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Rigorous lower bounds to the electronic charge and momentum densities of an atomic system at
the origin, p(0) and y(0), respectively, by the expectation values (r ) and (p ), respectively, are
given for positive and negative values of a in both cases, provided that the charge and momentum
densities have a monotone decrement behavior, respectively. They allow one to give rigorous
bounds to p(0) and y(0) in terms of experimentally measurable atomic quantities such as the diamag-
netic susceptibility, the Compton profile peak, and the electronic energy, In particular it is shown
that p(0) & (4&3tr) 'N(r ')'~' with the charge density normalized to X, the number of electrons
of the system. The quality and the asymptotic Z behavior of the bounds for neutral atoms (X=Z)
are studied.
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The determination of rigorous bounds to charge and
momentum densities of atomic systems at the origin,
henceforth to be denoted by p(0) and y(0), respectively,
has a great interest in various physical problems' (parity
nonconservation, ' isomer- and field-shift effects etc. )

and is an important ingredient in the density-functional
theoriess " of atoms and ions which treat the electron
density p(r) or the electron momentum density y(p) as
the basic variable.

Rigorous bounds to p(0) are very scarce in the litera-
ture. To the best of our knowledge, the only ones are
those of Ho8'mann-Ostenhof et al. and King. ' The first
authors found an upper bound by means of the expecta-
tion value (r ), and King gave for S state atoms and
ions lower and upper bounds in terms of ( r i ) and
(r, z ). In addition, Tal and Levy have nonrigorously
proved upper bounds by the expectation values (r'),
ct & —3, and (p ), a & l. Also, implicit lower and upper
bounds have been recently given by Pathak and Bartolot-
ti' in estimating the ratio p(0)ECc/To, where To(p) is the
Thomas-Fermi kinetic energy functional and —Ko(p) is
the Dirac exchange energy density functional. The last
authors point out that their bounds for some member of
the helium isoelectronic series are of less quality as those
of King. On the other hand, we have not seen any pub-
lished work dealing with bounds to y(0).

Here we shall prove that the electronic charge density
at the nucleus and the mornenturn density at the origin of
an X-electron system are bounded from below by any
positive or negative radial expectation value as
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for any real o. & —3. In these two infinite sets of lower
bounds, those corresponding to the value o;= —2 are
sharper than those with o& —2. The quality of the
bounds
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TABLE I. Comparison between the lower bound given by
Eq. {3}and the values of p{0) calculated with Clementi-Roetti
wave functions for several neutral atoms. Atomic units are
used.

Lower bound

2

10
14
18

5.99
14.42
27.71
41.49
61.16
81.39

1.35
10.06
46.91

122.78
307.65
607.24

3.6
35.0

206.0
620. 1

1766.0
3840.0

is analyzed in Tables I and II, respectively, for some
ground-state atoms. In Table I the values of (r ) and
p(0) are based on Clementi-Roetti's atomic wave func-
tions' as quoted in Refs. 6 and 9. In Table II, the values
of (p ) and y(0) are also based on the same near
Hartree-Pock wave functions of Clementi-Roetti as quot-
ed in Refs. 14 and 15 and Refs. 7 and 9-11, respectively.
All the atoms considered in this table have been shown to
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TABLE II. Comparison between the lower bound given by
Eq. (4} and the values of y(0} calculated with Clementi-Roetti
wave functions for several neutral atoms. Atomic units are
Used.

Louver bound
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Be
8
C
N
Al
Co
Cu
Zn
Ga

6.32
3.25
1.96
1.30
2.14
1.35
0.82
1.05
0.88

2.92
1.35
0.7S
0.48
1.87
1.95
0.99
1,49
1.18

5.95
2.54
1.34
0.80
4.94
9.02
5.8
7.15
4.30

X~q( —k ) (3q —3)/k

for k =1,2, . . . , provided that k &(3q —3)/q. Alterna-
tively, the moment co can also be bounded from below
by the expectation values (r ) as

- 3/k

have a spherically-averaged momentum density y(p) with
the property of strictly decreasing monotony. "'"
One notices that the inequality given by Eq. (3) is quite
crude while the lower bound (4) to y(0) is relatively accu-
rate.

The basic idea of our proof is the decreasing monotoni-
city of the electronic charge density p(r) given by

p(r) =& f I
q'(r r2 rtv) I

'«2«3 dr(v

and that the electron momentum density y(p) defined by

}(p)=& f I
c'(p p»

has the property y(0) & y(p) for any p in a variety of
atoms. Here 4(p„p3, . . . , p(q) is the momentum-space
normalized wave function of the X-electron system, i.e.,
the Fourier transformation of the configuration-space
normalized wave function %(r„r2, . . . , rN ) of the system.

One should immediately see that while the spherically-
averaged charge density decreases monotonically in
atomic systems, the same is not systematically true for
the momentum density. Indeed, although there is not a
rigorous proof of the monotone decrement of p(r), all the
numerical calculations show it. ' In addition, the non-
monotonic nature of y(p) is also known"' ' ' at least
for atoms with their outer p shells occupied by two or
more electrons. Nevertheless, there exist other atoms
(e.g., in the first row from He to N; in the second row Na,
Mg, and Al; in the third row Co, Cu, and Zn; in the
fourth row Ga} which exhibit"' ' a monotonically de-
creasing momentum density.

Firstly let us prove the inequalities (1)—(3). Starting
from the fact that p(0) &p(r) for all r in a closed-shell
atom and that p(0) is not smaller than the spherically-
averaged charge density p(r) for an arbitrary atom, one
may write for any positive q that

p(0) & —f [p(r)]'+'dr
N

where co is the so-called frequency moment of order q of
the density function p(r). Recently, the authors' have
shown for an S-fermion system that the frequency mo-
ment of order q (not necessarily integer but &1}of the
one-fermion density p(r) is.bounded from below as

3q —3

q(k+3) —3

q(3+k) —3
4qr8

3

k q —1

( r k ) (3q —3)/k

X

4mB
3 1 q+1
k q' q

~(r —k)3/k

which gives a lower bound for each q and k so that
k &(3q —3}/q. This lower bound is an increasing func-
tion of q. So, the best lower bound is obtained for q ~ 00,

p(0) & (1—k/3) "N(r ") ", k &3 .
3

4m

Then, Eq. (1) is proved for a= —k. From Eqs. (5) and
(7), and operating in a similar way, one obtains Eq. (1) for
a =+k.

In a fully analogous way one easily shows the inequali-
ty (2) for y(0), provided that the electron momentum
density y(p)(y(0), for any p occurs at least for some
atoms as already mentioned. Vhth this hypothesis, one

for k =1,2, . . . . The symbol 8 in Eqs. (6) and (7)
denotes the P function defined by

8 (x,y) = = t" '(1 t)' 'dt—I (x)I (y)
1(x+y) o

and ( r ), a & —3, are the ath moment around the origin
of the normalized-to-S density p(r), that is

(r )=N ' f r p(r)dr: N'(r )0.— (8)

From Eqs. (5) and (6) one obtains
' 1/q

(q+ l)k
(q +1)(3—k) —3

- 3/k
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k
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has an inequality similar to (5) for any positive q,

which together with the lower bounds of m' +, by means
of (It ), analogous to Eqs. (6) and (7), leads to the desired
inequality (2) in a straightforward manner.

It is worthwhile to point out that for neutral atoms
(N =Z) and as Z~ca, where the Thomas-Fermi be-
comes exact, ' the lower bounds to )o(0) and y(0) defined
by Eqs. (1) and (2), respectively, are denoted by 8,(p)
and 8 (y) have the following Z-behavior:

8,(p)-Z

8,(y)-Z
(10a)

(10b)

for —3/2 & ct & 3. To show this behavior is enough to re-
mark that

Z 1+3/a( a) 3/a
0

because of Eqs. (1) and (8) and that (r )o-Z' with
——,

' ga g3 for atomic Thomas-Fermi densities; ' in

this way, one obtains relation (10a). Similarly one can
find relation (10b) by taking into account that
8 (y)-Z'+ (p')o with —3/2&et&3 for atomic
Thomas-Fermi densities. '

One cannot extend the domain of validity, ——,
' ~ a ~ 3,

of relations (10a) and (10b) in neutral atoms because the
expectation values (r ) with a( ——,

' and (p') at a &3
depend on the electron density near the origin and on the
atom periphery which are not correctly described within
the Thomas-Fermi model. In case of ions, the
Thomas-Fermi model does not present this difficulty any
longer and one can easily determine the expectation
values & r ), at a) —-', and & p ), at —3 &a &3 as dis-

cussed in Refs. 24 and 26 and Ref. 25, respectively; then,
a simple Z, N behavior for the lower bounds 8 (p) and

8 (y ) follow in a straightforward manner at the so-called
hydrogenic limit, ' that is, for a system of E nonin-
teracting electrons moving about a nucleus of charge Z,
where both N and Z are infinitely large but the ratio N/Z
is a vanishingly small constant.

For completeness, let us also mention that, for a neu-
tral atom„ it has been shown that (r )o-Z
—3 & a & ——', for large values of Z. Then, from Eqs. (8)
and (9), one obtains that the electronic charge density of
a very heavy atom at the nucleus is bounded from below
by 8s &(p)-Z 1 ' ') for 0&5&—', . In particular,
notice that 8 2(p}-Z / for very heavy neutral atoms.
However, for light atoms, 8 2(p) have the nice Z be-
havior since in such a case the expectation value
( r ) Z . A similar dlscussioll for the electroillc
momentum density of very heavy atoms at the origin can
be made but taking into account that asymptotic esti-
mates for (p ) are known only for 3 & a & 5, namely
(~a) Za 25

Summarizing, the inequalities (1) and (2) give rigorous
lower bounds to the atomic charge density at the nucleus
p(0) in terms of the expectation values (r ) and to the
atomic momentum density at the origin y(0) by means of
(p ) for any real a ~ —3, provided that the charge and
momentum densities have a monotone decrement behav-
ior, respectively. This behavior has been numerically
shown to occur for the charge density in all the studied
atoms but such is not the case for the momentum density.
They allow us to obtain in a straightforward manner
rigorous (although not accurate) bounds to )o(0) and y(0)
by means of experimentally measurable quantities such
as, for example„ the diamagnetic susceptibility ( —( r ) ),
the electronic energy ( —(p ) ), and the spherically-
averaged Compton profile peak J(0) ( —(p ') ), respec-
tively. However, as said before, the best bounds for p(0)
and y(0) are given by the radial and expectation values of
order a = —2 in the way shown by the inequalities (3}and
(4).
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