
PHYSICAL REVIE% A VOLUME 37, NUMBER 8 APRIL 15, 1988

Hypervirial 1/N expansion for a more general screened Coulomb potential
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By employing the S-dimensional hypervirial equations with the Hellman-Feynman theorem to
the more general case of a screened Coulomb potential, V(r) = (air}[—1+(1+br}e 2 '], the entire
bound-state energy spectrum is obtained.

I. INTRODUCTION

Screened Coulomb potentials are known to adequately
describe the effective interaction in many-body atomic
phenomena. Since the Schrodinger equation for such po-
tentials does not admit exact solutions, they have been
treated analytically' ' and numerically' by employ-
ing various approximate methods. The potential
V(r)= —(air)[l+(1+br)e '], defined for an electron
of the helium in the field of the other electron and the nu-
cleus, has been 6rst studied by Gerry and Laub and us'

by obtaining the energy eigenvalues of the ground state
and the 6rst excited state and the corresponding wave
functions.

In the present work we extend our previous work by
using the hypervirial theorem and the Hellman-
Feynman theorem. These theorems have been applied to
some problems ' ' ' ' to obtain the energy and expecta-
tion values of position coordinates. %'e follow the
method of Grant and Lai and use an N-dimensional gen-
eralization of the hypervirial equations and the Hellman-
Feynman theorem to obtain the entire bound-state energy
spectrum.

II. METHOD AND CALCULATIONS

The potential to be solved is

V(r)= —(a/r)[1+(1+br)e "] .

The Schrodinger equation in N dimensions (with
m =A'=1) for a particle in a spherically symmetric poten-
tial V(r) is given by

[—
—,
' ~(}'tv+ Vtt(r)]%(r) =Eqt(r),

e(r) =r '" -""U(r)r, (n)

into Eq. (2), we obtain

HU(r) =EU(r),
where the Hamiltonian H is given by

(4)

1 d k2 (1—1/k)(l —3/k)
2 8 2 tv r (6)

to obtain

E(rj) =k2(r~V(r))+ '(j +1) 'k r +-' dV(r)
2 dr

——,'j(j+1) '[j —(k —2) ]( )

or

E(r') =(r'V(r))+-'(J +1) ' r'+'i dV(r)
dp'

——,'j(j+1) '[j' —(k —2)']& ' ') .

Using the following form of the expansion of the poten-
tial:

V(r)= ——[1+(1+br/k )exp( —2brlk )]

with k =N+2l and V&(r) = V&(r ) Ik . Now we may use
the hypervirial theorem

(
«(r) «', H «(r()=0d

dr

where r is an N-dimensional vector of magnitude r and
V& can be written in spherical polar coordinates as

iV —l 8
~N +

Qp P' Bl' y

(3)

L, being the angular momentum operator in N dimensions
having the eigenvalue l(l+N —2) and Vtt(r) is the N-
dimensional generalization of V(r). Substituting

V b nrn —1+ y V b n+lrn

where b =6/k and

V,„=—a [5„o+( —1)"]
ntk "

2'V2„———a( —1)" 2'

(10)
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Eq. (8) reduces to

b(j)2J+1(j))2J+3(j+))
k4

%'e introduce the expansions

(rj) = y C,'"'6"'
n'=0

(13}

(X) J V bn( j+n —))
2(j+1) E„= y E„("")b"",

n"=0
(14)

2J +n +2
y b n+)( j+n)

2(j+1)
where the energy of the unperturbed nth states in 3-space
E„' '= 2a—/n with Z =2 may be written in X dimen-
sions as

8(j+1)[j
—(k —2) ](rj 2) . Sa

(X+2n —3)

(12) so that Eq. (12) becomes

(15)

E(n )c(n")b(n''+n" l u ~ ( (n')b n'

k
n

y 2 ~ J
n'=0 n~~ n'=0

J+ g C(n)bn+ 2J+3 b g C(n)g n g g (2j+n +1}
V C(») b( +.-)

J+1 ' j+1 k' „. , '+ „„,, 2(j+1) '" j+n"-(

V C(n ) b (n +n" +')) J [J2 (k 2)2] y C(n )I n''

2( '+1) 2» j+ n 8(
~ +1) J j (16)

Combining the terms of the same order in b, we obtain a
recurrence relation

C(()) 1 2j+1 C(()) j[j (k 2} ] C(o)
j+1 j 8(J+1) E„I/a E numerical E„I/a Enumerical

TABLE I. Comparison of the energy for 0 & p& 0. 1 as calcu-
lated from the numerical solution of the Schrodinger equation
with those to order p' of the present work.

From (13), it is obvious that
I

$0 I

(17}

(18}

1$

2$

2p

—1.98000
—0.48005
—0.48004

P=0.02
—1.98000
—0.48005
—0,48004

P=0.04
—1.96003 —1.96000
—0.460 38 —0.460 38
—0.460 28 —0.460 38

Setting j =0 in Eq. (17), we get

( (0) E(0)/n—] n

3$

3p
3d

—0.202 45
—0.202 42
—0.202

—0.202 46
—0.202 43
—0.2024

—0.1837
—0.1835
—0.1832

—0.1838
—0.1836
—0.1833

CI') = —3(t /2E„'" —(k' —4k+3)/16a,

Cto) =5u /2E„"' +(3k' —12k+ 5)/16E„"',

C(3o) ——35a3/8E„' ' —7a(3k —12k+5}/64E„' '

(20a)

(20b)

Next we use the Hellman-Feynmao theorem

+9a(5—k}(1+k)/64E„""

+3(5 k)(1+k)(k' —4k+ 3)/512aE„") . (20c)

4$

4p
4d
4f

1$

2$

2p

3$

3p
3d

—0.105 61
—0.105 58
—0.105 50
—0.105 37

—0.105 65
—0.105 61
—0.105 52
—0.105 39

—0.1660
—0.1656
—0.1649

—0.1670
—0.1664
—0.1654

P=0.06
—1.9401 —1.9400
—0.4412 —0.4412
—0.4409 —0.4409

—0.0879
—0.0878
—0.0876
—0.0872

—0.0891
—0.0889
—0.0884
—0.0876

—1.9201
—0.4227
—0.4220

—0.1481
—0.1479
—0.1472

—0.1520
—0.1510
—0.1489

P=0.08
—1.9202
—0.4225
—0.4218

to obtain

(21)
—0.0681
—0.0685
—0.0690
—0.0694

—0.0761
—0.0755
—0.0743
—0.0723

—0.036
—0.039
—0.043
—0.049

—0.0664
—0.0654
—0.0634
—0.0601
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P
pEtp) y ~y C'(p —q~

I=1
(22)

which simply leads to

Then equating the coefficients of b on both sides of Eq.
(16) and using Eq. (22) we obtain

C(1) ~ 2j + ~ gCI1)
J E(0) j+1 J—

[j~—(k —2) ]C'"2, (23)g(j+1)

C'"=0, p & —1 .

Similarly equating the coeScients of b, b, b, etc. on
both sides of Eq. (16) and using Eq. (22), we can find the
values of CJ ', CJ ', CJ ', etc., respectively, for j & —1.
Finally, using Eq. (14) we obtain the bound-state energy
spectrum in the powers of screening parameter b,

E„& E„' '+——ab —I(2a/3)[5a /2E„' ' +(3k~—12k+5)/16E„' ']IS

+ I(2a/3E„' ')[ —35a /SE„' ' —7a(3k —12k+5)/64E„' '+9a(5 —k)(1+k)/64E„' '

+3(5—k)(1+k)(k —4k+3)/512a]] b (25)

TABLE II. Improvement in energy with respect to orders of P.

0.02

0.05

3$

3p
3d

4p
4d
4f

1$

3$

3p
3d

4s
4p
41
4f

(E„,/a'io

—0.5
—0.5

—0.222
—0.222
—0.222

—0.125
—0.125
—0.125
—0.125

—2.0

—0.5
—0.5

—0.222
—0.222
—0.222

—0.125
—0.125
—0.12S
—0.125

{E„,/a'),

—1.98

—0.48
—0.48

—0.202
—0.202
—0.202

—0.105
—0.105
—0.105
—0.105

—1.95

—0.45
—0.45

—0.172
—0.172
—0.172

—0.075
—0.075
—0.075
—0.075

(I I/a )3

1.98000

—0.48006
—0.48004

—0.202 50
—0.20246
—0.202 39

—0.105 86
—0.1058
—0.1057
—0.1055

—1.95006

—0.4S09
—0.4S06

—0.1765
—0.1760
—0.1749

—0.089
—0.088
—0.085
—0.083

(E„I/a')g

—1.98000

—0.48005
—0.48004

—0.202 45
—0.202 42
—0.202 37

—0.105 61
—0.1056
—0.1055
—0.1054

—1.95006

—0.4507
—0.4505

—0.1747
—0.1745
—0.1740

—0.079
—0.079
—0.079
—0.078

0.08

3$

3p
3d

—2.0

—0.5
—0.5
—0.222
—0.222
—0.222

—0.125
-0.125
—0.125
—0.125

—1.92

—0.42
—0.42

—0.142
—0.142
—0.142

—0.045
—0.045
—0.045
—0.045

—1.9203

—0.424
—0.423

—0.160
—0.158
—0.153

—0.100
—0.096
—0.088
—0.076

—0.423
—0.422

—0.148
—0.148
—0.147

—0.036
—0.039
—0.043
—0.049
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Substituting k =X+2I with N =3 for 3-space in Eq. (25)
and defining P=b/a, we simply get

E„&/a = —2/(n —I) +P
—[[5(n —I) +(n —I) ]/12a IP

+ IS[7(n I—) +5(n 1)—]/96a Ib . (26)

III. RESULTS AND CONCLUSIONS

%'e have derived the bound-state energy spectrum of-
the more general screened Coulomb potential
V(r)= —(air)[1+(1+br)e '] in the powers of the
screening parameter b. The expression (26) exactly gives
the same results for the ground state and the first excited
energies which are obtained in our earlier paper' by us-

ing the large-X expansion technique of Mlodinow and
Shatz.

Some numerical values of energies of the Srst four
states for diff'erent values of P are compared with those

which are obtained by solving the Schrodinger equation
numerically (see Table I). Numerov's method is used.
For the energy eigenvalues a total of 5000 steps are taken
with the step size Ar=0. 003 and tolerance 1.0X 10
Results are in good agreement for small values of P and
for the 6rst three states. %e have also illustrated the im-
provement of the energy with respect to orders of P in the
Table II.

To conclude, we have investigated the hypervirial 1/N
expansion for a particle bound in a more general screened
Coulomb potential. The method provides the entire ener-

gy spectrum and may have some advantage over the
large-N expansion technique of Mlodinow and Shatz if
one does not need to calculate the corresponding wave
functions simultaneously.
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