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Fully relativistic electron-impact ionization of atomic ions

M. S. Pindzola and M. J. Buie
Department ofPhysics, Auburn Uniuersity, Auburn, Alabama 36849

(Received 10 December 1987)

A fully relativistic electron-impact ionization cross section is calculated as a triple partial-wave
expansion of the 5irst Born scattering amplitude. The target atomic ion is described by a Dirac-
Fock approximation, a jj subcon6guration average method is used to calculate the scattering alge-
bra, and the radial partial waves (el)) are computed in distorted-wave potentials. The resulting gen-
eral computational scheme is applied to electron-impact ionization of U' +. The fully relativistic
cross-section results are compared with those obtained from both nonrelativistic and semirelativis-
tic theories.

I. INTRODUCTIQN

Although indirect processes in electron-impact ioniza-
tion of atomic ions have been shown to be quite impor-
tant, ' the calculation of the direct ionization process
remains an integral part of obtaining a total ionization
cross section. One of the most successful methods for
calculating direct-ionization cross sections is based on a
triple partial-wave expansion of the first Born scattering
amplitude. The target atomic ion is described by a
Hartree-Pock approximation, while the incident, ejected,
and scattered artial waves are calculated as either
Coulomb waves ' or frozen-core Hartree-Fock distorted
waves. The maximum-interference approximation of
Peterkop may be used to account for electron exchange
among the ejected and scattered electrons. The resulting
nonrelativistic calculational method is commonly called
the distorted-wave Born exchange method.

For electron-impact ionization of heavy atomic ions,
relativistic effects should play an important role. In this
paper the distorted-wave Born exchange method is for-
mulated in terms of a Dirac-Fock approximation for both
the target atomic ion and the various partial waves. The
resulting fully relativistic distorted-wave Born exchange
method is applied to the calculation of the 2s-subshell
ionization cross section of U +, in support of recent at-
tempts to measure electron ionization of highly charged
uranium using the Bevalac accelerator.

The remainder of this paper is arranged as follows. In
Sec. II the fully relativistic distorted-wave Born exchange
method for electron-impact direct ionization of atomic
ions is formulated. In Sec. III the fully relativistic cross-
section results for U + are compared with those ob-
tained from both nonrelativistic and semirelativistic
theories. A brief summary is contained in Sec. IV.

A nonrelativistic direct-ionization cross section may be
calculated in a con6guration-average distorted-eave ap-

where n is the principal quantum number, 1 is the angular
momentum quantum number, and 8' is the occupation
number of the configuration subshell. The
configuration-average direct-ionization cross section (in
atomic units) is given by
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and E=(k, +kf)I2. In Eq. (2) k, , k„and kf are the
linear momenta of the incident, ejected, and scattered
electrons, respectively; 8 represents the usual Slater ra-
dial integral; and the continuum normalization is one
times a sine function. The angular coefBcients in terms of
standard 3-j and 6-j symbols are given by

proximation. The most general direct-ionization transi-
tion between configurations is of the form
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The maximum-interference approximation of Peterkop2
is imposed by taking the negative of the absolute value of
the third term in Eq. (2).

The energies and bound radial orbitals needed to evalu-
ate the cross section of Eq. (2) are calculated in the
Hartree-Fock approximation. ' The continuum radial
orbitals needed to complete the evaluation of the cross
section are obtained by solving the single-channel
Schrodinger equation

1 d 1(1+1) Z ki
+ + VHF — Pki(r) =0

2 dry 2r2 r 2

where the distorting-potential operator VHF is construct-
ed from previously calculated Hartree-Fock (HF) target
orbitals. For rapid evaluation of many continuum orbit-
als a local distorting potential constructed in a semiclassi-
cal exchange approximation' has proved quite useful.
This exchange term simplifies the solution of the
difFerential equation and generally gives results in close
agreement with those obtained from a full nonlocal
Hartree-Pock continuum calculation.

A semirelativistic direct-ionization cross section may
also be calculated in a configuration-average distorted-
wave approximation. " The energies and bound radial
orbitals needed to evaluate the cross section of Eq. (2) are
calculated in the Hartree-Fock approximation with rela-
tivistic modifications, ' which includes the mass-velocity
and Darwin corrections within modified differential equa-
tions. The continuum radial orbitals are obtained by
solving a similarly modified single-channel Schrodinger
equation
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where the distorting-potential operator VHFR is con-
structed from previously calculated Hartree-Fock relativ-
istic (HFR} target orbitals. If VHFR is approximated by a
local distorting potential VHFR, then V„i is given by
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where the first term is the mass-velocity contribution, the
second term is the Darwin contribution, and a =+, , is the
fine-structure constant. Due to the presence of Pki(r ) in
the Darwin term, the Schrodinger equation of Eq. (10}
must be solved iteratively for l =0 continuum orbitals.

A fully relativistic direct-ionization cross section may
be calculated in a subconfiguration-average distorted-
wave approximation. The most general direct-ionization
transition between subconfigurations is of the form

+(nbIbjb ) (nbIbJb } +e +e (12)

where j =I+—,
' (I+0) is the total angular momentum

quantum number. The subcon6guration-average direct-
ionization cross section is given by
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and E =s, +s . For relativistic calculations the energy e is the total energy of the electron minus its rest energy,

p =(2e+a e } is the linear momentum, R represents a Slater radial integral containing both large and small com-
ponents, and the continuum normalization is (1+a e/2)'~2 times a sine function. The angular coefficients are given by
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provided (I, +Is+ A. ), (II+ I, +A), . (I&+Ii, +A, '), and
(I, +I;+A,') are all even, otherwise C=O. The interfer-
ence approximation imposed in Eq. (13) is not the max-
imum interference, but it does correspond in the nonrela-
tivistic limit to the direct-exchange phase choice of Eq.
(2). The maximum interference is obtained by moving
the absolute value found in the third term of Eq. (13) in-
side the triple j sum for 0;„,.

The energies and bound radial orbitals needed to evalu-
ate the cross section of Eq. (13) are calculated in the
Dirac-Fock approximation. 'i' The continuum radial
orbitals needed to complete the evaluation of the cross
section are obtained by solving the single-channel Dirac
equation

K 2
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where the distorting-potential operator VDF is construct-
ed from previously calculated Dirac-Pock (DF) target or-
bitals. In Eq. (20) «=k(j+ —,') and V„(r) is the nuclear
potential. A relativistic generalization of the semiclassi-
cal exchange approximation is used to construct a local
distorting potential for calculation of the hundreds of
continuum orbitals needed to evaluate the cross section
of Eq. (13).

HI, RESULTS

General purpose computer codes have been written
based on the configuration-average cross section of Eq.
(2) and the subconfiguration-average cross section of Eq.
(13). The con5guration-average ionization code (cAtoN)
has been used for many years to generate direct-
ionization cross sections for atomic ions of interest to
controlled fusion research. In fact, the generally favor-
able agreement found between the CAiON code results
and a wide variety of crossed-beam experiments forms an
empirical justification for the maximum-interference ap-
proximation employed in the cross section of Eq. (2). The
new subconfiguration-average ionization code (scAtoN)
was first tested by calculating the 3s-subshe11 ionization
cross section for A1 +. At the cross-section peak the nu-
merical cross-section results from the CAION and SCAION

codes agree to three significant figures; this should be ex-
pected since relativistic e8'ects in Al + are quite small. In
purely scalar operational terms the SCAION code is intrin-
sically a factor of 2 or 2 times slower than the CAION

code due to the increase in both the number of partial
waves (I versus Ij) and the number of radial orbital com-
ponents (1 versus 2}.

To explore the validity of semirelativistic theories of
ionization and to support channeling experiments using
the Belavac accelerator, we used the CAION and SCAION
codes to calculate the 2s-subshell ionization cross section
for U +. Various atomic parameters for U + are given
in Table I based on a 1s 2s single-con6guration approxi-

TABLE I. Atomic parameters for Us +.

Approximation

Hartree-Pock
Hartree-Fock

relativistic
Dirac-Pock
Dirac-Pock

with Brrit and QED

Total energy
(keV)

—256.6
—293.4

—295.2
—294.2

Ionization potential
(keV)

27.80
32.81

32.92
32.84

(r„)
(a.o.)

0.066
0.055

0.054
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FIG. 1. Hartree-Fock (HF) and Hartree-Fock with relativis-
tic modifications (HFR) bound and continuum orbitals for
U' +. The solid curves are different approximations for the 2s

orbital", the dashed curves are s-wave continuum orbitals calcu-
lated at an energy of 500 a.u.

FIG. 2. Dirac-Fock bound and continuum orbitals for U +.
The solid curves are the large P and small Q components of the
2s orbitals; the dashed curves are components of an s-eave con-
tinuum orbital calculated at an energy of 500 a.u.

mation for the ground state. The HF and HFR results
are obtained using Cowan's bound-state wave-function
computer code, while the DF results are obtained from
Grant's code. ' The HFR method accounts for 95% of
the 38.6-keV difference in the HF and DF total energies.
The HFR method also does quite well in comparison
with the DF results for both the ionization potential and
the 2s-subshell mean radius. Many previous research pa-
pers, the latest by Lobus and Jaskolski, ' have shown
that the HFR method is able to produce orbital energies
and transition probabilities in very good agreement with
the DF method for a wide variety of heavy atoms and
ions.

For near-threshold electron scattering from U +, rela-
tivistic corrections to the Coulomb electron-electron in-
teraction, e /i r; —r i, should be small. As shown in
Table I, transverse Breit and QED perturbation theory
corrections, obtained from McKensic's code, ' are found
to raise the DF total energy by only 0.3% for the ls 2s
configuration. The cross-section correction due to the ex-
change of a virtual transverse photon, which is the analog
of the atomic structure Breit interaction, has generally
been found' to be small for incident electron energies
much less than the electron rest mass, which is the case
here.

Bound and continuum radial orbitals for U + in vari-
ous approximations are presented in Figs. 1 and 2. The
s-eave continuum orbitals are calculated with an energy

of 500 a.u. (13.6 keV). We find several items of interest in
examining these wave-function plots. The first item is
that the substantial phase difference in the HF and HFR
continuum orbitals shown in Fig. 1 is mainly caused by
the V„,& potential operator of Kq. (11). The mass-velocity
term is quite attractive while the Darwin term is mildly
repulsive. The second item is that both the bound and
continuum HFR orbitals of Fig. 1 are in very good agree-
ment with the large component DF orbitals of Fig. 2. In
fact, the agreement is within the width of the lines used
to draw the curves. The third item is that the small-
component DF orbitals of Fig. 2 are quite appreciable at
small distances from the nucleus.

Electron-ionization cross sections for the 2s subshell of
U + are presented in Table II and Fig. 3. The HF and
HFR results, which differ by almost a factor of 2 at the
peak of the cross section, are both calculated using the
CAtoN code. The semirelativistic theory prediction of a
decrease in the cross section is based, in part, on the rela-
tivistic contraction of the 2s target orbital. Based on the
DF results calculated using the new SCAION code, howev-
er, the semirelativistic HFR theory has substantially
overestimated the cross-section reduction. The source of
the difference between the DF and HFR results can be
traced to the neglect of the small-component wave func-
tion inherent in the HFR method. If one repeats the DF
calculation using a modified version of the SCAION code
which ignores small-component contributions, the DF
modified and HFR results agree to within 12%. The

TABLE II. Cross sections for U +.

Energy
(threshold

units)

1.10
1.50
2.00

Hartree-Fock
(10 cm )

5.44
15.77
19.22

Hartree-Fock
relativistic

(10 cm )

3.13
9.03

10.98

Dirac-Fock
(10 cm )

4.09
12.07
15.11
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Before closing this section me make a comment on the
choice of continuum phase in the SCAiON code. The
cross-section results for U + presented in Table II and
Fig. 3 were a11 obtained using the approximation of max-
imum interference between the direct and exchange terms
for each I partial cross section. If one repeats the DF cal-
culation using a modi5ed version of the SCAION code
which employs the maximum interference between the
direct and exchange terms for each lj partial cross sec-
tion, the original DF results are lowered by an additional
4%%uo. Unfortunately, the differenc between the l and Ij
interference approximations for other atomic ions may be
larger than found here for Us +. The proper choice of
continuum phase in electron-ionization theory remains a
long-standing problem.

FIG. 3. Electron-impact ionization cross section for U' +.
The three solid curves are di8'erent approximations: Hartree-
Fock (HF), Hartree-Fock with relativistic modi6cations (HFR),
and Dirac-Fock (DF).

remaining discrepancy is probably due to the omission of
the spin-orbit interaction in the semirelativistic theory.

We speculate that the poor performance of the HFR
method in predicting the electron-ionization cross section
for U + is due to a combination of three factors. The
first factor is that the Is 2s configuration is quite sensitive
to relativistic effects since the configuration contains only
1=0 penetrating orbitals. The second factor is that the
small-component effect on continuum normahzation can-
not be ignored in a problem involving three partial waves.
The third factor is that the Coulomb matrix elements in-
volved in the electron-ionization calculation are more
sensitive to the small components than the dipole matrix
elements involved in transition probability calculations.
They may simply weight regions near the nucleus more
heavily where the small components are largest, as, for
instance, in the calculation of ( I /r ) as opposed to ( r ).

IV. SUMMARY

In this paper we first derived a fully relativistic theory
for electron-impact ionization of atomic iona and then
applied the calculational method to the electron ioniza-
tion of U +. The fully relativistic cross-section results
for U + were found to be much larger than the cross-
section predictions of semirelativistic theory. The
difFerence was attributed, in large measure, to the fact
that the Dirac small-component wave function is ignored
in semirelativistic theory. To better understand the range
of validity of the semirelativistic theory of electron-
impact ionization, we plan to extend our studies in the fu-
ture to other atomic ions in the uranium isonuclear se-
quence.
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