
PHYSICAL REVIE% A VOLUME 37, NUMBER 8 APRIL 15, 1988

Rnpid Collllllnnicnglons

Th«apid Communications section is intended for the accelerated publication of important new results Since manuscripts
sub mi«ed « th/s sect/on «e given priority treatment both in the editorial once and in production, authors s/iould exp/at'n in

their submittal letter why the work justifies this special handling A. Rapid Communication should be no /onger than 3' printed
page~ and must be accompanied by an abstract. Page proofs are sent to authors, but, because of the accelerated schedule
publication is not delayed for receipt of corrections unless requested by the autlior or noted by the editor

Strong sneezing in the Jaynes-Cnssssssings model

J. R. Kuklinski and J. L. Madajczyk
Institute for Theoretical Physics, Polish Academy of Science, 02 66S -Warsaw, Al Lotni. kow 32/46, Poland

(Received 14 December 1987)

Using the weB-known solution for a two-level atom interacting with a single mode of radiation
(Jaynes-Cummings model), we reanalyze the possibility of squeezing. We found that if only the
initial coherent state has a mean photon number exceeding 10 (for a resonant case) significant

squeezing can be achieved. Its strength can be arbitrarily large for increasing average photon
number. Finally, we solve our model in the situation when the em field is damped and analyze
the impact of damping on both squeezing and revival phenomena.

Squeezing phenomena continue to attract much atten-
tion. Especially squeezed states of light (e.g., states with
lower variance of an electric-field operator than the vacu-
um state) were investigated both from theoretical and ex-
perimental points of view (for a review, see Ref. 1). Re-
cently squeezing of light was observed in experiments.

The possibility of squeezing phenomenon for a single
mode of radiation interacting with a two-level atom under
the rotating-wave approximation (RWA) was analyzed
by several authors. A paper of Meystre and Zubairy
discusses squeezing in the Jaynes-Cummings model for
the resonant case when the electromagnetic (em) field is
resonant with the atom. They analyze the situation when
the initial state of radiation is a coherent state. However
their discussion is restricted to the case when the mean
photon number is smaller than 10. There they found that
squeezing does not exceed 209o.

Analyzing the time evolution of the system in the reso-
nant case when the mean photon number is larger
(np& 10), we have found that the squeezing effects get
stronger for large no It mea. ns that strongly squeezed
states may be obtained if only the initial mean photon
number is large enough. We present an analytic formula
describing squeezing in the asymptotic limit no

I

Considering a more general situation when the em field is
not exactly resonant to the two-level atom, we found that
squeezing effect can be even stronger out of resonance
than for the resonant case.

The Jaynes-Cummings model is one of the simplest
quantum-optical systems. On the other hand, to get a
more realistic physical model, several corrections have to
be taken into account. To get a more realistic picture we
solve the equations of motion when the em field is
damped. Analyzing those solutions we could find a range
of the damping constant for which revivals of atomic in-
version already disappear but squeezing still persists.

The Jaynes-Cummings model consists of a two-level
atom interacting with a single mode of radiation which is
nearly resonant with the atomic gap. The system's time
evolution is governed by a Hamiltonian (RWA):

H Jc toQS3+ (too+a)a ta+X(a tS +aS+ ) (1)
where a is the annihilation of the radiation mode and S—
and S+ are the standard atomic transition operators for a
two-level system (S3 S+S--S-S+).

The solution of the Schrodinger equation can be easily
evaluated. For b, 0 we obtain (time has been scaled in
units of I/X):

~ I/ (t))- y [cos(dn+ lt)a. +sin(i'n+ It)P.+i] i l,n)+ [cos(Jnt)Ps —sin(Wnt)ag-i]
~

—l,n),

where

a„-&l,n ) i/ro&, P„-(—1,n ( i/ro& [ ) i/ro&
-

) i/r(t -0))] .

I

ized electric field operator:

E -ae™+a~e (3)

Using this solution of the Schrodinger equation, we are
going to calculate mean value and dispersion of a general-

[The dispersion of an operator A is equal to
ct'(A) -(i/t [A'( i/r)

—((i/f ( A ) y&)'. ] For y-0 and
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tr/2, Es is proportional to standard in and out of phase
operators E;„c(a+at) and E,„t ic(a —at), respec-
tively.

Note, that for the pair of operators Es and E~+ t2 we
have ([E,,E,+.g2 I -2i),

a(Es)a(Es+,g2) ~ 1 . (4)

During time evolution our system exhibits squeezing
e.g. , for some p and t we have a(Es(t)) (1. Note that
because of a symmetry of HJc under transformation
S— S—e'~ a~ ae'~ we can restrict ourselves only to the
case of real a. Discussing the general squeezing ellipse for
a~aoe'~ (ao is real) we found that f(p) a(Es(t)) has
minima for p g and g+tr (and maxima for p g+tr/2
and g+3tr/2). It means that for real tz the in-phase elec-
tric field operator is the one with maximal squeezing. So
let us define ri(t) a(E&-o(t)) as a squeezing parameter.
We stress that our definition of the generalized electric
field ensures our dimensionless squeezing parameter rl(t)
to be normalized to 1 on vacuum.

First we analyze the time evolution of our system in the
resonant case (5 0), when the initial state is a coherent
state (more precisely ~ lento) ~ a) [cos(8) [ 1)+sin(8)
x

~

—1)]). The time dependence of the squeezing param-
eter ri(t) for different initial mean photon numbers no
(ns (lJrp ~

a ta
( 1ftnl) is presented in Fig. 1(a). The evolu-

tion of ri(t) has the same properties for all tto & 10. First
the dispersion increases, then for a period of time squeez-
ing appears and attains its maximum value [e.g.,
minimum of ri(f)) for a certain time t,q. Finally, for
t» tsq the dispersion ri(t) increases. The effect of maxi-
mal squeezing is increasing with no In Fig.. 1(b), the

dependence of ri(tsq) on n is plotted. We clearly see that
strong squeezing is possible if only the photon number of
the initial coherent state is large enough. On the other
hand, the Heisenberg inequality is far from being saturat-
ed, so these states of em field are not minimal uncertainty
packets.

In the asymptotic limit no ~ the dispersion rt(r) is
described by a simple formula (r t/(no)'t; for deriva-
tion see the Appendix)

tl(r) -1+—,
' r sin(r)+ [-,' r sin(r/2)1' .

Analyzing this expression we found that squeezing ap-
pears in the asymptotic limit periodically and its strength
tends to 100%. In Fig. 2 the evolution rl(r) is plotted for
tto 1600 in comparison to the asymptotic behavior.

The results stated above describe the case when A-Q,
8 0 and do not depend significantly on the change of 8
(8 0 corresponds to an initially fully excited atom, 8 tr

to atom in its ground state, etc.). Considering the non-
resonant case (has0), the situation is slightly different. In
Fig. 3 the maximal squeezing parameter tl(t,q) is plotted
versus h. W see that in the latter case the squeezing effect
can be stronger.

An interesting situation occurs when the em field in the
cavity is damped. Using a standard model of damping of
the em field, we obtain the following equation of motion
for the density matrix (Ref. 7; limit of zero temperature):

p i [p,H1cj+I (2apat —pa ta -tt tap) .

Although this equation is linear, it is not easy to solve it
for large photon number because of numerical restric-
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F16. 1. (a) The squeezing parameter rt(t) is plotted vs t for different average photon numbers (np 10,40, 100) (t is scaled in units
of 1/X). (b) The maximal squeezing parameter rt(t~) is plotted vs log~o(tto) (n is the initial average photon number and t is scaled in
units of Ifh, ).



STRONG SQUEEZING IN THE JAYNES-CUMMINGS MODEL

loge fq( T)l

2—

4.5—

4.0—

5.5—

2.5—

l.5—

15
1

20
I

25

I.O—

0.5—

FIG. 2. log~s[rt(r)l is plotted for tts 1600 (full curve) in
comparison to the asymptotic evolution log, [rt(r)] (dashed
line).
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FIG. 4. Time dependence of the squeezing parameter rt(t~)
fordiFerentdampingconstantsI ~ 0, I2 1/St~, 13 1/t~(tis
scaled in units of I/A, ). The initial mean photon number is

&o 4O.

tions. We solve the evolution using an approximation for
the "step evolution" operator U(ht) exp[(L„+Le)ht]

exp[(L„+Le)ht) ~exp(L&t)exp(Lo/5t), (7)

where Lop i[p,Hgcl and L„p I (2apat-asap-pata).
Such the approximation (the Trotter product formulas)
originates from the identity

Qu+8u) &A~~&8~s& (4,B)/2')'+ *

in the limit ht~ 0 (we may omit the commutator part).
Finally, we get

p„+i exp(Lgt)exp(-iHtgat) p„exp(iHtct5t),

where p„p(t nest). We check carefully the numerical
stability for ht ~ 0.

The evolution rt(t) for different damping constants is
presented in Fig. 4. When damping is increasing the
effect of squeezing is getting weaker and occurs for short-
er times. Note that when damping increases the mean
photon number in the cavity decreases. The result plotted
in Fig. 4 is similar to the situation presented in Fig. 1(a)
e.g., to different dependencies tI(t) for various initial pho-
ton numbers no. Comparing these two results we con-

elude, that decrease of squeezing in a damped cavity may
be viewed as a consequence of reduction of photon number
due to damping.

One of the characteristic features of the Jaynes-
Cummings model is that the atomic inversion (e.g., (S3))
undergoes damped oscillations with successive revivals. 9

In Figs. 5(a) and 5(b) we compare the atomic inversion
for I 0 and I I/8tz, respectively. We see that damp-
ing losses are destroying revivals in a cavity7 [see Figs.
5(a) and 5(b)]. We stress, that for this damping the
squeezing effect is still present (see Fig. 4). So we may
conclude that squeezing effect in the Jaynes-Cummings
model is more robust than revivals.

Summarizing our communication, we found that the
Jaynes-Cummings model, which is one of the simplest
quantum-optical systems, initiated by coherent em fields
gives strong squeezing of light. This squeezing
phenomenon seems not to be extremely sensitive to damp-
ing caused by imperfection of a cavity. Our results also
confirm that the long time-scale interaction of even arbi-
trary strong coherent em wave with matter cannot be
correctly described in the semiclassical approach.
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FIG. 3. The maximal squeezing parameter rt(t~) is plotted
for difFerent detunings (6 is scaled in units of X).

FIG. 5. Atomic inversion plotted vs t for (a) I 0 and (b)
I I/St~ (t is scaled in units of t/R. ).
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APPENDIX

The expression for the mean value of operators Ep and E$ have the form (p„e "'(np) "/n!):

&Ep& -jnpRe g p„ 1— tt +2
n~o n+1

]/2. II )/2

exp[i(in+1+in+2)t]+ 1+ tt +2
@+I exp[i(in+2 i—n+1)t]

r " r $ f/2"

(E(&-npRe g p„ 1— tl +3
n~ p n+1 exp[i(in+1+in+3)t]+ 1+ n+I

' 1/2

exp[i(in+3 —in+ l)t] &

(Al)

Re—g p„exp[2iin+ lt]+2(no+1) .
n 0

Now we will calculate the dispersion of Ep in the asymptotic limit np~ ee [e.g., neglecting in ri(t) all terms proportional
to 1/np, (1/np), etc.] using the stationary phase method to sum the series (we replace p„by a Gaussian distribution).
Note that both Ep and E$ exhibit collapses and revivals. Squeezing occurs in the region of the first collapse and may be
viewed as a consequence of a phase mismatch between the two components. To this end we obtain [z t/(np) 'l2]:

ri(t ) 1(2np+ 1){[1+cos(z+z/8np)e
' "']—e ' "'[1+cos(z+3z/8np)]I . (A2)

Keeping only terms of order 1 we obtain Eq. (5).
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