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Computation of a long-time evolution in a Schrodinger system
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%e compare diferent techniques for the computation of a long-time evolution and the S matrix
in a Schrodinger system. As an application we consider a two-nucleon system interacting via the
Yamaguchi potential. %e suggest computation of the time evolution for a very short time using

Pade approximants, the long-time evolution being obtained by iterative squaring. %ithin the tech-
nique of strong approximation of Moiler wave operators (SAM) we compare our calculation with

computation of the time evolution in the eigenrepresentation of the Hamiltonian and with the stan-

dard Lippmann-Schwinger solution for the S matrix. %e find numerical agreement between these
alternative methods for time-evolution computation up to half the number of digits of internal
machine precision, and fairly rapid convergence of both techniques towards the Lippmann-
Schwinger solution.

I. I5fTRGDUCTION

When describing the dynamics of a system governed by
the Schrodinger equation, a quantity of central impor-
tance is the propagator. Given a Hamiltonian H, the
propagation in time is determined by the relation
U(t)= exp(iHt), also called the time-evolution operator.
We have used here and use throughout the units
A=a =1. The time-evolution operator enters in a physi-
cally measurable quantity, the Smatrix

S = lim [U'(t)U( —2t)U'(t)], (1.1)
g~ oo

where U (r}=exp(iH r} is the time-evolution operator
corresponding to the asymptotic Hamiltonian H, which
we take for the sake of simplicity to be the same in the
asymptotic incoming and outgoing channels. When try-
ing to calculate the time-evolution operator and hence
the S matrix directly, one is faced with mathematical
problems due to the following two properties: U(t) is a
nonlinear function and H is an unbounded operator. On
the other hand, U(t) has two simplifying features: It is
unitary for all real times t and it is an analytic function
for all finite complex t. Of course, the same properties
hold for the asymptotic time-evolution operator. It has
turned out' that one can introduce a perturbation to the
generator of the time evolution such that on the one
hand, the error in the S matrix for a given scattering re-
action (i.e., given quantum numbers, momentum, and en-
ergy) is small, and on the other hand, one has simpler
mathematical properties. In particular, the Hamiltonian
H can be perturbed to a bounded and Snite-dimensional
Hamiltonian H(N). Note that the word "perturbed"
does not mean that H H(N) is everywh—ere small; it
means that H H(N) is small on tha—t part of the spec-
trum which is relevant for the scattering process. Corre-
sponding to the perturbed generator H (N), the perturbed
time-evolution operator is U(N, t}=exp[iH(N)r]. If one

makes sure that H (N) is a self-adjoint operator, then the
unitarity and analyticity of U(t} carry over to U(N, t)
also. Because H(N) is essentially a finite-dimensional
Hermitian matrix, U(N, t) can be computed numerically
(see, e.g., Ref. 2). Numerical studies on the two-nucleon
system have shown that for a given scattering process
and a given finite-dimensional Hamiltonian H (N) there is
a finite "scattering time" T, for which the error due to
the perturbed S matrix,

S(N, T)=UO(N, T)U(N, 2T)U (N,—T), (1.2)

becomes a minimum. Besides, in an experiment, the
scattering time is always finite. When we talk of a long-
time evolution this is what we mean: The time T is the
finite scattering time corresponding to a specific scatter-
ing reaction, which is an approximation parameter de-
pending on the perturbed Hamiltonian H(N) and being
determined from the minimum of the relative error of the
S matrix. The term "long" means that (E)T&yR=1,
where (E ) is the scattering energy of a monochromatic
beam or the expectation value of the asymptotic Hamil-
tonian in the case of a wave packet. A very crude esti-
mate of T can be obtained classically: Assuming that the
interaction has a Snite range E.;„„alower limit of T is the
time needed for the projectile Sying with a velocity U to
traverse the interaction region 2E.;„,. Numerical calcula-
tions in two- and three-nucleon systems in the low-energy
domain show ' that the scattering time T is long in most
cases. This fact immediately rules out the idea of com-
puting the perturbed time-evolution operator U(N, T) via
a Taylor expansion. Also, more sophisticated techniques
giving a larger convergence region, such as, e.g., the Pade
technique, turned out to fail numerically. Moler and Van
Loan have compared 19 "dubious" ways to compute the
exponential of a matrix. According to them, a suitable
way to compute the exponential of a matrix, when the ex-
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U(N, T)= g ~ f ) exp(iE T)(P

As has been shown in Refs. 3 and 4, this is a feasible and
numerically accurate way, applicable for long times 1;
which are needed for scattering calculations.

In this paper we want to suggest an alternative route to
compute a long-time evolution. Again we start from a
finite-dimensional Hermitian approximation H(N) of the
generator H. We want to compute U(N, T)
= exp[iH (N) Tt. Because U(N, T) is exactly an exponen-
tial, we can take advantage of the following property of
the exponential function:.

exp(x) = exp(x/m) (1.5)

which is valid for every m. In particular, one can choose
m such that y =x/m ~~1. For convenience, we take
m =2" with some positive integer n. Now the idea is first
to compute exp(y) for a small y using a Taylor expansion
or the Pade approximation and then compute exp(x) by
squaring exp(y) n times. That means the following: Take
zo= exp(y) and square it, giving z„ take z, and square it,
giving zz, and so on, until z„=exp(x). This way of com-
puting the exponential exp(x) with a large exponent x is
far superior to a naive direct application of the Taylor or
Pade approximation to exp(x). Let us consider an exam-
ple; x =1000. In order to compute exp(x) via a Taylor
expansion one would need more than 1000 terms, as can
be seen from the large-order behavior using Stirling's for-
mula for the error term x /k!. On the other hand,
choosing m =2'3=8192, n =13 and y =0.1220, then,
exp(0. 1220) can be computed from a few Taylor terms
and then the result has to be squared 13 times. This way
of computing an exponential with a large exponent can be
applied as well when the exponent is a matrix; i.e., in our
case, for the purpose of computing the time evolution we
write

U (N, T)= exp( iH (N) T/m ) (1.6)

We choose m =2" appropriately, such that
~~H(NH.

~( &~1, where r=T/m We compu. te U(N, r) us-

ing Pade approximants for each matrix element. The
method to compute the exponential of a matrix via Pade
approximants and squaring has been discussed by several
authors and has been reviewed by Moler and Van Loan in
Ref. 2. However, in Ref. 2 the technique is discussed us-
ing matrix operator Pade approximants, which involve
inversion of matrices. Sometimes the denominator ma-
trix of matrix Pade. approximants can be very poorly con-
ditioned, with respect to inversion. To avoid this numeri-
cal problem, we apply Fade approximation on each ma-
trix element, which leads us to a stable and simple algo-
rithm.

In this paper we will demonstrate numerically that for
the computation of the time evolution there are two
equivalent ways: One is the diagonalize H(N) and com-

ponent is Hermitian or anti-Hermitian as in our case, is
via diagonalization,

(1.3)

pute U(W, T) in the eigenrepresentation of M(1V), and the
other one is first to compute U(X, r) for small r using
Fade approximants and then to repeatedly square the re-
sult. In particular, we want to demonstrate that, for long
times T needed to compute a scattering process, the re-
sults of both methods di8'er very little in the time evolu-
tion and in the S matrix. In this paper we have studied
the two methods applied to two-nucleon scattering in the
low-energy domain. As nucleon-nucleon interaction we
have used a short-range separable s-wave potential of the
Yamaguchi type.

Before going into some detail and discussing numerica1
results, let us briefly touch upon two questions one might
ask. First, what is the deeper reason that these methods
work well~ Second, what is the need for the second alter-
native way if the first one works? Concerning the first
question, one can establish for the first alternative
mathematically rigorous proofs showing convergence of
the approximate time evolution and hence of the approxi-
mate 5 matrix. ' However, the deeper reason for the
working of the method, in our opinion, is based on the
following fact. Assuming that the generator of the time
evolution, the Hamiltonian 8 is self-adjoint, then the
time evolution U(t) belongs to a continuous one-
parameter unitary group and vice versa (Stone's theorem,
see, e.g., Ref. 5). Our perturbed generator H(N) is also
self-adjoint, hence also the perturbed time evolution
U(N, t) belongs to a continuous one-parameter unitary
group and vice versa. In other words, our approximation
does not violate the dynamical-group properties. Here it
is worthwhile to draw a parallel to classical mechanics,
where the underlying group is the symplectic group. For
the purpose of computing the classical trajectories of par-
ticles in an accelerator for many orbits. Dragt and his
collaborators have formulated classical dynamics in the
language of the Lie algebra of the symplectic group.
The important feature is that the conservation of the
dynamical group under perturbation of the generator of
the time evolution, i.e., the introduction of an approxima-
tion to thc original Hamiltonian, given, e.g., by a magnet
in the accelerator ring, still yields an exactly symplectic
Hamiltonian Bow. This approach has worked very well
for calculating particle orbits and is used in the design of
ncw machlQcs.

While in our second alternative thc unitary group
structure is not exactly conserved (it is violated by the
Taylor or Pade approximation), the error is small for
small times, and the computation for long times is still
reminiscent via Eq. (1.6) of the exponential structure of
an element of the unitary group.

The answer to the second question has to do with the
problem of how to deal with many degrees of freedom.
This does not apply in the case of two nucleons treated as
elementary particles, but it applies to light heavy ions
treated as a Schrodinger system, and it applies to elemen-
tary particles treated in the language of field theory.
Then, the dimension of matrices becomes very large and
the second alternative gives us more advantages. It al-
lows procedures which are easily adaptable to use out-of-
core computer memory. Furthermore, involving only
mutually independent operations on matrix elements and
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the computation of matrix powers, it is appropriate for
vector computing. In our opinion, the second alternative
is also more suitable to the application of statistical
methods (Monte Carlo) than the first alternative. Sugges-
tions have been made as to how to apply the Monte Carlo
technique to scattering reactions. However, this is not
the subject of this paper and hence we do not further ela-
borate on it here.

II. HAMILTONIAN AND %AVE PACKET

We consider a two-nucleon system in the center-of-
mass frame. We take the nucleon mass to be
m =938.259 MeV/c . For sake of simplicity we drop the
spin. For the nucleon-nucleon interaction we take a phe-
nomenological potential. It is the separable Yamaguchi
potential Stted to the effective range parameters in the
singlet channel. The potential, being of rank 1 with an s-
wave form factor, is given by

v= Ix)~(xI,
&q I

I& =1/(q'+p'),
A, = —0.027 881 1 fm

P=1.12747 fm

(2. la)

(2.1b)

(2.1c)

(2.1d)

This potential has been taken from Ref. 3. We denote the
asymptotic Hamiltonian, describing the free motion, by
H and the full Hamiltonian by H =H + V. We will
only briefly discuss the construction of the finite-
dimensional approximate Hamiltonian H(N), which has
been described in Ref. 3. We introduce a basis set of ex-
pansion functions in Hilbert space. Our basis set is
characterized by the orbital angular rnomenturn quantum
numbers I and m and two approximation parameters, A
and X. A denotes a cuto8' in momentum space and N
denotes an equidistant partition of the interval [O, A] into
N subintervals. The expansion function has a

I q I

dependence given by the characteristic functions of the
subintervals and a q dependence given by the spherical
harmonics. Because the potential contributes only in the
s wave, we compute only s-wave scattering, hence N is
the dimension of the set of expansion functions. Let
P(N} denote the orthogonal projector onto this basis.
Then we define H(N)=P(N)HP(N) and analogously

H (N), the approximate asymptotic Hamiltonian. We
want to compute the approximate time evolution U(N, T)
and the approximate S matrix S(N, T); in particular, we
want to compute an S matrix element between asymptoti-
cally incoming and outgoing states given by wave pack-
ets. We have chosen a wave packet given by

P"(q)=P"(q) 1'oo(q ), (2.2a)

q~p
—q

iI) ( q ) =a. sin2
qup

—
qlo~

X 8(q„~—q }8(q—q„„), (2.2b)

(Q I
S(N, T) S

I
P"&-

&
gas

I
s

I gas &

(2.3)

becomes a minimum. Because this function can be com-
puted only when S, the exact S matrix, is known, auxili-
ary functions have been suggested, ' which determine a
value of T in the neighborhood of the optimal value of T,

where a is such that P" is normalized to unity. This is a
bell-shaped wave packet with a rnaxirnurn at
q,„=—,'( q~ +q,i„) and a width of q„;d ———,'(q„z —qi,„),
nonvanishing only between q~,„and q„. We have
chosen the following wave packet parameters: q&,„——1.0
fm ', q„=4.0 fm ', i.e., q,„=2.5 fm ', q„;d
= l. 5 fm . The corresponding expectation value of the
energy is ( E ) =296.231 MeV. The wave packet has con-
tributions between the energy E],„——41.4885 MeV and
the energy E„=663.976 MeV. The wave packet has
been chosen to cover a wide range of energies. Although
the potential is valid only up to about 100 MeU; this is of
minor importance here because we want only to compare
two methods, and we are not interested in comparison
with experimental data.

Now let us discuss the computation of U(N, T) using
Eq. (1.6), the value of the parameter T, the scattering
time, plays here a numerically important role. As has
been mentioned in Sec. I, for each scattering reaction
there is an optimal value of T such that the relative error
in the S matrix,

& fl(N, T)y"
I
H (N)

I
n(N, T)y &

—
& i})"

I
H'(N)

I
Iy' &

( P"
I
H'(N)

I
$")

where Q(N, T)= U(N, T) U (N, —T) is the approximate Moiler wave operator and

N T (0-
I
S(N T) Ho(N)S(N T)[H-O(N)] i-

(y I
s(N, T)

I
y" &

(2.5)

Neither of the functions requires the knowledge of the ex-
act S matrix. Both functions measure the violation of en-
ergy conservation of the approximate S matrix. It has
been observed that the minima (as a function of T) of

bs(N, T), A()(N, T), and bo(N, T) lie close together.
Hence in cases where the exact S matrix is unknown, we
use as a working prescription the scattering time T
defined as the first minimum of b, ( ) or ho (note that due
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sion of f (r) at r=0. We use the diagonal Pade approxi-
f [M M](r) which are defined as a rational func-

tions in ~ of degree M over M, such that the Tay lor ex-
pansion coefficients at r=0 of f(r) and f [M,M](r

th d r 2M. The Pade approximants have
been calculated from recursive relations which are dis-

d
' R f. 10. Then according to Eq. (1.6), the result-

ing mmatrix is squared n = log&(m ) times, to give
It is clear that errors in this procedure arise fromrom two
sources. The first kind is the error due to the Pade ap-

and the second one is the numerical error
d t the repeated squaring of matrices. T e re a ion

ec. III.between these errors wi11 be studied in Sec.

III. NUMERICAL RESULTS

6-
leap

O
CL 5-

Squofe

12 14

For the wave packet, given by Eqs. (2.2), we have com-
uted the exact S matrix element in a standard way fromputed t e exac ma

th Li pmann-Schwinger equation, giving e'n the reference
va ue S =0.976930+0.198743i. Then we have compu-
ed the matrix element of the approximate S matrix

(N T) b the strong approximation of Moiler wave
operators (SAM) using diagonalization of the appro '-

mate Hamiltonian H(N). In these calculations the cutoff'
parameter has been set to A=10.0 fm '. The results are

d
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h t (E)T»1, i.e., the time evolution is long.
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as a function of N over a fairly wide range of N values.
Now we want to compare the time evolution and the
matrix using the two alternative methods, i.e., y t e
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te acme oh P d' th d and squaring. The results for the time
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time evolution via diagonalization [Eq, en1.4), denoted by
Ud"s(N, T), and the time evolution via the Pade approxi-
mant and squaring [Eq. (1.6)], denoted by
Ui' q(N, T,M, n). The latter depends on the following ap-
proximation parameters: M t e oror er of the diagona
Pade approximants and n the number of squaring opera-
tions. We display the discrepancy

N

5 (N, T, N, n)= g i
U " (N, T),

i j =1

1 /2—Ur"'q(N, T,M, n), i
(3.1)

as a runct1on o af '
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internal precision of about 30 digits. One observes that
the discrepancy can be made very small, i.e., we obtain
numerical agreement up to half the number of digits of
internal machine precision. Comparing Figs. 2-4 one
observes that 5U(N, T,M, n) increases as a function of N,
due to the increased number of matrix elements summed
over. In order to estimate the average discrepancy per
matrix element one should consider 5U(N„T, M, n)IN
For the same set of parameters N and T we have comput-
ed the S matrix via Eq. (1.2}. We denote by S "s the ex-
pression obtained by inserting U "s for the time evolu-
tion in Eq. (1.2), and we denote by Sta'q the expression
corresponding to Up q. We display in Figs. 5-7 the

discrepancy

5,(N, T,M, n)= (
(y" ~S"'s(N, T)

—SP''q(N, T,M, n)
~

P~)
( . (3.2)

As expected, the discrepancy of the 5 matrix elements
lies in the same range of order of magnitude as the aver-
age discrepancy per matrix element of the time evolution.
In particular, comparison of Fig. 1 and Figs. 5-7 shows
that the discrepancy 5s(N, T,M, n) is several orders of
magmtude smaller than the error hs(N, T), i.e., the error
introduced into the time evolution by using a perturbed
generator is much larger than the discrepancy coming
from the two diFerent methods to compute the perturbed
time evolution. In this sense the two methods yield
equivalent results.

FV. CONCLUSIONS

of the time evolution, the Hamiltonian, can be perturbed
to a finite-dimensional Hamiltoman, and to each per-
turbed Hamiltonian corresponds a finite scattering time
T, for which the error in the perturbed S matrix becomes
minimal. %e have given methods to determine a 6nite
scattering time, based on the principle of minimizing the
violation of energy conservation in a scattering process.
In all cases considered, we 6nd a long scattering time T,
i.e., (E)T&&A, where (E) is the energy. We have com-
pared two ways to compute for a long scattering time T
the perturbed time evolution corresponding to the per-
turbed generator. One way to do it is to diagonalize the
finite-dimensional Hamiltonian and compute the per-
turbed time evolution in the eigenrepresentation. As an
alternative, we have suggested in this paper computing
the perturbed time evolution for a short time using Pade
approximants and obtaining the long-time evolution by
iterative squaring. The numerical results show that both
ways are equivalent. In our opinion the new alternative
oN'ers advantages in the following respect: %hen applied
to systems with a large number of degrees of freedom
(N-body with N ~ 3}which correspond to large matrices,
it seems to be easier to apply out-of-core routines and
vector computing. Also, because matrix multiphcation is
related to multiple integrals, which have been treated
successfully with Monte Carlo methods, it seems more
likely for the new alternative that statistical methods can
be merged successfully. This aspect would also be
relevant for cases with a large number of degrees of free-
dom.

In this paper we have compared computational
methods for the time evolution and the S matrix of a
Schrodinger system. In particular, we have considered a
two-nucleon system interacting via a short-range
Yamaguchi potential. We have shown that the generator
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