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Correlation has been treated relativistically by solutions of the pair equation, an inhomogeneous
differential equation in two dimensions. The equation is solved within the no-(virtual-)pair ap-
proximation and is formally correct to order a Ry. Continuum dissolution is rigorously avoided
by the use of projection operators. Correlation is treated starting from a suitable choice of a fully
relativistic one-particle description of the atom. The solution of the equation involves additional
diSculties as compared with the nonrelativistic case, which are discussed, Second-order energies
arising from electrostatic and magnetic correlation have been calculated for the 1s' ground state
for a series of heliumlike systems (Z =2-50). The starting point has been either hydrogenlike
wave functions or Dirac-Fock orbitals. Comparison has been made with other methods, showing
good, sometimes excellent, agreement, and trends in the isoelectronic series are discussed. By
iterative solutions of the exact pair equation a nonperturbative treatment of the two-body part of
the static Coulomb interaction is obtained. This procedure has been used for s excitations.

I. INTRODUCTION

Theoretical results are often needed in order to extract
interesting physics from experiments. In atomic physics
this applies, e.g. , to parity-nonconserving phenomena,
hyper6ne structure, or the physics in highly ionized
atoms. To get accurate predictions it is necessary to in-
clude also the correlation between the electrons in the
calculation. If atoms with large Z values are considered
a relativistic treatment is essential also for the correla-
tion.

%hen nonrelativistic many-body procedures are ex-
tended to the relativistic case special care must be taken
when performing the infinite sum over excited states,
which, implicitly or explicitly, has to be included when
second or higher corrections to, e.g. , the energy are con-
sidered. The Dirac equation provides both positive- and
negative-energy solutions and a state of two bound elec-
trons is then formally degenerate with an infinite number
of states where one electron is in the negative continuum
and the other in the very high positive continuum. In
this picture the bound state should then be able to au-
toionize. ' However, there is an extra boundary condi-
tion added to the equation which prevents such transi-
tions; the negative-energy states should be considered as
Sled under normal conditions. This additional con-
straint must be kept in mind when dealing with the
negative-energy states. As long as only one-particle
equations are considered this is no problem; both
positive- and negative-energy states will be correctly
treated when, e.g., the Dirac-Fock equation is solved.
This is connected to the fact that the one-particle Hamil-
tonian itself defines the meaning of the words positive
and negative energy, as discussed in Ref. 3. %hen, how-
ever, real two-body equations are considered it becomes
important to be able to distinguish positive- and
negative-energy states so that the negative ones could be
treated as already occupied. The contribution from the

negative-energy states, i.e., from creation of virtual
electron-positron pairs, is, however, very tiny and may
in many cases be neglected. This is the so-called
no-(virtual-)pair approximation. In this approximation
the sum over intermediate states is restricted to those
with positive energy.

If a basis set consisting of eigenfunctions to the one-
particle Hamiltonian in question is available it is no
problem to distinguish between states with positive and
negative energy and they can both be treated in a correct
way, as have been done in a number of works,
although most calculations stay inside the no-
(virtual-)pair approximation. When, instead, correlation
is treated by solving inhomogcneous di8'erential equa-
tions, pair equations, where the resulting pair function
includes only an implicit sum over higher states, this
separation of negative-energy states from positive ones
becomes more troublesome.

This problem can be solved by the use of projection
operators, which project out positive states, but give
zero when working on a negative-energy state. To apply
projection operators is, however, not a trivial task. Free
particle projection operators can be given a closed
analytical form and are then possible to use. Such pro-
jection operators have been applied in practical calcula-
tions. ' '" However, the use of projection operators not
corresponding to the one-particle Hamiltonian actually
used in the calculation will, in fact, introduce negative-
energy states to the Hamiltonian of interest, rather than
remove them as discussed in Ref. 3 and showed in prac-
tice in Ref. 10. This can be understood by noting the
simple fact that in order to express positive-energy states
corresponding to one particular Hamiltonian, in a basis
set defined by another Hamiltonian, both positive- and
negative-energy states of the latter have to be used. It is
therefore important to Gnd projection operators which
de6ne states as having positive or negative energy in the
presence of a realistic potential, which is at least close to
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that actually used in the calculation. In particular, it is
important to take the singularity at the nucleus into ac-
count.

Projection operators of this kind, working in the field
of a one-particle potential of free choice, have been set
up in Ref. 12 and applied to the relativistic pair equa-
tion. The resulting equation is correct to order o. Ry
and is free from any problems with continuum dissolu-
tion. This has been discussed in detail in Ref. 12. A
brief review together with preliminary results is given
also in Refs. 13 and 14. The details of the projection
will not be discussed here; only a short summary is given
in Sec. III. In Sec. II the pair equation and the projec-
tion operators are presented.

The properties of the pair equation will be discussed
in some detail in Sec. IV. To a large extent the equation
is treated in the same way as the nonrelativistic pair
equation' was earlier, but certain operators in the rela-
tivistic equation need special care. Results for two-
electron systems in the range Z =2-50 are given in Sec.
V. Some comments on the solution procedure are given
in the Appendix.

The procedure developed in the nonrelativistic case,
where couplings between difFerent excitations in higher
orders are treated self-consistently by iterative solutions
of the pair equation, leading to a nonperturbative treat-
ment of the Coulomb interaction, can be applied also in
the relativistic case. The difFerence will only be a non-
negligible increase in complexity and computing time.
In this work, however, mainly the first-order pair equa-
tion has been solved, giving second-order correlation en-
ergies for the electrostatic and the magnetic interactions.
In the latter case the pair equation is still solved with
only electrostatic terms included and the magnetic in-
teraction is applied as a perturbation giving one order in
each interaction. It is also possible to set up a pair equa-
tion for the Breit interaction, ' but this more complete
approach will be left for future investigations. Retarda-
tion terms are not considered in this work. For 1s s
excitations the pair equation has been solved to all or-
ders, indicating the possibility of a nonperturbative pro-
cedui e.

II. THE EQUATION FOR A TWO-ELECTRON
SYS'XKM

An "exact" two-particle wave function [inside the
framework of the no —(virtual-)pair approximation] for a
heliumlike system satisfies the equation

H' P(1,2) =[ho(1)+ho(2)+ V,z]'P(1,2)=E%'(1,2),

where a suitable decomposition of H has been done and
ho denotes, e.g., the relativistic hydrogenlike Hamiltoni-
an, which is known to satisfy

ho4o= &ofo (2 2)

%(1,2) can now be divided into an antisymmetrized prod-
uct of one-particle wave functions Po and a deviation
p(1,2) from that first approximation. The so-called pair
function p is required to be orthogonal to fo, i.e., inter-
mediate normalization is used. We can then write

'p(1, 2) = [$,(1}gb(2)+p(1,2) ], (2.3)

where the curly brackets denote antisymmetrization.
Equation (2.1) now gives

H+(1, 2)=[ho(l }+ho(2)+V,2][i)'r, (1)pb(2)+p(1, 2)]

where

=(s, +sb+&E)[g, (I)pb(2)+p(1, 2)] (2.4)

&E=( [f,(I)gb(2)] I Vi2
I [1(,(1)1{b(2)+p(1,2)] )

as can be seen by taking the scalar product of (2.4) with
([g,(1)pb(2)]

I
and making use of the intermediate

normalization as well as of (2.2). We will, however,
choose to work with non-(anti)symmetrized wave func-
tions and write then

[ei+s2 —hii(1) —ho(2)]p, b(1,2)

I 4, (I }itd(2)+p,d(1 2) &(f, ( I)1(d(2)
I

V, 2 I 1{,(1)1(b(2)+p,b(1,2) ) .
(2.5)

= V„ I p, (1)gb(2)+p,b(1,2) )—
cd =ah, ba

By keeping only 6rst-order terms, a lowest-order pair equation is obtained as follows:

[si+s2 —ho(1) —ho(2)]po(1 2)= Viz I f.(I)A(2) &-
cd =ah, ba

(2.6)

Equation (2.6) is a pure two-particle equation; the gen-
eralization to the many-body situation is in lowest order
given by [see Eq. (13.102) in Ref. 16]

= V, 2 I
gb &

—orthogonality terms . (2.7}

exc

[s.+sb —h&(I) —h.(2)]p.b(1 2) = g I
-)(-

I V»
I
a»

rs

Here the closure relation has been used to remove the
infinite sum over excited states and the orthogonaliza-
tion is performed to all occupied states. Both (2.6) and
the last expression of (2.7) contain thus an implicit sum-
mation over nonoccupied states. Since (2.7) is an equa-
tion for the many-body situation, ho denotes here a one-
particle Hamiltonian suitable for that case, e.g., the
Dirac-Pock Hamiltonian.
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A. Projection oIN:rators

(2.8)

This equation consist of four coupled first-order
differential equations and both p(1,2) and the right-hand
side of (2.8) are spinors consisting of four spatial com-
ponents. The projection operator is written

Q~ Q„R+
+ R Q R Q R (2.9)

+ + + + +.
where E. + is given by the implicit relation

and

1
[ccr p RV —R (ccr p)—R ]

2m@ —V +

Q2+ ——(1+R+R+}-' .

(2.10)

(2.11)

These equations are given and discussed in more detail
in Refs. 12 and 21. The operator 8+ has the property
of giving the small component 6 when operating on the

The nonrelativistic pair equation, obtained by using

ho ——hs, h, the Schrodinger single-electron Hamiltonian,
has been used for a long time to treat correlation effects
in connection with, e.g., energies, ' ' hyperfine struc-
ture, ' and isotope shifts, ' ' mostly for light elements
(Z &37). The relativistic counterpart is obtained by us-

ing ho=IiD, the Dirac Hamiltonian. Vl2 represents the
electrostatic interaction 1/r, 2 (or in a more complete ap-
proach the full Breit-Coulomb interaction' ). When
starting from hydrogenlike orbitals both single and dou-
ble excitations caused by 1/r» will be included in the
pair function. If, instead, Dirac™pock orbitsls are
chosen as the first-order approximation only double exci-
tstions will be included in 6rst order since the one-body
part of 1!r,2 is already taken into account in the orbit-
als. In order to restrict the inclusion of intermediate
states to those with positive energy, V» must in the rela-
tivistic case be surrounded with projection operators A, +.
The implicit summation over excited states wiB other-
wise automatically include even negative-energy states
since only a summation over all states fulfills the closure
relation. %'e write then

[e, +s„—hD(1) —hD(2)]p(1, 2)

=A() )+)(2)+ ab) —z cd) (cd ab) .

large component F of a solution to the Dirac equation
with positive energy. E and 6 denote two-component
spinors of Pauli type. The R + operator, in the following
written simply as R, cannot be expressed in closed form,
but keeping only the first, dominating term gives

1 1
Ro —— 2CT P,

2m@ 1 —V/2rnc
(2.12)

which is a good approximation at least for neutral snd
medium ionized systems for most elements as investigat-
ed in Ref. 13. (For the outermost part of the wave func-
tion the approximation affects the result of R with about
4% for the ls state of hydrogenlike cesium. Closer to
the nucleus where the potential is very large and nega-
tive the efFect of the approximation is much smaller. )

(e, +eb —Vl —V2)p —c(o"p)ip —c (cr p)~ =PLL, SL . I.S LI

(s+,eb V—, —V, +2mc')pLS —c(o p)g $$

(o.p) LL P LS

3.1

(e, +eb —V, —V&+2mc )p c(cr p—)lp

( )
$$ P SL

(e, +eb —V, —V2+4mc'}p c(a p)lp—

( .p) SL PSS

where pLL pL~ p p~ denote the four components of
the projected right-hand side.

This set of equations can easily be transformed into
the following two coupled second-order di8'erentisl equa-
tions by using the expressions for p~ snd p from the
second and third equation in the first and fourth equa-
tion, giving a large-large snd a small-small equation
(from here on we have used atomic units
m = l, e =1,4mEO ——1, Pi=1, 1/c =a):

III. THE REI ATIVISTIC PAIR EQUATIGN

Equation (2.8) is the starting point for the calculation.
The projection operators on the right-hand side assure
that the two-body potential is not mixing in any errone-
ous states. However, as can be seen from the left-hand
side, (2.8) has, in addition to the solution corresponding
to the given right-hand side, an infinite number of homo-
geneous solutions. These can be avoided by making use
of the R operator (2.10) as will be indicated below.
Writing (2.8) more explicitly gives

[so+eh Vl V2 [(o P)i~oh«p)i+«. P)z&.b«.p)2]In

=P +R lP +R 2P + 2[(o"P)lB,b(o"P)2+(o".P}28,b(o"P)l]P
I.L f SL f LS (3.2)

2

C
"+ Ie. +eb —Vi —V2 —)[«'P)i&.b«p}i+(4 P4&.b«p}2]IP"

2
0,'

p) +(o.p) g (o.p) y + (P +R tP—SL+R PtL—s) (3 3)
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For convenience we have introduced

8,b
——[1+(e,+sb —V& —V2)/2mc ] (3.4)

When calculating matrix elements using (3.6) the ap-
proximation a8ects the result for both diagonal and off-
diagonal operators in order a Ry.

2 —IR =(e, +sb —Vt —Vz+2mc ) co-p= B—,bo"p . IV. THE LARGE-LARGE PAIR EQUATION

p =Ro(2)p +0 (a ),

p =Ro(l)p +O(a ),

p =Ro(1)R (2)p +O(a ) .

(3.6)

8 is to order o. equal to 8, and also to Ro, the 6rst term
in the expression for R, given in (2.12).

The projected components of the right-hand side are
easily obtained from the unprojected right-hand side by
using the projection operator (2.9). As is shown in detail
in Ref. 12 the e8'ect of the projection operator, when
dealing with a diagonal operator such as the static
Coulomb interaction, will not enter until order a Ry.
In this order also efFects arising from creation of virtual
electron-positive pairs will enter and for the purpose of
getting the correlation correct to a Ry it is then
justi6ed to use the unprojected right-hand side.

The coupled system of (3.2) and (3.3) will, of course,
have the same homogeneous solutions as (2.8). As dis-
cussed in Ref. 12 these solutions can be avoided by in-
voking the 8 operator and using the expression

pss=R iR2p =Ro(1)RO(2)p

rather then the solution from Eq. (3.3) for p on the
right-hand side of (3.2). As discussed in Sec. II, the R
operator gives the small component when working on
the large component of a positive-energy state. A possi-
ble homogeneous solution to (2.8) will consist of one
electron in the negative continuum, e= —Zrnc, and one
in the very high positive continuum, e. =2mc . For such
a state (3.5) will not be a good approximation at all. In-
stead of pss the relation will give a result of the order of
-0, p

~ and since the p term is crucial for the cancel-
lation of the terms on the left-hand side, producing the
homogeneous solutions, these undesired solutions will no
longer be possible. In this way also a simp1ified solution
procedure is obtained, since only the large-large equation
(3.2) now has to be solved and the other thrtIe com-
ponents could be given as

A. The radial large-large equation

Since the right-hand side of (3.2) is easily decomposed
in radial and angular parts using

k

= g ( —1)~Cq(1)C" v(2)
r12 k P)

where

C"(i)=[4nl(2k+ I)]'~ I' (&;,P;)

are the Racah tensors, the pair function can be ex-
pressed as

p.b y —y p(k, aa~~, ir, )G"(r,s, a, t),

where

p(k, ab ~a„a., )

T) 1'2

p (r), r2)(X))„(Xg)„

lp (r&, r2)(X&)„, (X2) „, ,
ip (r &,r, )(X, ) „(X2)„

—p (r&, r, )(X, ) „(X2) „

(4.1)

z = + (j+ —,
' ), j= I +—,

' .

6 is represented by the angular momentum graph in
Fig. 1 and can be evaluated by standard techniques. '

Here X is a vector-coupled function of a spherical har-
monic and a spin function. 7 is given in the ls conven-
tion p=

I
!sjm ). We now let p represent the radial func-

tion of the right-hand side of (4.1). After working out
the expressions cr pB,I, cr p, using the operator identity,
(o A)(o B)=A B+io"(.AXB), and dividing both
sides with 8,b, given in (3.4), the large-large pair equa-
tion, (3.2), can be written

1
2 K K 2

(ca+eh Vf Vp)p + (&]+1)+ ——(F2+I) p + (e, +sb —V, —V2) p
2 LL 2 LL

Br/ r& Brp r2 2
I

a2 ~vi a+
g ab

8V2
— + —(~, + I)+

Br2 Br2
(~,+ I) p"

Bf'2 I'2

—&.b'-,'[(o p)&&.b(o p4+(o p)2&.b(o p)i]RO(I»0(»p

pLL Q

2 Br
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FIG. 1. Angular momentum graph for 6 (r, s, a, b). Each
vertex represent a 3-j symbol and the sign at the vertex tells if
the angular momenta are to be read in positive or negative

direction. Summation is implied over m values of internal

lines. For further details see Ref. 16.

The last two terms on the left-hand side are obtained
from the last two terms on the right-hand side of (3.2) by
the use of (3.5). The equation resembles the nonrelativis-
tic pair equation. Written in this form the first line, ex-
cept the last term, is identical to the nonrelativistic left-
hand side. In addition there are the o. terms, which will

vanish in the nonrelativistic limit. The 6rst and third
term on the second line of the left-hand side of (4.2) are
terms corresponding to the Darwin term in the Pauli ap-
proximation. The second and the fourth terms on the
same line are the well-known spin-orbit interaction. On
the right-hand side, terms due to the spin-orbit coupling
for one electron moving in the field from the other elec-
tron are recognized,

0!
2 Br)

when the approximate R operator Ro [see (2.12)] is used
to obtain p, p and p from p, and when the projec-
tion operators are applied. Eo is also a better approxi-
mation of R than the corresponding "Pauli form, "
since the denominator in (2.12), which includes the nu-
clear potential, ensures the inclusion of the dominating
parts of relativistic corrections of orders higher than
(az) Ry as discussed in Ref. 13. That Eq. (4.2) is not
equivalent to a Pauli approximation is in particular man-
ifested by the absence of 5 functions and by the less
divergent form of all the relativistic operators when
smoothed by the 8 functions close to the nucleus. Fully
relativistic one-particle orbitals are also used as the
lowest approximation, which means that the electron-
nucleus interaction and the part of the electron-electron
interaction which can be described by single excitations
are treated without approximations (within the frame-
work of the Dirac equation). The correct treatment of
the electron-nucleus interaction is especially important
since terms of high order in a, accompanied by the nu-
clear potential, sre not necessarily "small" close to the
nucleus due to the singularity of the nuclear field. The
difference between the results obtained with (4.2) and us-

ing the Pauli approximation can be viewed in Fig. 2.

C. The existence of a p~p& tern

The a term on the first line of (4.2) and also the terms
on the last line of the left-hand side take care of the ki-
netic correction in the relativistic case and have thus an
effect similar to that of the p term in the Pauli approxi-
mation. A closer i.nvestigstion of the terms on the last
line of the left-hand side shows that these are not
without complications,

0,7

a 1 . 1
p p+~~. p xp

4

(4.3)

where the erst term includes a two-particle Darwin-like
term, similar to the Darwin-like term due to the one-
particle potential on the left-hand side. The second term
is the spin-orbit term just mentioned. [ln (4.3) the or-
thogonalization term in (2.8), implicitly present in I'
has been omitted for simplicity. j

It may be noted that the second and third terms on
the right-hand side of (4.2), originating from the large-
small and smaH-large right-hand side, include derivatives
of a cusp, since there is a cusp in r", /r"+' for r, =rl
The derivatives are then together forming an even
steeper cusp. In order not to lose numerical accuracy
these derivatives should be carried out with some care.

B. Comparison with the Pauli approximation

Even if the relativistic terms in (4.2) are slightly simi-
lar to the operators in the Pauh approximation (see p.
181 in Ref. 22), the only approximation made here is

0,6-
crt

0,5-
N

0,4 -)

0,3
1000

Pauli approximation

2000 3000
Z2

FIG. 2. Relativistic contributions to the correlation energy,
obtained with hydrogenlike orbitals for Z=2 —50 (see Table
II), divided by Z and plotted against Z . A comparison is
here made between the calculation performed by Johnson and
Sapirstein (Ref. 9) and this work. The result obtained with the
Pauli approximation, i.e., including only a Z terms, such as
the value extracted from Pekeris (Ref. 24), is given by the line
parallel with the x axis. The curves obtained in this work and
in the work by Johnson and Sapirstein should both intersect
the y axis at the Pauli value. The slope of the curves is, for
small Z, given by o, Z terms and the bending is the result of
terms of higher orders of aZ.



NUMERICAL SOLUTION OF THE RELATIVISTIC PAIR EQUATION

8,&
'-,' [(o"p) i8,& (~ p), + (o"p),8,&

(o"p ), ]Ro(1)R,(2)p

=a 8,i,
'

—,'[(o"p),8,&(n.p)2+(n p)z8, &(n.p), ]8,82(cr p)&(a"p)~

8,8, ——(~,+1)
4 BT) P]

K2——(rc2+ 1)
Br2

Kp

+ 8, [8,8;,'[(~.p) „8., ]+2[(~ p) i.8i]I(~ p)» ——,(~2+
8 2 1 ab

Brp I'i

8, [8z8,t, '[(cr p)z, 8,~]+2[(cr p)2, 82]](o"p)2 z
——z(&i+1) +0(~ ) p8 (4.4)

where

Q8;= 1+ V (4.5)

V. RKSUI.TS

A. Hydrogenlike orbitals

%hen starting from hydrogenlike orbitals the zeroth-
order Hamiltonian contains no interaction between the

The commutators with 8; or 8,& add an extra factor
%'e now have, in addition to the second-order

derivatives, already present at the left-hand side of (4.2),
a cross-derivative term originating from p&pz. It may be
tempting to try to neglect this term in the first approxi-
mation and then solve the equation again with the
cross-derivative term on the right-hand side applied to
the previously obtained solution. That is, however, not a
workable method. The right-hand side has a cusp on the
diagonal, r, =r2, and the leading derivative will have to
reproduce this behavior. Neglecting the cross-derivative
term means that the ordinary second-order derivatives
on the pair function will represent a cusp and any at-
tempt to perform a second derivative once more will
lead to a 5 function. If, however, the equation is really
solved with this cross-derivative term on the left-hand
side, the ordinary second derivative and the cross-
derivative term together will represent the cusp and no 5
function will show up. In the preliminary calcula-
tions' '" an approximation was done for this term and
the remaining part was treated as a first-order perturba-
tion. The whole term was then included in the second-
order energy, but a part of it was missing in the con-
struction of the wave function. In this work, however,
the whole term has been included in the solution of the
pair equation.

To solve the equation, the solution procedure
developed for the nonrelativistic pair equation' was ap-
plied, although some nontrivial modifications were done
to include the cross-derivative term discussed above.
The difFerences compared to the nonrelativistic treat-
ment are described in the Appendix.

electrons, and the pair equation (2.6) is used with V,2

representing the full interaction 1/r, 2. In first order the
pair function will consist of the first ladder diagram on
the right-hand side in Fig. 3.

If we instead solve the all-order pair equation (2.5),
then all the diagrams in Fig. 3 will be included. This
solution can be obtained iteratively by adding terms in-
volving the previously obtained solution to the right-
hand side and solving again until convergence. In this
work this is only done for s excitations, which means
that all the intermediate states are restricted to s states,
while in a complete calculation all partial waves should
be allowed to mix in higher orders.

Table I shows the second-order contributions from
di6'erent excitations for Z =2 and Z =10. For Z =2 the
I-extrapolated result for the electrostatic correlation
agrees well with both the second-order values from
Johnson and Sapirstein, obtained with a relativistic (rel)
[no-(virtual)-pair] method, and with the result from
Pekeris. " Pekeris's values are obtained using
Hylleraas-type "exact" wave functions for the nonrela-
tivistic (nrel) part and the contribution from the Breit-
Coulomb operators in the Pauli approximation (p. 181 in
Ref. 22) are then added as a first-order perturbation.
Since this is done for Z =1-10, the values can be fitted
to a Z-expansion formula ' ' in order to extract the
second-order relativistic energy. The relativistic correc-
tions thus obtained are the contributions from the Breit-
Pauli operators ' which depend linearly on Z .

I'E ]4 I"IL iE ii

)t, i( i(

FIG. 3. Diagrammatic representation of the all-order pair
equation (2.5). A line with double arrows represents a valence
orbital and lines with single arrows excited orbitals. The hor-
izontal line represents the Coulomb interaction. The pair func-
tion p,b is represented by the diagram on the left-hand side.
The first-order pair function is given by the 6rst diagram on
the right-hand side.
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The relativistic corrections to the second-order energy
has the following form:

bE„,=a(aZ) +b(aZ) +

and only the first term in (5.1) can be obtained from a
calculation based on the Pauli approximation. Although
the pair equation (4.2) is only rigorously correct to order
(aZ) Ry it is not a Pauli approximation and it should
be emphasized that a large part of higher-order relativis-
tic corrections are included as discussed in Sec. IV 8 (see
also Fig. 2).

For low Z the relativistic correction obtained from

Pekeris, the first term in (5.1), should be very accurate
but already for Z =10 it may be important to use the
proper relativistic one-particle orbitals when the
Coulomb interaction is evaluated. This is probably the
reason why both our calculation and the work by
Johnson and Sapirstein show a larger relativistic shift
than that obtained by Pekeris. This difference is en-

larged for higher Z as seen in Fig. 2.
For 1s ~s excitations also the all-order result is

given in Table I, indicating the size of the relativistic
corrections in higher orders. It is seen that higher-order
contributions reduce the relativistic shift. Since relativ-
istic effects from s excitations are lowering the energy in

TABLE I. Second-order correlation energies, obtained with hydrogenlike orbitals for Z =2 and 10,
given in units of 10 a.u. The values in this table are obtained after extrapolation using three grid
sizes.

Z=2
Electrostatic

rel rel-nrel'
Magnetic

Z =10
Electrostatic Magnetic

Second-order
ls to s

P 1/2
2

P 3/2

d 3/2
2

d S/2

f5/2

f7+
g V/2

g 9/2

~9/2

~ 2
1 11/2

~13/2
~ 2J 13/2

J 15/2

k15/2
2

I 17/2

t 19/2
2m 19/2

~ 21/2

Total
Extrapolation

Erel Enrel
b

All order
ls to s

Contributions from
higher orders

ls to s
Erel Enrel

—125 356.0
—8828.3

—17 664. 1

—1561.0
—2343.5
—461.2
—615.7
—180.1
—225.5
—83.8

—100.8
—44.0
—51.5
—25.2
—28.9
—15.5
—17.5
—10.0
—11.2
—6.8
—7.4

—157 637.7
—1S7681

—157 681.3
—157 681.5

—15
—14.9

—129049.5

—3693.5
1.4

—22.3
3.4

—0.7
1.4
0.1

0.6
0.1

0.4
0.1

0.2
0.1

0.1

0.1

0.1

0.1

0.1

(0.1

0.1

g 0.1

& 0.1

g 0.1

—68.3
—22.0
—23.6
—6.3
—5.1

—2.9
—2.4
—1.7
—1.4
—1.1
—0.9
—0.8
—0.7
—0.6
—0.5
—0.4
—0.4
—0.4
—0.3
—0.3
—0.3

—140.4
—146.

—54.7

13.6

—125 896
—8747

—17 681
—1529
—2342
—446
—613
—172
—223
—79
—99
—41
—50
—23
—28
—14
—17
—9

—10

—158015
—158065

—158 038
—1S8083

—402
—372

—126 441

—1706
—542
—587
—151
—125
—69
—57
—39
—33
—24
—21
—16
—15
—12
—11
—9
—8
—7
—6

—3436
—3531

'The comparison here is done with the nonrelativistic values obtained by solving the nonrelativistic
pair equation using the same grid size and extrapolation procedure, which gives —157666& 10 a.u. ;
an "exact" second-order nonrelativistic value should be —157666.4& 10 a.u. (Refs. 29 and 30}.
Pekeris, "exact" nonrelativistic wave functions, relativistic corrections added as a first-order pertur-

bation (Ref. 24). The second-order result is extracted by fitting the result of Pekeris (Z =1—10) to a
Z expansion.
'Johnson and Sapirstein, piecewise polynomial method (Ref. 9).
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second order, while contributions from higher partial
waves go in the opposite direction, it is possible that the
mixture between di8'erent partial waves in higher orders
will change the behavior of the relativistic corrections
from these orders considerably.

Magnetic correlation is also given in Table I. These
values are obtained by the use of pair functions to calcu-
late the so-called Gaunt term ' from the Breit interac-
tion,

aI. aj

but neglecting the retardation term, which is also of or-
der a Ry but has been found to be an order of magni-
tude smaller. The second-order magnetic results in
Table I are one order in electrostatic and one order in
magnetic interaction, while the all-order result is of all
orders in Coulomb interaction but still only one order in
the magnetic part. The diagrams included are illustrated
in Figs. 4(b)-4(d). It is not possible to separate the mag-
netic and retardation terms, given together in Ref. 28,
from the results given by Pekeris. " However, the
second-order magnetic interaction given in Table I
agrees within a few percent with unpublished results
from Johnson and Sapirstein.

Table II shows the total second-order energies for
Z =2-50. For Z =2-30 l values up to l =9 were in-
cluded and the result was extrapolated. The extrapola-
tion afFects the results with three to four units in the last
figure. For Z =35-50, i values up to 1 =5 were includ-
ed and the extrapolation accounts for 10-13 units in the
last digit, with a possible uncertainty of one to two units.
For higher Z, larger than 20, our values show a devia-
tion from the result of Johnson and Sapirstein by
6-S%%uo of the relatr vistic corre'ctions. A closer investiga-
tion of this discrepancy is shown in Fig. 2, where the rel-
ativistic corrections divided with Z are plotted against
Z . A pure a Z contribution, the first term in (5.1), as
obtained when applying the Breit-Pauli operators in a
second-order nonre1ativistic calculation, e.g., the values
extracted from Pekeris's calculations, should thus only
give a straight line parallel to the x axis. a Z Ry
efFects give a straight line, not parallel to the x axis,
which cuts the y-axis at the Breit-Pauli value. The actu-
al shape of the curves is the result of terms of order
a Z and beyond. Only the very 6rst part of the curves
can be explained by pure a Z terms. %e see that the
curve from the present work appears to be shifted paral-
lel compared to the curve from Johnson and Sapirstein.
This indicates that the dN'erence lies in order a Z Ry
and could perhaps be sought in differences in numerical
treatment. The corrections beyond a Z Ry, extracted
from the two calculations, agree rather mell; the two
curves have similar slopes, in spite of the fact that the
correlation in this order is not treated in the same way.
Both the calculations are correct to order a Z Ry and
neglect many terms in a Z Ry and beyond, e.g., all
terms arising from excitations of virtual electron-
positron pairs caused by the electronic potential. In the
present work additional approximations in order a Z
Ry are done when applying the 8 operator, as discussed

j 'IIE I IL

(a} (~) (c} (d)

FIG. 4. The last three diagrams, (b) —(d), represent the con-
tribution to the correlation energy included when the magnetic
interaction is evaluated with pair functions iterated to all or-
ders. The line with a dot represents the magnetic interaction.
Diagram (a) is simply representing the first-order magnetic
contribution.

%hen starting from Dirac-Fock orbitals, all single-
particle corrections due to I lr, z are already taken care
of in the zeroth-order wave functions and only real
correlation is treated in the perturbation expansion.
Table III shows the lowest excitations together with the
total result, including up to l =4, for Z =2—50. For the
first Z values the nonrelativistic behavior, (a+b/Z),
dominates, as also shown in Figs. 5 and 6. Above
Z = 15 it is, however, seen how the relativistic correction
arising from Is —+s excitations (Fig. 5) increase the ab-
solute value of the energy, while the total effect from the
other angular contributions goes in the opposite direc-

TABLE II. Second-order correlation energies, obtained with
hydrogenlike orbitals for Z =2-50, given in units of 10 ' a.u. ,
all contributions are given with opposite sign.

Electrostatic correlation Magnetic correlation
Z This work' Johnson and Sapirstein This work'

15 766 6'

2 15 768.1

5 15 777
10 15 807
15 15 860
20 15 940
25 16049
30 16 195
35 16 377
40 16 604
45 16 882
50 17 219

15 768.1

15 776
15 808
15 865
15 952
16070
16 225
16420
16 661
16952
17 301

14.6
90

353
778

1354
2074
2931
3928
5048
6299
7682

'Z =2-30 l,„=9included, the rest of the I sum extrapolated;
Z =35—50 l,„=5 included, the rest of the l sum extrapolated.
Piecewise polynomial method (Ref. 9).

'Nonrelativistic value independent of Z.

in Sees. III and IV 8. However, these approximations
are only affecting the intermediate states and the largest
corrections in order a Z Ry, present in a no-
(virtual-)pair calculation, probably arise from the one-
particle energies for the initial state, used in the energy
denominator, and from the initial-state wave function.
Those are, in both the calculations, the proper relativis-
tic one-particle ones. This is presumably the reason for
the closeness of the two slopes.

8. Dirac-Pock orbitals

l. Electrostatic correlation
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FIG. 5. Contributions to the second-order energy for heli-

umlike systems from s and p excitations, obtained with Dirac-
Fock orbitals. For small Z values the nonrelativistic (a +b!Z}
behavior is recognized, but for large Z the relativistic contribu-
tions start to dominate the shape of the curves. The contribu-
tion from a g 0 excitations are increasing the absolute value of
the energy, while the a ~ 0 excitations contribute in an opposite
direction, as discussed in Sec. (V 81). The p&&2 curve is scaled
with a factor of 2 and the p-total curve is scaled with a factor
of 2 in order to get all four curves of comparable size.

FIG. 6. Second-order electrostatic and magnetic energies for
heliumlike systems, obtained with Dirac-Fock orbitals. Partial
~aves up to I =4 were included. The electrostatic energy is for
small Z dominated by the nonrelativistic {a+b/Z) behavior.
An additional term, which has a Z behavior, is clearly recog-
nizable for large Z and arises from relativistic contributions.
Magnetic contributions grow strongly with increasing Z and,
for Z =50, are of the same size as the total electrostatic contri-
bution.

tion. For negative x values there is a slight tendency to
raise the energy, as for s excitations, but for positive s.

values there is a stronger tendency to lower the absolute
value of the energy. This may be a surprising e8'cct,
since the wave functions with positive x values are more
contracted than the functions with negative ~ values and
are then expected to have a larger overlap with the 1s
state. However, the four-component structure of the
wave functions changes this picture. For a matrix ele-
ment between states having x values with opposite sign„
as an element between the 1s state and a p&&z state
docs, the contribution from the large-small and small-
large component will work in an opposite direction com-
pared to the large-large component. This is due to the
difference in relative sign between the large and small
components for states having positive and negative x
values. The contraction of the wave function causes the
small component to grow relative to the large com-
ponent, increasing thc contribution from the large-small

and small-large matnx elements and thus lowering the
total contribution from the excitation in question. In
the case when the signs of the ~ values are the same for
initial and intermediate states the large-small and small-
lsrge matrix elements work in the same direction as docs
the large-large element. This will cause the total contri-
bution to rise if only the growing overlap in the nunmra-
tor is able to outweigh the also growing denominator,
caused by the larger relativistic energy shift in the initial
state compared to the intermediate one. As could be
seen in Table I (hydrogenlike orbitals) this only happens
for s and p states in the case of Z =2 or 10, but when Z
grows this behavior can also be seen for higher partial
waves, e.g., the d»z excitations are enlarging the relativ-
istic shift above Z =20. For Dirac-Fock orbitals (Fig. 5)
this turning point is harder to see since the relativistic
shift is added to a nonrelativistic contribution which also
grows with increasing Z.

The total second-order energy (including up to I =4),

TABLE III. Second-order electrostatic correlation obtained with Dirac-Fock orbitals, given in
units of 10 a.u. ; all contributions are given with opposite sign.

to 2
p 1/2

2
p 3n. d 3y2

2 total, I „=4

2
5

10
15
20
25
30
35
40
45
50

13498
13 928
14 160
14 296
14430
14 588
14 784
15 027
15 325
15 691
16 137

6325
7740
8202
8281
8230
8105
7925
7699
7435
7136
6808

12 654
15 518
16 576
16961
17 183
17 3S4
17 S15
17 687
17 885
18 119
18 399

1277
1AAA

1476
1455
1412
1353
1284
1205
1121
1032
940

1916
2176
2258
2285
2299
2310
2322
2338
2359
2386
2422

36 965
42 213
44095
44 679
44922
45 038
45 113
45 196
45 320
45 523
45 832
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as given in the last column of Table III, is also shown in

Fig 6. For low Z we recognize the nonrelativistic
(a+b/Z) behavior, while for higher Z values an addi-
tional term with an a Z behavior starts to be impor-
tant. Since the p and s excitations have such different
behavior one might suspect that the mixture between
these states, which enters in higher orders, should be
able to somewhat change the slope. This might then
bring the values closer to the calculation of Gorceix
el al. , at least for medium heavy Z. They have per-
formed Multiconfiguration Dirac-Fock (MCDF) calcula-
tions including up to 4f excitations and found a Z
dependence of the electrostatic energy which is essential-

ly Aat in the region of intermediate Z, but with a max-
imum appearing at Z =24 and a local minimum at
Z =45. The difFerence compared to this work is essen-

tially a much Natter curve above Z =20, indicating
smaller relativistic contributions.

2. Magnetic correlation

In Table IV the magnetic correlation is shown, and it
seen that, although small for small Z, it grows fast, and
for Z =50 the magnetic correlation is about the same
size as the total, nonrelativistic and relativistic, electro-
static correlation. This is illustrated in Fig. 6. The
values obtained here agree reasonably well, within 10%%uo,

with the result for magnetic correlation obtained with
MCDF, for medium heavy ions. The difference can
probably be explained with contributions to higher order
in the Coulomb interaction, which are included in
MCDF when the wave functions are varied. For the
largest Z there is, however, an increasing discrepancy,
which presumably has another source; the MCDF result
shows, then, larger magnetic correlation.

VI. CONCLUSIONS

It has been possible to show how the method of solv-
ing inhomogeneous difkrential equations can be used,
even in the relativistic case, to obtain accurate results.
As has been discussed in earlier works, ' the method

is free from any problem with continuum dissolution,
and the correlation, which is treated inside the no-
(virtual-)pair approximation, is correct to order a Ry.
All one-particle effects are, however, treated fully rela-
tivistically and the neglected a Ry terms are only
affecting the correlation. Such terms are presumably
quite negligible for a wide range of atomic systems. At
least for neutral and moderately ionized atoms the treat-
ment of the Coulomb interaction, to high orders is as-
sumed to be of much greater significance.

The method has been applied to a wide range of two-
electron systems, giving second-order energies for both
electrostatic and magnetic interaction. In the near fu-
ture we hope to be able to present calculations on heavy
neutral atoms. The challenge is to apply the method to
those systems for calculating, e.g., parity violation and
hyperfine structure, where both correlation and relativis-
tic effects are known to be important.

Some effects in this work are also treated to all orders,
i.e., nonperturbatively, in Coulomb interaction. For
highly ionized systems such higher-order contributions
are not very important. As mentioned, however, for
neutral systems they may be quite significant. The aia
is to obtain a scheme allowing couplings to all orders, as
has previously been possible in the nonrelativistic case.
The relativistic generalization of such a scheme is in
principle straightforward from this point, the only prob-
lem being a growing complexity and need for computing
time.
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TABLE IV. Second-order magnetic correlation (one order in magnetic and one order in electro-
static interaction) obtained with Dirac-Fock orbitals, given in units of 10 a.u. , all contributions are
given with opposite sign.

to I 1/2
2

P3r2
2d 3y2

2 total, I „=4

2
5

10
15
20
25
30
35
40
45
50

12
95

936
1668
2597
3715
5016
6495
8153
9991

12
109
483

1107
1952
2983
4157
5430
6757
8093
9394

13
117
523

1216
2193
3450
4989
6814
8937

11 373
14 144

4
32

138
308
530
788

1068
1357
1641
1908
2149

3
27

115
260
458
705
997

1334
1388
2143
2617

50
424

1851
4227
7472

11 503
16239
21 608
27 548
34019
40 981
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APPKNMX' THE SOLUTION PROCEDURE

The solution procedure for the relativistic pair equa-
tion (4.2) follows the procedure for the nonrelativistic
case as given in Ref. 15; only the difFerences are men-
tioned here. A more detailed description can be found
in Ref. 36.

In a conventional approach the system of equations,
obtained when the derivatives in (4.2) are approximated
with finite-difference formulas, would be solved directly.
However, the system will consist of Xi equations, where
N is the grid size. For a typical grid of 60 points the
left-hand-side matrix wi11 then consist of approximately
10 elements. Since the coefBcient matrix is not sym-
metric and not always diagonal dominant, relaxation
methods sometimes fail to converge. The system must
then be solved by more time-consuming and storage-
requiring methods, like Gaussian elimination, even if the

matrix contains mostly zeros. In Ref. 15 a method is de-
scribed which reduces the system of X equations to a
system of only (2%+2) equations; Gaussian elimination
is then performed on this smaller system.

The equation is solved in an exponential grid,
r„=exp(x„), x„=x~;„+(n—1)h, where h is an equidis-
tant grid step. To eliminate the first-order derivatives,
which then appear, the transformation

P("i ~ "2 ) =P("i ~ "2 )/("i "z )

is used.

1. Boundary conditions for small r values

The boundary condition close to the nucleus is the
slope for small r values and Eq. (14b) in Ref. 15 is re-
placed with

[ LL( —)/ ~~( '
)] (r)'i ' +br ]i+ )/(& r +&r (A 1)

where y=[(a —a Z )'~ ] and

—Z/~a
~

for vgO
6 =[(s,+2mc )(y+K —a Z ) —e,a Z ]/[Z(zy+1)]= '

( ) [Z p( )]

[p (ri, r2)/p (rI, rz)] cc (r, /r i )
' (A2)

2. Boundary conditions for large r values

At infinity the function should fall to zero exponen-
tially. The boundary condition applied is that the 6rst
point outside the grid used is required to decrease as

' 1/2
Q

2

p~exp —
~
e, +s„~ 1+ (e, +si )

)&(r, +ri) /(rirz)' (A3)

for a pointlike nucleus, used when analytical hydrogen-
like wave functions sre used as the first approximation.
This behavior is also assumed when the first grid point
for the pair function is taken outside the nucleus, even if
the one-particle description is a numerical Dirac-Pock
wave function obtained in the field from an extended nu-
cleus. (While the one-particle function is always started
well inside the nucleus, this is not always necessary for
the correlation part of the wave function. )

For extended nuclei, (14b) in Ref. 15 will be as it
stands,

The second point outside the grid used is set to zero.
The exponential decay is used to smooth the sharp cutoff'
obtained when immediately setting everything outside
the grid area to zero, as was done nonrelativistically
[(14a) in Ref. 15]. Such a cutoff is not justified in relativ-
istic calculations. However, the wave function is so
small at these distances that the modification does not
seem to be very important.

3. Recursion formula for the pair function

In Eq. (16) in Ref. 15 p;+i is expressed in a recursion
formula in terms of p;,~, p; I J, and p;,~~&. Such a form
cannot be constructed in the relativistic case if the
cross-derivative term, the third line on the left-hand side
in (4.2), is approximated with symmetric finite difference
formulas. In order to circumvent this problem the cross
derivative is in this work approximated with a non-
symmetrical formula in one direction and a symmetrical
formula in the other. Corrections compared to symme-
trical five-point formulas are added on the right-hand
side, as is also done for the second-order derivatives.
This results in a final numerical error proportional to h .
The equation is solved in two difFerent grid sizes, typical-
ly 60&60 and 80&80 points, and Richardson extrapola-
tion is used to remove the h error. ) Equation (16) in
Ref. 15 is then replaced with
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where

+ ij Pi —i,j+ i+Pi —1 j —i' ij (Pi 2j—+I+Pi 2j——1)2A "( . . )—3"(

+2Ii 6;j J/(F, ij" 2A—;~ ) —P.; (A4)

Fij =
2

1+ 8i82 2 (K2+ 1/2) + 8 iBi(B,b +28' ) — (x'2+ 1)1 + 1 CX

r) 2 r2 8 Br2 r2
(A5)

F' ' is obtained by interchanging indices 1 and 2. The leading term in F'" is obtained also in the nonrelativistic case
and comes from the function in front of the ordinary second-order derivative in (4.2). The second and third terms
arise from the cross-derivative term in (4.2). B,b is defined in (3.4) and 8, in (4.5). The factor

0,'1
2 ~1~22' r ir2

comes from the cross-derivative term. G; denotes the right-hand side of (4.2). C," contains all terms, including ordi-
nary potentials and centrifugal terms as well as spin-orbit terms, which act directly on the wave function,

0,' (a i+ 1/2)
C;.= 2h s, +sb —Vi —V2+ (e, +sb —Vi —Vt) + —,

'

r)

(@2+1/2)
+

r2

a' ~Vi 1 ~Vz 1 a'
+h B,b -- (iti+ I )+ — (a2+ 1) + 8 iBt

2 , ri ri r2 r2 2
(xi+ 1/2) (at+ 1/2)

r&r&

~4 t) Vi 1 (at+ 1/2)
Bi82(B,b+28i ) —(@i+I)

Br, r, r2

~4 BVt 1 (a i+ 1/2)
8 i 82(B,b+ 282 ) —(a2+ 1)

Brg rt

(A7)

The first line contains terms present also in the nonrela-
tivistic case. The second line contains the spin-orbit in-

teraction and the three last lines come from the cross-
derivative term.

The Darwin-like terms in (4.2), being first-order
derivatives of the wave function, are moved to the
right-hand side 6;,. The equation is first solved without

these terms and then solved again with the operator
working on the previously obtained solution. This is
done until convergence is obtained. Darwin-like terms
also originate from the commutators of B,b, 8&, and 82
in (4.4); these are treated together with the ordinary
Darwin-like terms.
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