of the Q7 s and Q~ s cross sections for
Ne"-He. This has been done, both by varying the mag-

nitude of the primary-beam velocity v, (by using a 85%
He-15% Ne seeded primary beam) and by varying the
direction of v2 (by scanning the laser beam along the

primary-beam axis). While primary-beam velocities have

been determined through time-owight measurements,

employing a pseudorandom optical chopper, 3 at this

stage no attempt has been made to resolve collision-
induced fluorescence spectra. Here, as elsewhere,
velocity-averaged results only are presented, both as to
measured (Ne') and as to calculated (He) velocity distri-
butions.

The observed energy dependence of the polarized atom
cross sections Q4 5 and Qi 5 is shown in Figs. 18 andi~pl i~pl .

19. The data points at approximately 60 meV represent
the low-end limit of the position-dependent energy varia-
tion with the He secondary beam Likewise, 150 meV is
the maximum attainable practical energy with the above
seeded primary beam. Errors in the average energy are
typically 5%, due to uncertainties in the present laser
beam alignment technique.

A detailed discussion of these results on the basis of
quantum-mechanical coupled-channel calculations would
require a prohibitively large amount of computer time.
An analysis in semiclassical terms is less demanding in
this respect and seems highly appropriate in view of the
pronounced avoided crossings between the adiabatic po-
tentials of Fig. 5.

)g&l-0

B. Various other transitions

0
b

100

FIG. 18. Energy dependence of the polarized cross sections

QJ 'q and QQ), with E the center-of-mass energy. The full

points have been obtained by varying the magnitude of the
primary-beam velocity v&", the open points by varying the posi-
tion of the laser beam along the primary-beam axis, resulting in
a different direction of vz.

In addition to the polarization measurements reported
above we have performed a number of exploratory mea-
surements under much less well-defined experimental
conditions. Their purpose was to establish the presence
or absence, within experimental limits, of various transi-
tions. The range of these measurements was determined
by Alter availability and dye laser operation. Only order-
of-magnitude results at an approximate energy E =100
me V are presented in Table IV. The substantial
IaI i~ Ial, c transition probabihty is at first sight rather
surprising given the large energy distance AE5 &0

——312
meV. When using the two-level system taI9 state as an
initial state, experimental signals are especially large, due
to the replacement of the lifepath I, by the laser beam
width in Eq. (10), allowing detection of smaller cross sec-
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TABLE IV. Order of magnitude of some observed cross sections QI I, at approximate center-of-mass energy E =100 meV. In
case of a fluorescence signal below the experimental threshold, an upper limit for the relevant cross section is given. Also shown are
calculated unpolarized cross sections. Only for the t a), [calculations I(a), II(a)] and I a }6 [calculations I(b},II(b)] initial states, the
collision energy E conforms to the experiment. In some other cases the results of the calculation providing the closest energy match
are given between parentheses.

Initial state k

Ek (meV)

QI I; (&')
Final state I

10

Expt.'
Calc.
Expt.
Calc.
Expt.
Calc.
Expt.
Calc,

Expt.
Calc.
Expt.'
Calc.

100
(67'/67 )

100
100'/100
100
100'/100
100
124'/(181')
100

12.7
13.8/13.9
0,4
0.1/0.2
04
0.6/(2. 2)

0.4
0.03/0. 3
0.3
0.7/(2.0)

(0.1

(0.04/0. 06)
0.8
0.8/0. 8

3.2
7.4/(8. 7)
0.1

0.01

(0.1

(0.2/0. 2)
3,7
3.1/3.6
4.7
S.5/5. 2

(0.1

0.1

& 0.1

(0.0/0. 1)
0.6
0.4/1. 1

9.0
8.2/(10. 8)

0.3
0.0/0. 05
g 0.1

0.0/0. 04

1.9

2.5

"'Calculation I(a).
Calculation II(a).

'Calculation I(b).
Calculation II(b).

tions. The [aI s~ I aI s transition is an example o«»s.
When comparing, in Table IV, experimental cross sec-

tions with unpolarized quantum-mechanical cross sec-
tions Q& „ from calculations I(a), I(b), II(a), and II(b), al-
lowances must of course be made for the imperfect ener-

gy match of other than the I a Is~ IaI I and IaIs~ I a) &

transitions. The relevant energies have been indicated in
the table. On account of the energy mismatch we have
refrained from giving the calculated Q, , and QI,
cross-section values. Prehminary calculations seem to in-
dicate an inability of coupled-channel calculations with
the model potentials of Hennecart snd Mssnou-Seeuws to
predict the considerable Qz s and Q,o s cross sections,
while our extended potentials fare somewhat better in
this respect. Apart from that there is rough qualitative
agreement between theory and experiment considering
the experimental and computational limitations of the
comparison. A similar remark csn be made with respect
to rate constants available from the literature. Again, a
proper comparison awaits semiclassical calculations on
the energy dependence of cross sections.

Statistical errors in the experimental data are, on the
whole, smail for all but the weak transitions. In view of
the inherent experimental dif6culties, discussed earlier,
this speaks weil for the design of the apparatus. The
overall systematic error of our absolute cross-section
values we currently estimate at a respectable 30%, laser
beam alignment being the main bmiting factor. %'e sre
working on an automated alignment procedure that will
constitute s de5nite improvement in this regard.

The absolute cross-section values given here for the
I a I s~ t a I 7 and I aI s~ I a I4 transitions differ somewhat
from those cited in an earlier paper. ' This is due almost
exclusively to a more recent set of lifetime values ' hav-
ing been used in their calculation, difFerent from that
used. earlier.

VII. CONCLUDING REMARKS

At the investigated thermal energies, where mainly the
long-range interactions are probed, quantum-mechanical
coupled-channel calculations on the basis of the model
potentials of Hennecart and Masnou-Seeuws appear to
offer a very satisfactory description of our Ne"-He ex-
perimental results. In particular, this is true for the tran-
sitions within the I a)& s s 7 group of states. For other
transitions, which so far have been explored much less in-
tensively, the general trend is reproduced as well. There
are indications that for some of these transitions the
inner potential regions, which sre not covered by the
model potential method, are of importance.

It is possible to obtain a qualitative insight into the
mechanisms underlying the coupled-channel and experi-
mental results by considering the adiabatic potentials cal-
culated from the model potentials. Our present under-
standing is based on the constraints of symmetry, the oc-
currence of avoided crossings between the potential
curves, and the partial absence of locking. It seems feasi-
ble to develop a fully semiclassical description in terms of
Landau-Zener theory. The ta ]4 5 s 7 multiplet is a natu-
ral candidate for such sn approach. This will be dis-
cussed in another paper. The energy dependence of
cross sections deserves more scrutiny than it hss received
here. %e are in the process of perfecting a time-of-Night
measurement technique, employing s pseudo random
laser chopper. %(hen used with seeded beams, and ulti-
mately s hollow cathode arc metsstsble beam source,
this will enable us to cover s wide energy range in consid-
erable detail. Thus it will become much easier to corre-
late rate constants cited in the literature with our beam
experiment results. Even in its present form, however,
our crossed-beam apparatus snd coupled-channe1 pro-
gram, taken together, form an excellent test bed for in-
teraction potentials snd collision mechanisms.
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