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The approach to equilibrium found recently by Georgallas [Phys. Rev. A 35, 3492 (1987)] is ana-

lyzed and compared w'ith previous work on this problem.

I. INTRODUCTION

In a recent paper Georgallas' considered the expansion
of an ideal gas initially compressed into a corner of a rec-
tangular box. He calculated the one-particle distribution
corresponding to this initial configuration and a special
velocity distribution (see item Sec. IV below) and found
that it converges (weakly) to a stationary distribution.
This decay, characterized by a 1/t law, was also found
for the expectation value of the position and the velocity
of the center of mass. Essentially the same problem has
been considered previously by several authors " none of
whom are mentioned in Ref. 1; also, these findings were
not related to the decay of the velocity autocorrelation
function which also has been calculated for this system
some time ago. ' The only two papers GeorgaHas cites
are that of Frisch on a diff'erent model (periodic bound-
ary conditions instead of walls) and that of Ford who
considers, besides one single anharmonic oscillator,
anharmonic chains which are nonintegrable and there-
fore of no relevance here.

The purpose of this comment is (i) to relate
Georgallas s work to previous investigations, (ii) to clari-
fy the meaning of "approach to equilibrium" for this and
other integrable systems, and (iii) to point out that the
only fundamental problem is to motiuate the choice of the
initial distribution function and to interpret the resulting
decay of expectation values.

II. DYNAMICS

Both in the title and in the introduction of Ref. 1,
Georgallas considers the expansion of a gas initially
compressed into one of the corners of the container. This
is a sequence of states, each characterized by the posi-
tions and the velocities of all the particles, starting from a
given configuration and some set of initial velocities. One

might argue that it is not possible to specify the initial
"microscopic" state completely (this point will be taken
up in Sec. IV below), but conceptually microscopic dy-
namics has to be fixed first before one can discuss the evo-
lution of certain "macroscopic" observables. For the sys-
tem at hand this dynamics is especially simple: The E
particles do not interact and are confined in a rectangular
box of dimension D, so the system decomposes into XD
noninteracting subsystems of degree one. Although,
strictly speaking, not Hamiltonian these one-dimensional
subsystems are known to be integrable, ' i.e., they allow
a description in terms of action and angle variables
( )

10, 11

(i) p &0, x E(O,L) a &O, a(mod 2n)C(0, n),
pL =an, x/L =a/tr

(ii) p &O,x E(O,L)~a &O, a(mod 2n )G( —n, O),

pL =a n, —x /L =—a/n .

In these variables the evolution of' the system appears as
free motion on a torus of dimension XD,

a, =ac+tot, co=t)H/Ba =an/mL .

In general, the orbit covers the whole torus uniformly (ir-
rational tori), but if one or more relations oF the form

gkrktot, ——0, rk rational, exist between the frequencies
the motion is restricted to a subset of lower dimension
(rational tori). Because of (1) and (2) rational and irra-
tional tori may be obtained here by varying the sides of
the box for fixed initial velocities. '

It should be noted that the model considered by Geor-
gallas (and others before) is not the only integrable
model of a gas. There are a few other possible forms of
the container (e.g. , a regular trigonal prism for D =3) or
the particles may interact through elastic collisions if
D =1 and all masses are equal. ' In all these models the
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existence of action and angle variables clearly shows that
the motion of the particles is almost periodic' so that all
the particles will return again and again to one corner of
the container if they were initially located there (this hap-
pens also under much weaker assumptions). This re-
curlence nlay be a mathematical proposltlon without any
practical relevance. ' In any case, there exists nothing
like an "equilibrium state" on a microscopic scale.

III. PHASE-SPACE FUNCTIONS

g(p„x, )= g„, g(a, z)exp[iz (a+tot)] . (4)

In this equation p, =p, [p, x], x, =x, [p,x], a=a(p, x),
a=a(p, x), co=re(a), and zCZ . The observable g is
constant in time if, and only if, it is an even function of p
and independent of x. All the conserved quantities can
be expressed as functions of the action variables a& or,
because of (2), of the frequencies co&(k =1, . . . , ND).
How a one-particle function (3) fluctuates around its time
average depends on the expansion coefficients g(a, z),
z+0, and on the frequencies co;. If N is large one might
conjecture that the Auctuations, to be seen, e.g., in a com-
puter simulation, are small for most of the time, so that
large deviations from the time average will persist for
very short times only. This would allo~ us to discuss the
"approach to equilibrium" in terms of the evolution of
observables. But whether or not such a behavior is actu-
ally found in a computer experiment depends on the ini-
tial data.

IV. INITIAI. CONDITIONS

It is generally agreed that the initial state of a many-
particle system cannot be 6xed uniquely. In Georgallas's
example the initial positions of al1 the particles are as-
sumed to be known but not their velocities. Some au-
thors' feel that these should be chosen from a Maxwelli-
an distribution. But why~ Such a distribution is found if

The evolution of the system will look more uniform if
only a small subset of the information needed to specify a
microscopic state is followed in time. The properties of
the system one is interested in are described by phase-
space functions. They change their value from G(P, X)
to G(P„X,) if the microscopic state changes from (P,X)
to (P„X,) during a period of length t; here
(P,X)=(x„.. . , p~) and P, =P, [P,X],X, =X,[P,X]
are the solutions of the equations of motion with initial
data P, X. Hobson and Loomis considered all moments

p„xI, (J,KENo, k =1, . . . , ND) from which all analytical
functions 6 and, by suitable limits, many others may be
obtained. The other authors discuss one-particle observ-
ables only, i.e., functions of the form

G(P, X)=(1/N) g,g(p;, x, );
examples are the spatial density, ' the number of parti-
cles to be found in the left half of the box, the velocity
distribution, ' or the number of particles moving from
the left to the right. The evolution of the functions g is
especially transparent if they are expressed in terms of ac-
tion and angle variables,

(i) the particles interact through elastic collisions, (ii) the
system is ergodic (hard disks or spheres, one-dimensional
systems with different masses), and (iii) the thermo-
dynamic limit is considered (otherwise it is a beta distri-
bution). The Maxwellian velocity distribution then
emerges as time average for one particle whose free (in-

tegrable) motion is stopped and reinitialized again and
again by the interaction with the other particles. The gas
models considered here have entirely difFerent properties,
so one has to look for difFerent reasons to motivate the in-
troduction on an initial velocity distribution and to speci-
fy its form. In their choice Hobson and Loomis refer to
the principle of maximum entropy, an idea especially ad-
vocated by Jaynes. ' According to this philosophy the
initial distribution is not related to the interaction of the
system with its environment; it represents nothing but the
observer's knowledge about the state of the system. For
Hobson and Loomis this is a generalized canonical distri-
bution since they assumed that only the expectation
values of total energy, total momentum, and position of
the center of mass are initially known. The initial distri-
butions used in Ref. 1-3, 5, and 6 may also be interpreted
in the sense of Jaynes. ' For instance, the uniform veloci-
ty distributions, chosen in Refs. 1 and 3 for mathematical
simplicity only, correspond to a situation where upper
and lower bounds are known for all the conserved quanti-
ties but nothing more.

V. EXPECTATION VAI.UKS

Once a distribution function F(P, X) is given one can
calculate the expectation value

(G), = f fdPdXF(P, X)G(P, [P,X],X, [P,X]) (5)

of the observable G(P, X) as a function of time. If we
consider an observable g (p&,xi, ) depending on one degree
only the evolution of its expectation value is determined
by the reduced distribution f(pi„xI, ) obtained from
F(P,X) by integrating over the remaining degrees. If F is
of the form U(P)5(X —Xo) and U an even function of the
momentums pt„ the reduced distribution, expressed in ac-
tion and angle variables, has the form u(az )[5(a
—ao}+5(a+ao)]. Using the corresponding representa-
tion of g, Eq. (4), and the fact that u (ai, ) =u (or& ) [cf. Eq.
(2)] we see that the evolution of the expectation value de-
pends on the asymptotic form of the integrals

I, ,[u,g] = f dcog(co, z)u (co) exp(icozt )

fo«~DO For a moment g(p, x)=p x that is not con
stant in time g(co, z ) =~ cgx~0 for z~0 so the power ~J
a d the one-p«ticle dis«ib«ion u(co) determine how the
expectation value of the moment tends to a constant
value {if it converges at all). (i) For the canonical distri-
bution u ~ exp( —ye@ ), y&0; I -t exp( —5t), 5&0.
(ii) For the microcanonical distribution'
u ~ [1—(co/c } ] for co &c, u =0 for co & c, c =O(ND);I —t ' " . (iii) If a canonical distribution is
chosen for each degree ' ' one gets the same results as
for (i). (iv) For the uniform distribution for each de-
gree' u =const for co H (co', co" }, u =0 otherwise;
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I -t '. (v} For the microcanonical distribution for
each degree ' u cc 5(ta —cao}; I periodic. These
different "approaches to equilibrium" can be consistently
interpreted following Jaynes's argumentation, " like the
evolution of the entropy the convergence of these expec-
tation values simply shows that our knowledge of the in-
stantaneous state of the system decreases in the course of
time if it is incomplete already in the beginning. As em-
phasized by Frisch, it is here the spread in the initial ve-
locities and the finite volume of the system that makes it
more and more diScult, as time proceeds, to predict the
positions of the particles and the direction of their veloci-
ties.

But where does our information about the initial veloc-
ities come from'? Or, if we reject Jaynes's reasoning,
which physical interaction of the system with its environ-
ment produces these initial data in a similar way as

Maxwell s velocity distribution is generated for one parti-
cle by its collisions with the other ones'

VI. CQNCLUSION

In an integrable system all observables are almost
periodic functions of time. Irreversible behavior is only
obtained if an observable is averaged over an infinite set
of invariant tori with dN'erent frequencies. ' %'hile
averaging seems to be necessary because of the great
number of degrees it is by no means obvious how to do it
in detail. This point has to be clarified first since the
long-time behavior of expectation values varies with the
way the individual tori are weighted in the average.
Georgallas adds one more example to the literature
without elucidating the physical reasoning behind his ap-
proach.
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