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Noise-induced sidebranching in the boundary-layer model of dendritic solidiScation
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Under certain circumstances, sidebranching in a dendrite may result from the selective
amplification of noisy fluctuations in the tip region. This suggestion is based on numerical and
analytical studies of the two-dimensional boundary-layer model with both kinetic and surface ten-
sion anisotropy. From the dynamical simulations, smooth steady fingers are observed above a criti-
cal anisotropy, below which the 5ngers are unstable. Noise added to a smooth steady tip gives side-
branching. A temperature estimate of the required noise indicates that thermal noise is a candidate.
An analytic description of the response of the tail of the dendrite to a perturbation in the tip region
is given and this analysis is compared to the numerical results. Comparison is also made to experi-
ment as the undercooling and anisotropy are varied. Implications for the full model are discussed.

I. INTRODUCTION

There are many simple nonequilibrium systems which
generate complex structures or patterns. Examples are
found in solidification' and in the displacement of one
Quid by another, in convective hydrodynamic instabili-
ties and in Name-front propagation,

In dendritic solidification a treelike solid grows from
an undercooled melt. These structures are typically com-
posed of a trunk or parabolalike finger of solid growing
into the liquid with sidebranches or spatially oscillating
structures developing on the sides of this finger. It is the
purpose of this paper to examine the origin of the side-
branching. It is suggested that sidebranching may result
from the amplification of noisy Auctuations at the tip and
that thermal Auctuations may be adequate to explain the
observed effects,

This proposal is explored with the boundary-layer
model of solidification. Note that the full solidification
problem —which involves a moving interface, heat
diffusion, and nonlinear boundary conditions —turns out
to be relatively diScult to solve. This has motivated a
variety of simplified models including the local geometri-
cal model (GM) and the boundary-layer model (BLM).

Recent work has dealt with the trunk or overall shape
of the dendrite and the velocity at which it grows. This
work is briefly summarized as follows. Key are the ex-
periments in which the trunk is observed to have a
unique velocity and tip curvature for a given undercool-
ing of a material. The geometrical and boundary layer
models have provided important insights into this selec-
tion of a particular velocity. Numerical simulations of
the GM and BLM give a finger when a small but finite
anisotropy is included. This finger displays a unique ve-
locity and tip curvature, independent of the initial shape
and depending only on the undercooling and anisotro-
py. ' The question has been how this unique tip velocity
and curvature are selected. For both the GM and BLM
it turns out that the solution of the steady-state or time-
independent problem gives a smooth finger with the same
velocity and tip curvature as observed in the time-

dependent simulations. ' The steady-state problem is
peculiar: The surface tension acts as a singular perturba-
tion and this results in a discrete set of fingerlike solu-
tions determined by a so-called "solvability condition" in
which the anisotropy plays a crucial role, Of this set the
finger with the highest curvature at the tip is the most
physically reasonable and, indeed, this is the tip that
emerges from the time-dependent numerical simulations.
This correspondence between the steady-state solution
and the dynamically selected finger is confirmed for the
BLM by careful numerical work, as will be described in
Sec. II.

The peculiar character of the steady-state problem car-
ries over to the full model in both two and three dimen-
sions where again there is a solvability condition. " So,
for the full model, it is reasonable to expect that the
steady-state solution may again give the dynamically ob-
served tip shape and velocity. This is currently under in-
vestigation. ' Thus, the present understanding of the
trunk —namely the overall shape of the finger and its
growth velocity —is that it is given by the steady-state
solution of the problem.

The second part of the problem, dealt with here, con-
cerns the origin of the sidebranching behavior. One sug-
gestion is that the tip region undergoes a dynamical oscil-
lation which in turn results in sidebranching. Here the
steady-state solution acts as the average shape about
which the dynamics oscillates. There is limited evidence
of tip oscillation under certain conditions, usually related
to low undercooling. ' However, no tip oscillation is ob-
served in the bulk of the experimental work. ' ' lt is
proposed here that noisy Auctuations near the tip may be
suScient to trigger the Mullins-Sekerka instability' of
the relatively Hat sides of the steady finger. The develop-
ment of this instability then gives rise to the sidebranch-
ing behavior.

As mentioned, this suggestion of noise-generated side-
branching is based on work with the BLM. The BLM
contains the essential physics yet, unlike the full model, it
is simple enough that the simulations can be done readily.
In Sec. II the BLM is described and numerical simula-
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tions without noise are presented. It turns out that only a
smooth steady finger emerges from the simulations. Im-
tial transients do provide sidebranchlike behavior but,
once the tip grows past these, only a smooth steady tip is
produced. In addition, no dynamical oscillation of the
tip is observed. It also turns out that these Angers are
only stable above a critical anisotropy, where stability is
in reference to the frame moving with the tip. The stabil-
ity was determined heuristically from the dynamical
simulations in the following way. A perturbation is ap-
plied to the tip and results in a growing and spreading in-
stability on the side of the finger. This instability looks
like a wave packet and resembles initial sidebranching be-
havior. Indeed, this is expected, since the relatively Hat

sides of the Anger are unstable to the classic Mullins-
Sekerka instability. However, above a critical anisotropy,
the tip will outrun the developing instability, leaving a
smooth steady tip. Hence, in the moving frame, the tip is
stable.

To observe persistent sidebranching, the Mullins-
Sekerka instability on the side of the Anger needs to be
continually triggered. One possibility is that thermal
noise in the tip region may be adequate to trigger the in-
stability of the sides of the dendrite. This possibility and
an estimate of the required temperature are discussed in
Sec. III. In Sec. IV dynamical simulations with noise
along the dendrite are described. The distance from the
tip at which sidebranching emerges is compared to those
measured from experiment. An analytic description of
the response of the tail of the finger to a perturbation at
the tip is found in Sec. V. In Sec. VI this description is
compared with the numerical results. Finally, in Sec. VII
further experimental results are discussed and the impli-
cations for the full problem are explored.

IE. DYNAMICAL SIMULATIONS

The boundary layer model was devised to provide a
simplified but physically reasonable model of
solidNcation in two dimensions. In this problem a liquid
is cooled below freezing by a temperature 5T =T —T„,
where T is the melting temperature and T„is the tem-
perature of the undercooled liquid far from the solid. A
dimensionless temperature can be defined as
u =(T—T„)/(2/C„),where C„is the specific heat and
I. is the latent heat of fusion. Then undercooling is
characterized by the dimensionless parameter b, = ( T
—T„)/(I-/C„)and the region of interest corresponds to
0 ~ 5 ~ 1. In this region excess latent heat piles up at the
interface as solidification proceeds. The diffusion of this
excess heat away from the interface controls the problem.
As A~ I the quantity of excess heat becomes small and
so the heat forms a relatively thin layer along the inter-
face. In this limit of 5 j. , the problem can be simpliAed
by making the heat in this thin layer a function of the po-
sition along the interface and by then approximating the
di6'usion of heat normal to the interface.

The first step is to recognize that in two dimensions the
interface between a solid and a liquid is just a curve or
string. Given the normal velocity along the interface, the
motion of this string is completely determined from

geometrical considerations. The task is then to write an
equation describing the evolution of the normal velocity
and the thin layer of heat to which it is related.

To proceed, the interface can be described by «(s), the
curvature as a function of arclength. Here a(s)=88/Bs
where 0 is the angle between an external fixed axis and
the normal to the interface as shown in Fig. 1. The nor-
mal velocity of the interface, v„(s), determines the
motion of the string in time through,

n

8
K + Vn (2.1)

and

(2.2)

The next step is to determine v„(s)." First, the ex-
cess latent heat accumulates in a layer at the interface. If
the characteristic thickness of this layer of heat is small
compared to the radius of curvature of the interface, then
the heat layer can be approximated by the heat per unit
length h (s), which is a function only of arclength. Using
Ii (s), the temperature gradient at the interface can then
be approximated. Finally, this normal gradient of the
heat is related to v„(s)using the conservation of heat at
the boundary. These steps give

N+n= (2.3)

where w =u, /5 and u, is the dimensionless temperature
at the interface. Intuitively, the velocity of the interface
increases as the layer of heat becomes smaller. See Ref. 7
for details.

The evolution of the heat h (s) in time can be written as

FIG. 1. The finger in xy at t =2000 for 6=0.75, Ai ——0. 1,
and a=0.0. A single bump was made to the tip at t =0. The
resulting instability packet can be seen in the rniddle of the
finger. A plot of this finger in K(s) is given in the last frame of
Fig. 2. Only half the finger was run in the simulations and the
finger was then rejected about the tip to give this picture. Note
the definition of 0 as the angle between the external axis y and
the normal velocity v„.
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where the terms on the right-hand side give, first, the
heat added to the boundary through formation of solid;
second, a geometrical term describing how the heat layer
thins out as the interface is curved; and finally, a term
giving the diffusion of heat along the boundary.

The temperature at the interface is given by

w= ' =1 b, A(8—)ir —P(8)v„. (2.5)

The first two terms on the right-hand side result from the
Gibbs-Thomson relation. The equilibrium melting tem-
perature is modified by the surface tension through the
curvature a. The surface tension can depend on the
orientation of the interface, rejecting the anisotropy of
the crystalline solid. Here A (8)=1—acos(48) where a
fourfold symmetry is assumed. However, this Gibbs-
Thornson result is for a solid and liquid at equilibrium,
while here the two are not quite in equilibrium because
solid is forming at a finite rate. From simple kinetic ar-
guments a small temperature difkrence is needed to drive
solidification. In its simplest form this temperature
difkrence is linearly proportional to the velocity. ' Fur-
ther, the kinetic coeScient P can depend on direction,
again due to crystalline anisotropy. In the simulations re-
ported here P(8)=b,"A, [1—cos(48) ].

Note that (2.5) assumes only a slight deviation from

equilibrium as represented by the small, linear kinetic
term. This is valid for low undercooling. This region of
low undercooling is also where most of the careful experi-
mental work has been done. However, the approxima-
tions in the BLM hold for 6 & 1. In this region growth
velocities are large, the interface is far from equilibrium,
and kinetic efFects begin to play an important role.
Indeed, in experiments at high enough undercoolings, ki-
netic e6'ects rather than the diN'usion of heat control the
problem. Nevertheless, the BLM can be seen as an ap-
proximation to the experiments done at low undercool-
ing. While this and other limitations are recognized, the
goal is to provide a simple model whose qualitative
features can be explored in an attempt to gain insight into
the full problem.

The above equations were written in dimensionless
form, where lengths are in units of dolb, and times are
in units of dz/Dh, where do is the capillary length and
D is the diffusion constant; see Ref. 7 for details. In Sec.
VI a further step is taken to units where distances are
scaled by the tip radius x, and times are scaled by the
time for the tip to move one tip radius 1/x, v„where v, is
the velocity of the tip. Thus, in these scaled units,
characteristic distances and times are of order unity.

The five equations, (2.1)—(2.5), for a, s, v„,)'i, and w

were discretized along the arclength and in time and were
solved using a Crank-Nicolson implicit scheme. Note
that as the interface evolves, the spacing of s along the in-
terface ds will not remain constant. Here the evolution of
ds is given by (2.2), and, in the discretization of the equa-
tions for the implicit scheme, the intervals in s are al-

lowed to vary in the future time step. Then after each
time step the points were redistributed to reestablish a
constant ds. Growth in the length of the interface is ac-
commodated by an increase in the number of points.
Solving for the future time step in the implicit scheme in-
volves inverting a matrix of size 5ns on a side, where ns is
the number of points along the interface. As is usual in
this type of problem, the nonzero matrix elements lie in a
band along the diagonal and the program was written to
take advantage of this. As a check the velocity was elim-
inated by substituting (2.3) for v„in the equations for i~, s,
w, and k. This left four equations which were solved us-

ing the same numerical method. Both calculations gave
essentially the same results, and for a typical run the tip
velocities difFered by only 0.04% after a scaled time of 12.

Note that only half a dendrite is run. The string runs
from tip to tail and a zero slope boundary condition at
the tip enforces reAection symmetry. In the figures the
string was rejected about an axis through the tip to pro-
vide a complete finger.

Before turning to the simulations, some comment
should be made on how noise will eventually be added to
the finger. The finger is bumped by making a small
change in the appropriate fields between time steps. In
order to determine the appropriate changes note that of
the BLM equations, (2.1)—(2.5), only three are differential
equations; (2.3) and (2.5) are relations. Thus there are
only three independent initial conditions and applying a
small perturbation to, say, the velocity requires a corre-
sponding perturbation of h and w as well, which can be
cal'culated from (2.3) and (2.5). In this way v„,~, and s
are the independent fields. If the perturbation is not ap-
plied in this consistent manner and only one field is
bumped, then high-frequency oscillations are introduced.
Also, the perturbations should have a width of a few ds.
Here the perturbative bump is taken to be a Gaussian of
width 2ds.

Note that a single bump applied to the tip takes a rela-
tively long time to damp out. For the parameter region
explored, the scaled time for the perturbation in the ve-

locity to decay to one half of its maximum is from 2 to
20. Also the tip is excitable in that the change in the ve-
locity becomes even larger than the initial jump. Overall
then, the tip region is quite sensitive to perturbations.

The above procedure for bumping the tip assumes that
a perturbation takes place in the full heat layer. Indeed
this is one of the consequences of the BLM simplification.
Recall that it was assumed that the heat layer was thin
compared to the radius of curvature of the interface and
hence the slice of heat normal to the interface was treated
all at once through the variable h (s). More realistically,
when the heat layer becomes thick in the tail, a perturba-
tion in the interface could occur without afkcting the
part of the heat boundary that is a distance far from the
interface. Thus the BLM somewhat overestimates the
coupling of the heat layer to the dynamics of the inter-
face.

Finally, because of the character of the BLM, distant
parts of the interface interact only through the thin
boundary of heat along s. Thus the interface can cross it-
self and, indeed, this occurs in the indentations or
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grooves that develop. This results in regions of high cur-
vature which quickly become unphysical and force the
simulations to end. Thus, for the BLM as described, only
initial sidebranching behavior can be observed.

Turn now to the simulations which will be the focus of
the rest of this section. In summary, first, anisotropy is
required to form a finger. Second, it turns out that initial
transients and numerical noise can provide side-
branchlike behavior on this finger but once these have
been dealt with carefully, it is clear that only a smooth
steady finger is produced. Third, the stability of the
finger is determined heuristically by bumping the tip and
observing the resulting wave packet on the side of the
finger. It turns out that the finger is stable above a criti-
cal anisotropy. Finally, observing this wave packet leads
naturally into a consideration of sidebranching.

First, anisotropy is required. In simulations without
anisotropy, the tip slows and Aattens, which is the first
sign of tip splitting. Thus a seaweedlike structure is ex-
pected for no anisotropy. ' However, when a moderate
anisotropy is added, a steady tip forms. This moderate
anisotropy will be quantized in the discussion below. The
crucial role of anisotropy in forming a fingerlike structure
is confirmed by the work on the steady-state problem
where a finite anisotropy is needed in order to obtain a
fingerlike solution. '

Second, it is important to ensure that the observed
sidebranching is not a numerical artifact. Previous simu-
lations with a moderate anisotropy began with either a
semicircle or an Ivantsov parabola. A smooth parabolic
tip emerged having the shape and velocity of the selected
steady-state solution. Recall that the selected solution is
determined from the time-independent equations; for de-
tails, see Ref. 10, However, the development in the tail of
deep cusplike grooves with large negative curvatures
prevented the simulations from being run for long times.
%hile this gave what looked promising sidebranch activi-
ty„ the present simulations indicate that the grooving is
just a result of the initial transient as the selected shape is
sought out by the dynamics.

To see this and to explore longer times the se-
lected shape —determined from the time-independent
equations —was used as the initial condition. Again this
was done for moderate anisotropies, where either the ki-
netic anisotropy, A& with a=O, or the surface tension
anisotropy, a with A, =O, was used. In the following
description, behavior with the kinetic anisotropy is given
but the same results hold for simulations with surface
tension anisotropy.

Because the dynamical simulations are discretized with
a finite dt and ds, there is a small mismatch between the
selected shape and the actual shape chosen by the simula-
tion. The tip velocity chosen by the simulations is at
most a few percent lower than the selected velocity and
as dt and ds are reduced this mismatch decreases. Thus
the correspondence between the dynamically selected
finger and the steady"state solution is confirmed.

The simulations, starting with the selected shape, were
run as far as possible and the grooving, which was initiat-
ed by the mismatch, was truncated. The resulting tip was
then run and no further instabilities developed in the tip

region. This confirms that the observed grooving results
from initial ti ansients.

However, even in these more careful simulations, some
oscillation or corrugation in x(s) remains far down the
tail. This corrugation again looks like emerging side-
branches far down the otherwise smooth Anger. The am-
plitude of the corrugation gro~s with increasing arc-
length and eventually a given simulation ends as grooving
develops. It turns out that this distant sidebranch corru-
gation is a numerical artifact. This was seen by measur-
ing the arclength sz at which this corrugation reached a
glvcll llclght of, say, 4% of tllc tip curvature. Tllls 11111lt-

ing distance remains relatively constant for successive
runs with the same ds and dt. However, the distance
grows as ds and dt are reduced. That is, corrugation of a
given height moves back from the tip as the simulations
are made more accurate.

This corrugation is just sidebranching activity trig-
gered by noise. The noise is generated in the numerical
scheme by truncation error. As ds and dt are reduced the
discretization error becomes smaller and the resulting
noise is decreased. Starting with a smaller noise level re-
quires a longer distance for this noise to be amplified to a
given height. Thus, s~ increases as ds and dt are reduced.
As will be seen below, this is the same mechanism that is
proposed for the generation of sidebranching, except that
the noise is thermal in origin.

As an example of this numerical noise consider
6=0.9, @=0.1, and A, =0.0. The tip velocity and cur-
vature are v, =0.3410 and ~, =4.975&10 and the
characteristic time and distances are, respectively,

1/x'r+& =59 0 and pr =1/ar =20 1. For ds =0.10p
and dt =0.068m, sz is approximately 10p, . For runs with
ds and dt both half of this, sz becomes 17p, . Note that it
would seem reasonable for ds and dt to be a tenth of the
characteristic length and time scales, respectively. How-
ever, this leaves only a distance of 10p, back from the tip
at which the numerical noise results in reasonably small
efFects. Thus to simulate the BLM accurately for long
times requires a considerable number of points and time
steps. Thus, again, the finger appears to be a delicate
structure in its sensitivity to numerical noise. And, in the
same way, it is likely that considerable accuracy will also
be necessary in the simulation of the full model.

%'ith this careful treatment of the initial transients and
the numerical noise, it is clear that steady smooth tips
emerge from the dynamical simulations for moderate an-
isotropy. The third conclusion is that these smooth
steady tips are stable for all anisotropies above a critical
value. The stability of these fingers was observed by
making a small perturbation to the tip. If one of the
smooth steady tips is bumped once, by making a small
consistent change in three of the fields as described ear-
lier, an instability will develop. The instability manifests
itself in the form of a small wave packet on the side of the
finger and this packet grows and spreads. The develop-
lllcllt of tllls lnstablllty 111 K( s ) ls sllowll 111 Flg. 2 fol
b, =0.75, A& ——0. 1, and o.=0.0. The tip, which is at
s =0, has a velocity v, and curvature ~, of 0.2703 and
9.102X10, respectively. Here the tip was bumped at
t =0 by making a consistent change in the v„,h, and m
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fIelds at the tip. Here the velocity field was changed by a
factor of 0.01. Note the xy plot corresponding to a(s) at
t =2000 was given in Fig. 1. In the frame moving with
the tip, the packet moves away from the tip at about the
tip velocity and thus the instability is roughly stationary
in the laboratory frame. See Sec. VI for more details.

As the simulation is continued, no further instability
appears. Just a smooth tip with a steady velocity v, is ob-
served as the original grooving instability moves away,

down the tail, in the moving frame. However, this packet
is only swept out of the moving frame if it is not spread-
ing too quickly. The center of the packet moves away
from the tip at the tip velocity v, . But the packet also
spreads and each side of the packet acts like a front, mov-
ing out with a steady speed vf„„,relative to the center of
the packet. Recall that the center of the packet is rough-
ly stationary in the lab frame. For moderate anisotropy
vf„„,/v, &&1, the packet spreads slowly and the tip is
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FIG. 2. The evolution of the fjInger in rr(s) showing the development of the instability resulting from a single bump to the tip at
t =0. Here 5=0.75, A, =0.1, and a=0.0 and t = 10, 500, 1500, and 2000. These plots give the tip of the dendrite at s =0. The per-
turbation results in a packet which grows and spreads and moves back from the tip. Note that no further instability develops be-
tween the tip and packet.
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stable. However, as the anisotropy is reduced, vt„„„lv,
increases and eventually becomes greater than one. Then
the front spreads rapidly and encroaches on the tip. The
front velocity was measured from the simulations and the
critical anisotropy A i at which vt„„,/v, =1 was deter-
mined. At the critical anisotropy A; the front stays
alongside of the tip. That is, even though the packet is
moving away from the tip at the tip velocity v, the packet
is spreading at v, and hence sidebranchlike activity stays
alongside the tip. Below A

&
the front encroaches on the

tip and the tip is unstable. Fig. 3 gives a plot of the criti-
cal anisotropy as a function of h. In this way, the
dynamical simulations indicate that, in the moving frame,
the smooth needle fingers are stable above a critical an-
isotropy.

The critical anisotropy can also be seen in the behavior
of the tip velocity v, or, more sensitively, from the tip
curvature x, as a function of time. Above the critical an-

isotropy the velocity and curvature of the tip are steady
functions in time. Below A, , v, and ~, oscillate with a
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FIG. 3. The critical anisotropy is given by the solid line for
(a) kinetic and (b) surface tension anisotropy. The error bars in-

dicate the uncertainty in the critical anisotropy. The tip is
stable for anisotropy and undercooling corresponding to points
above this line. Tips corresponding to points below the line of
critical anisotropy are unstable. os& is given for the various pa-
Iamcter values n1arkcd by thc solid trlanglcs.

growing amplitude as the instability pushes into the tip
region. A similar behavior is observed in both the GM
(Ref. 6) and in the GM modified to prevent the interface
from crossing. In both cases, a decaying (growing) os-
cillation of the tip curvature is observed above (below)
the critical anisotropy for a given h.

Thus below the critical anisotropy A *, the tip will be
unstable, presumably to a tip splitting mode as observed
in the simulations with no anisotropy. Only at A &,

which has a strong dependence on 6, will the front
remain alongside the tip to resemble sidebranching.
However, experimentaIly, persistent sidebranching is ob-
served over a large range of undcrcoolings for a given
material and in a variety of materials with different aniso-
tropies.

At this point there are several possibilities. First these
local models may not be capturing the physics inherent in
the three-dimensional experimental results. It may turn
out that the sidebranchlike packet stays abreast of the tip
for a range of anisotropies. However, this seems unlikely
because the sidebranching packet is just a Mullins-
Sekerka instability on a relatively Bat interface and thus
spreads at a specific velocity determined by the normal
velocity of the side of the interface. It seems likely that
the same picture will emerge for the full problem.

Second, sidebranching could be triggered through a
small tip oscillation, as the tip velocity and curvature os-
cillate about some average value. However, no steady-
state tip oscillation has been observed in either the GM
or the BLM for A, p A; . Nevertheless, both of these
models are local in character and thus the full model may
yet display the oscillation. For example, the sidebranch-
ing activity couM effectively increase the radius of the tip,
resulting in a reduced velocity. Further, from the experi-
ments it is observed that the sidebranches recede from
the tip as the velocity is reduced and this in turn could
decrease the effective radius of the tip and hence increase
the velocity. Thus, in a nonlinear fashion, the side-
branching and the tip radius could couple through the
heat field to give a tip oscillation. This tip oscillation
would in turn drive the sidebranching activity. This pos-
sibility must await a better understanding of the full mod-
el.

III. THKRMAI. NQISK

Another possibility, proposed here, is that thermal
fluctuations near the tip may be adequate to trigger side-
branching. Thermal noise results in random fluctuations
in the heat contained in a given volume. To introduce
thermal noise, random changes were made in the thick-
ness of the heat layer h. Recall from Sec. II that this re-
quires corresponding changes in the velocity v„and sur-
face temperature tL). The changes were made in the form
of a Gaussian in s with width 2ds and centered on the tip,
where ds is the spatial step in the discretization. Thus
noise is only added to the tip; noise will be added along
the dendrite in Sec. IV.

Focusing on the changes in velocity, thermal noise was
modeled by making random changes in the tip velocity
5v, Iv, = (2x, —1 )f0 at random time intervals t =x 2to,
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where x, and x2 are random numbers between zero and
one. Here fo gives the maximum change in the velocity
and to/2 is the average time between changes. Corre-
sponding changes were also made in h and m as described
in Sec. II. Assuming that each random change 6v, aNects
the dendrite for a time dt, where dt is the time step in the
simulations, and then squaring and averaging over time
gives

less volume dsd 3I through
3

do
V = dsd3I =

Q3
(3.5)

Recall that in the BLM lengths are in units of do/6,
where do is the capillary length. The energy, (3.4), in
the boundary is changed by changing the volume,

(5v ) =vi —fo
22 dt

3 to
(3.1) do

5E =Lu, 5 V =L dsd 35h . (3.6)

The corresponding power spectrum is Hat out to
co, =(dt) ', which reflects the width of the perturbation
in time. In the simulations dt is typically of order 0.05 in
scaled units. Thus, electively, the noise is white.

The changes in h and w which correspond to the
change in velocity are given through (2.3) and (2.5),

Thus, through (3.6), 5h, the dimensionless heat per unit
length in the BI.M is related to the dimensional energy.
Note that ds, d3, and 5h are dimensionless; L is the latent
heat of fusion.

Now recall

CO
5h = —— 5v„,

5tU = —p(8)5v„.

(3.2)

(3.3)

(5E) =C,ksT V, (3.7)

where k& is Boltzmann's constant and where again V is
the dimensional volume and T is the temperature. Squar-
ing (3.6), equating to (3.7), and using (3.1), (3.2), and (3.5)
gives

At the tip, 8=0, which gives P(8) ~1—cos(48)=0, and
so changes in the surface temperature can be neglected in
what follows.

The next step is to calculate the change in the dimen-
sional energy 5E caused by the change in the heat bound-
ary 5h. The energy in the heat boundary is given by

(3.4)

L doT2=
C„k~

2 m ioi ds dt 2

3 +8 v, to
(3.8)

where tv, =1—5 x, and where v, and ~, are the velocity

where T, is the temperature of the interface, T„is the
temperature of the undercooled liquid far from the inter-
face, u, = ( T, —T„)/(L /C„) is the dimensionless tem-
perature of the interface and V is the volume of the heat
boundary.

Recall that the simulation is discretized in s.
Effectively, the noise changes h in the interval ds at the
tip. This change in h corresponds to changing the dimen-
sionless volume dsd3I, where I =it/(bio) is the thickness
of the heat layer and d3 is the thickness in the third di-
mension.

Recall that the BLM describes solidification in two di-
mensions. If we assume that the three-dimensional
fingers observed in the experiments are described by mak-
ing a solid of revolution out of the two-dimensional
BI M, then at the tip d3 =mds. A solid of revolution is
not really satisfactory for the sidebranches because exper-
imentally the sidebranches are not axisymmetric rings
but modulate the "branching sheets" which point out
from the main needle stem in four directions for fourfold
symmetry. ' However, the tip region is more or less ax-
isymmetric and so this approximation is adequate for our
estimate. Alternatively, in experiments which are
effectively two dimensional, the dendrite is constrained
between plates separated by a fraction of the tip radius

p, . Here d3 would be the separation of the plates. Thus
d3 would again be of order ds for in the simulations
ds/p, =0.1.

The dimensional volume V is related to the dimension-

ir)
O
O

I

O
I 0 200 400 600 8DO

S
1000

FIG. 4. sc{s) and xy plot of a Anger with noise added to the
tip as described in the text. Here again 5=0.75, A, =0.1, and
a=0.0 and t =2000. This is the same Anger as shown in Fig. 1

and in the last frame of Fig. 2 except that a stream of perturba-
tions has been applied to the tip rather than a single bump.
Note the continuous wave train emerging behind the tip in con-
trast to Fig. 2.
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IV. THK KMKRCjKNCK QF SIDKBRANCHING

In experiment, the distance back from the tip at which
the sidebranches become significant varies with both the
undercooling and the material parameters. Here these
results are compared to those observed in the simulations
of the BLM.

Sidebranching activity grows with increasing distance
back from the tip and, indeed, it grows exponentially, as
will be seen later. In order to quantify the emerging side-
branches, ssB is defined as the distance from the tip at
which the sidebranches reach some given height of, say,
the tip radius. This distance along the arclength can be
scaled by the tip radius,

SSB
0 SB= =~Seal

Pr
(4. 1)

In scaled units, dendrites for diferent parameters have
tip radii of unity and results can be compared directly.

For these simulations, thermal noise has been added
along the dendrite, the noise strength being weighted by
the thickness of the heat boundary. Recall that the Auc-

tuations at a given temperature decrease as the volume is
increased. Here it is assumed that a Auctuation must
occur in the full heat layer for it to affect the dendrite.
Since the heat layer becomes wider toward the tail, the
volume increases and the likelihood of Auctuations de-
creases. Assuming a constant temperature, (3.8) gives the
resulting noise strength along the dendrite,

3/2
m, v„(s)f (s)=fo (4.2)
v, w(s)

Simulations with noise along the dendrite are essentially
identical to those where noise was only added to the tip.
This indicates, as expected, that it is the noise in the tip
region that determines the structure in the tail.

At each of the discrete points along the interface the
same procedure for adding noise was followed as used
only at the tip in Sec. III, except now using f (s) in place
of fo. Namely, in random, time intervals, t =x, to, the
velocity at a point was bumped by 5v„/v„=(2x2
—1)f(s), where x, and x2 are random numbers between
zero and one and are chosen separately for each point

and curvature of the tip, respectively. The first group of
dimensionless parameters is approximately 1.6&10 K,
where L,C„,and do are those of succinonitrile. '

The typical simulation is shown in Fig. 4. Notice the
steady stream of sidebranching moving back from the tip
in contrast to the finger sho~n in Figs. 1 and 2 where the
tip was only perturbed once. Here ds =1.0, dt =2.0,
to ——20, fo ——1.0X 10 , b. =0.75, A, =0.1, v, =0.2703,
and x, =9. 102 &( 10 and this gives = 10 for the
second factor. As a result, the temperature is on the or-
der of a few degrees Kelvin, which is well below room
temperature and the melting temperature of succinoni-
trile. Thus the dendrite is quite sensitive to small levels
of noise. Admittedly, this estimate is crude but it does in-
dicate that therma1 noise may be adequate to account for
the triggering of the sidebranches.

U. ANALYTICAL DESCRIPTION
QF SIDKBRANCHING IN THE TAIL

In the tail of the dendrite, the sidebranching can be de-
scribed analytically as follows. Far down the tail the cur-
vature will be small and so the steady-state solution can
be approximated by an Ivantsov parabola,

~=v, (1—A)cos 8 . (5.1)

The procedure will be to find the equations describing
small deviations away from this solution. Solving these
equations for a single perturbation at the tip results in a
wave-packet-like disturbance on the side of the dendrite.

along s. Corresponding changes were made to h and tL) as
described in Sec. II.

In order to compare the values of o.sz measured from
Angers with di6ering values of 5 and 3

„

the simulations
were done with values of fo and to that ensured that the
dendrites were at the same eft'ective temperature. In oth-
er words, the temperature T in (3.8) should be the same
for all the simulations. Thus co~parison of diferent
values of o s& depends on the trustworthiness of the tem-
perature estimates given by (3.8). Rather than running
the simulations at a particular noise strength, it was more
convenient to run the simulations at a variety of noise
strengths fo corresponding to a variety of temperatures.
Then os& was measured for each temperature and the
o sB for the desired temperature was interpolated by plot-
ting log T against O. sa' . This relation comes from
(5.30) in the analytical work to be discussed.

Finally, the curvature v(s) shows the development of
the sidebranching much more clearly than do the xy
plots. As a result, it is more convenient to measure os&
from ~(s) and care was taken to relate the ~(s) results to
what would be observed in the xy plots. Indeed, in the
parameter region explored, this turns out to be straight-
forward and o sB was measured directly from the plot of
a(s).

The measured values for osa are given Fig. 3. There
are two e8'ects which can be observed. First, Os& de-
creases as the anisotropy is decreased at constant under-
cooling. This is as expected. Near the critical anisotropy
the sidebranches begin to encroach on the tip and, below
A &, cause tip splitting. Second, os& decreases as the un-
dercooling is increased at constant anisotropy. In Fig.
3(a) increasing 5 from 0.75 to 0.9 at A

&

——0. 1 does not re-
sult in a decrease in o.sB because of the compensating in-
crease in distance from the critical anisotropy as the un-
dercooling is reduced. However, in Fig. 3(b), increasing
5 from 0.8 to 0.9 does result in a decrease in 0 sB. In oth-
er words, the sidebranches move toward the tip as the un-
dercooling is increased.

This second effect is also observed in the experiments
of both Glicksman et al. ' and Gollub. Namely, as
the undercooling is increased, the sidebranches emerge
closer to the tip. However, as noted, the BLM is only
valid for large undercooling and so comparisons with
these experimental results for small 6 are made with
some uncertainty. Nevertheless, the qualitative behavior
of the BLM is encouraging.



3134 ROGER PIETERS 37

This packet is stationary in the lab frame and grows and
spreads and shows good agreement with the wave packets
observed in the simulations. Finally, from this, the
waveform resulting from a sequence of noiselike pertur-
bations is calculated.

To start, the equations wiH be written in terms of s,
making s a large parameter which corresponds to being
far down the dendrite. Note s =0 and 8=0 at the tip.
Next, convert to scaled units where distances are scaled
by the tip radius, p, =1/a„and times are scaled by the
time to move one tip radius, p, /v, . The purpose of this is
to make characteristic times and distances of order unity
so that structures can be compared directly. However,
for convenience, instead of sealing with the actual tip ra-
dius, the radius of the corresponding Ivantsov parabola
will be used, namely, p, = 1/a„where ~, =v, (1—5).
Another approximation to be used is that s =0 wiH be
measured from the Ivantsov tip rather than from the ac-
tual tip. This approximation is reasonable in that the dis-
tance from the Ivantsov to the actual tip is at most a cou-
ple of tip radii in the parameter region explored. Finally,
the effects of anisotropy in the tail region will be neglect-
ed.

Thus scaling gives

o=(1—b)v, s

~0(8)=v, (1—b, )cos'8,

which ln scaled units becomes

(5.6)

Ro(8)=cos 8 . (5.7)

To write the Ivantsov solution in terms of o, use (5.7) in
K =a8/ao. This gives

sin8,
1

1+sin6j+ —,
' In

2cos 8

For 8 near m/2,

o
2 cos28

which gives cos8=(2o) '~ . As a result,
' 3/2

1Ro(8)=cos 8= 2'
' 1/2

l
Vo(8) =cos8 =

20

(5.9)

(5.10)

(5.1 1)

In order to examine the sidebranching behavior, we do
a linear perturbation analysis around the steady-state
shape. In the limit of large o., far down the tail, the
steady-state solution becomes an Ivantsov parabola,

and as a result
ho(8) = =(1—b, )(2o )'~

Vp
(5.12)

h =(1 b, )v, h, re=a/—[( I —b, )v, ]

v=v]v~ )

where the subscript on the norma1 velocity has been
dropped. The equations for the BLM in the moving
frame become

rc + v — Kvdo', (5.2)
K

ao2 acT 0
2

1 a —9/4+O(o ) h, , (5.13)

Now perturb around the steady-state solution,
k =@0+A, and h =h 0+h „keeping terms to first order in

k& and h, . Further, keep only the terms which have
coeScients of high order in o, where o is assumed to be
large. After some algebra, the respective equations for R,
and h

&
become

2(1—h)h v,

(2o ) acr , +0( '")

h- (1—b) a ham
ao g ao

ah a'vao' .
0

(5.3)

and

+ +O(o ') h,

The normal ve1ocity and surface temperature are given
by

= —(1—b, ) 1+v, (1—b) (2o)'
Bo

(5.&) +O(o '
) K, . (5.14)

to =1—5 (1—b, )v, A (8)R—P(8)v, V,

where A (8)= 1 and P(8)=0 for neglect of anisotropy in
the tail region.

First, the third term on the left side of (5.13) can be
neglected. Recall that o is large and so this term will be
smaller than the 6rst two terms. A question that remains
concerns the size of the 8 /Bo factor. It will turn out
that
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=6), cx0
0

Now the time dependence of k, and h, will go as

(5.22)
where q and m, are defined below. Thus the approxima-
tion of neglecting the third tern1 is consistent. Note that
by the same argument the first two terms on the right
side of (5.14) are of the same order of magnitude and so
both are retained.

Now set ic, and h, equal to exp[i~r+iW(o)] and
make the WKB approximation that

where the method of stationary phase is used to approxi-
mate the integral. Here A (co) is assumed to be fiat in the
region of interest and hence corresponds to a single, ini-
tial sharp perturbation in time. Here m, is determined by

(5.23}

2
2a, . ..„.aw( )

&(e ) l e
acr

Defining q =(aW/acr ) and solving gives

2

(co+q) = — (1—v, e &2aq~),
20'

(5.15)

(5.16}

For convenience in solving this equation convert to the
variable u =v, e &2oco, where u is not to be confused
with the dimensionless temperature of Sec. II. Then solv-

ing in powers of the sma11 parameter o. '/ gives for
u ~

=v( E v 20M~, '

where «=(1 —b, ). This is a fourth-order equation in q
and can be written as

&3/2a+0(o ') .
2 4

(5.24)

2
V]E 2=1 — g —2NQ —N =0,
&2cr 20'

(5.17)

)1 /4
n +

&/2v
(5.18)

and hence

Recall that cr is large and thus 1/cr is a small parameter,
making the quartic term a singular perturbation. The
limit of o ~ m gives two of the roots q =~,co, which be-
con1e

q =co+[small term of O(cr '/i)],

when o is large. These are the roots of interest and will

be examined in detail below.
The remaining two roots result from a dominant bal-

ance between the quartic and quadratic terms. %orking
to first order

Thus u, is of order unity making co, of order o. ' and
hence the approximations discussed in connection with
(5.13) and (5.14) are consistent.

From (5.21) the time dependence of K, and h i can be
obtained by substituting cu, into tI} . First, using u„

' 1/2

v, «'&2cr

1/2
i (a —r)1+

2v, e'&2a 2v'2cr
(5.25)

+iC
1 i/4 . (a' —T) (o' —r)

I /4 & 3/4

where again only terms to first order in 0 '/ are re-
tained. Next, 1/co, and (1—v, «&2crco ) =(1—u, )

are found in a similar fashion. Finally, substituting into

P (co) gives the interesting result,

21/4 5/4

Wa )= J q der=+ —
i&&

(5.19) (5.26)

Thus e' ' ' corresponds to increasingly rapid spatial os-
cillations down the tail. These modes are highly stable
and will not be considered further.

Returning to (5.16), solving for q and keeping terms to
first order in the small parameter o ' gives

a@'(o } i= —co 1+ — (1—v, e &2crq
acr v 2o

X[1—(1—v, «&2on) )
/ ] . (5.21)

(5.20)

Thus to first order q = —m. Making this substitution for

q in the radical and integrating with respect to o. gives
W'(a) to first order in cr' Defining P giv. es

P =ivor+i &(o )

2 1
i cu(a —w)+——

VtE 6)

The coeScients e, , c2, and e3 are constants on the order
of unity and are independent of any parameters. De-
fining cz ——(1—&3/2)'/, then c, =(2 / /3 )(1—co),
cz ——(3' /2 ), and c&

——(3' /2' )(1+co/2) or 0.810,
0.782, and 0.164, respectively.

Recall that the perturbation in the curvature and heat,
k& and h „dueto a single disturbance at the tip is given

by e . Thus from (5.26) this disturbance develops in the
forn1 of a wave packet which remains stationary in the
lab frame. The third term of (5.26} gives the overall
shape of the packet, which is just a Gaussian centered at
o =v. o is measured from the tip and this means that the
packet is moving back from the tip at unit velocity,
which is just the tip velocity in the scaled units. Hence
the packet is stationary in the lab frame. Also from the
third term of (5.26), the width of the packet grows with
increasing o, namely, 5cr =(1—6)' v,' o /c,' . Thus
the packet spreads as it moves back from the tip. The
second term of (5.26) gives the wavelength with which
the packet is modulated, X= 2n ( 1 —b, )vI o' /c z,
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which also increases gradually as the packet moves back.
Finally the first term gives the overall amplitude of the
packet, which grows as 0'

As discussed earlier, (5.26) describes the response of
the dendrite to a single disturbance at the tip. Thus
exp(P ) represents the Green's function. Taking the
Fourier transform

(5.27)

g1ves

(5.28)

fraction. At the same time, h and m at the tip were
changed to keep the equations consistent as described in
Sec. II. As a result of this bump a small wave packet
moves back from the tip, and this packet gro~s and
spreads. Eventually, as the packet develops, the simula-
tion comes to a stop due to grooving of the interface.
Figure 2 is a plot of «(s) at a variety of times, showing the
development of the wave packet. To analyze the wave
packet, the extrerna in «(s) were measured. These points
de6ne an outline of the packet and the spacing of these
points determines the wavelength. The measurements on
the outline of the packet and the wavelength were then
converted to scaled units. Recall that s and t are arc-
length and time, which in scaled units become cr =s/p,
and r = t v, /p„respectively.

where 6, is some constant. Now

(5.29)
A. Velocity of the packet

where
~
g(co)

~

gives the power spectrum of the noise.
From Sec. II, osa is the scaled distance from the tip at
which the sidebranching activity reaches a given ampli-
tude in xy space or, in the parameter region explored,
where «(s) reaches a scaled height «0 Thus. the second
result of interest,

(l —b) v,
c sB-—,ln'(«0'G,

I
rl(~)

l

')
16c I

(5.30)

Here c&, ko, and 6, are constants. From considera-
tions similar to those in Sec. III,

~
rI(co)

~

is proportional
to the factor L d /o«Cs„T5; for a related example see
Ref. 23. %'ith the temperature constant, o.

s& goes as
v, ln (b, ). Two trends are observed. First, the depen-
dence of O.sz on the velocity is consistent with what is ob-
served in the simulations. Note that the velocity de-
creases as the anisotropy is reduced. At the same time
the sidebranches emerge closer to the tip as the parame-
ters move closer to the critical anisotropy. Thus O.sg is

observed to decrease as the velocity is reduced. On the
other hand, while the velocity becomes larger with in-
creasing 5, the tip also becomes smaller and hence more
sensitive to noise. This is reflected in the 5 factor in
(5.30). Thus (5.30) reAects the trends observed in the
simulations.

VI. COMPARING ANALYTICAL AND NUMERICAL
RESULTS

Equations (5.26) and (5.30) have been checked with the
results from the dynamical simulations. First, for (5.26),
this mas done for various parameters; see Table I. For
the remainder of this section the 6gures will only be
shown for one choice of parameters, ~=0.75, ~, =0.1,
and o;=0.0; the 6gures for the others are similar. The
selected shapes, which have been run to remove the nu-
merical mismatch as described in Sec. II, were used as the
initial condition. Provided ds and dt are small enough,
they will grow for long times maintaining the smooth
selected shape. Here a single perturbation was applied to
the tip by changing the velocity v„atthe tip by a small

First, the velocity of the packet was determined by
measuring the position of the maximum in the outline of
the packet as a function of time. There are two issues to
address. One is to compare the position of the packet ob-
served in the dynamical simulations to the analytical re-
sult. The second is to ask whether the packet is station-
ary in the laboratory frame.

The position of the maximum in the outline of the
packet is plotted in Fig. 5. The measured velocity of the
packet v~ for the various parameters is given in scaled
units in Table I. From the analysis, as given by (5.26),
the packet has a velocity of 1 and an intercept of 0, both
given in scaled units and represented by the solid line in
Fig. 5. First, the measured intercepts are all of the order
of —1 in scaled units. These are small compared to the
total run times on the order of 100. This small negative
intercept probably results from the packet moving quick-
ly through the highly curved tip region. Recall that the
analysis is only valid for regions far from the tip and
hence the intercept, from the analysis, is not expected to
be correct. Next, note that the slope and hence the veloc-
ity of the packet v measured from the simulations is re-
markably steady, even well into the regime where the
packet begins to distort. The measured velocity is, how-
ever, consistently about S%%uo lower that the velocity given
by the analysis. Remember that the analysis involves
considerable simplification and small efrects may have
been neglected, a possible example of which is given
below. Overall, then, there is reasonable agreement be-
tween the analysis and the simulations.

Now turn to the question of the velocity of the packet
in the y direction. Note that the maximum in the packet
is being measured in «(s). As the curve becomes articu-
lated the arclength no longer provides a good measure of
distance in xy from the tip. In other words, the measure-
ments in «(s) are only legitimate for deformations which
are smail in xy space. Figure 1 shows a typical xy plot
for the longest time considered. %hile the packet is
clearly shown in «(s), it is barely visible in xy space and
the approximation of using «(s) is reasonable. Further, it
is assumed that O=n. /2, so that the packet is moving
back almost parallel to the direction in which the tip is
growing. Again from Fig. 1 this is reasonable. The actu-
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TABLE I. A single bump applied to the tip of the finger results in an instability packet on the side of the dendrite. For three
difFerent fingers, various characteristics of the packet, which are predicted by the analysis, are compared to those measured from the
simulations. See Sec. VI for more details.

Undercooling 5
Kinetic anisotropy 3,
Surface tension

anisotropy o;

0.5
0.5
0

1

0.942+0.003

0.9
0
0.1

1

0.94+0.01

0.75
0.1

0

1

0.967+0.001

Slope of ln(X) vs 1n~

0.25

0.24+0.02

0.25

0.3+0.1

0.25

0.23+0.02

Xo

A,o from intercept
1.91
2.04+0.2

0.46
0.97+0.2

1.04
1.34+0.3

Slope from (6.4}
Slope of ink, „vsv'~

3.304
2.66+0.02

13.66
13.57+0.05

6.180
6.6+0. 1

Slope of ln50. vs g

0.375

0.437+0.003
0.375

0.2920.02
0.375

0.50+0.01

boo
50o from intercept

1.977
2.35+0.03

0.971
1.4%0.2

1.465
1.42+0.04

al velocity is thus at most a few percent lower than the
velocity measured from the arclength 0.

For the packet to be stationary in the lab frame, it
should be moving back from the tip at the tip velocity v„
which is one in the scaled units. The packet velocities v

given in Table I are a few percent less than unity and

when the approximations mentioned earlier are con-
sidered, the velocity at which the packet is moving back
from the tip is about 10% less than the tip velocity. Note
that measurement of the position of the two fronts—
relative to the maximum in the packet —indicates that
the packet remains quite symmetric. However, the

50 600 10 20 30 40
7

FIG. 5. The position of the center of the packet as a function of time. The packet measured is shown in Fig. 2. Here both position
and time are given in scaled units. The slope determines the velocity of the packet v~ away from the tip. The solid line given by the
analysis has a slope of unity, predicting that the packet moves back from the tip at the tip velocity v, . The dashed line is the best fit

through the data and has a slope v~ which is slightly less than one. For v~ see Table I.
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growth rate on the side of the packet closest to the tip
may be slightly higher than on the other side and this
may tend to move the center of the packet toward the tip.
Nevertheless, this effect is small. Thus the packet is
roughly stationary in the lab frame, though it is being
dragged along a bit by the tip.

X=2m(1 —b, )v' o' /c (6.1)

For convenience, set a. =v r, where v is the velocity of
the center of the packet. Here v, as given in Table I, is

approximately unity. Taking logarithms gives

lni = —,
' in'+ in&70, (6.2)

where Xo ——2m(1 —b, )v,'~ v~ /c2.
In the simulations the wavelength is not constant

within a packet. The center of the packet has the largest
wavelength and the wavelength decreases on either side.
This effect is absent from the analysis. The simulations
are most likely beginning to grow out of the regime
where the linear analysis holds. Indeed, the relative

8. Wavelength

Secondly, the wavelength of the packet was measured
as a function of time. Recall that the predicted wave-
length in scaled units is

change of wavelength within a packet increases as the
packet grows.

Since the packets are quite small, covering only a limit-
ed region of arclength, the wavelengths were averaged in
each packet and in Fig. 6 ln( X ) was plotted as a function
of time. The error bars give the deviation for the wave-
length within each packet. Note also that the wave-
lengths were measured out to 1% of the rnaximurn peak
height. Thus, as the packet grows, new wavelengths
enter the measured packet and this gives the slight oscil-
lation about the average which is observed in these plots.
Alternatively, the wavelength of, say, the central peak
can be used and similar results are obtained.

Table I provides the slope and the factor of A,o comput-
ed from the intercept. Note the considerable error in the
slope and Xo for 5=0.9, A, =0, and a=0. 1. From Fig.
3 this set of parameters is relatively close to the critical
anisotropy and as a result the tip is more sensitive to
noise and the packet grows relatively quickly. Hence the
spread of the data points in time is smaller and the slope
and intercept less well resolved.

The slopes clearly confirm to within 10% the exponent
of 1/4 in cr with which the wavelength coarsens. The fac-
tor of Ao also shows reasonable agreement with the values
of A,o predicted from the analysis, confirming the value of
cz to within =15%.
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FIG. 6. The average wavelength of the interface inside the packet as a function of time. The packet measured is shown in Fig. 2.
Again, both wavelength and time are in scaled units. The solid line is given by the analysis and the dashed line gives the best fit

through the data, The solid line is shifted because of the slight error in both the intercept and slope of the data. Note the slope is
clearly —„',confirming the ~'/ dependence predicted by the analysis.
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C. Height

Equation (5.26) gives the height of the packet in R(o ),

1 1/4k~~~= C exp 0'
(1—h)Qv,

where C is some constant. Taking logarithms gives

1/4

(1—b, ) v,
(6.4)

The maximum height of the outline of the packet in R(0 )

was measured and 1nk,„was plotted against ~' as
shown in Fig. 7. In Table I the measured slopes are com-
pared with those given by the analysis. Note that for
later times the packet begins to distort, with the center of
the packet becoming tall and narrow. This accounts for
the upturn at longer times in Fig. 7. The distortion can
also be seen in the last frame of Fig. 2. Note that for
these longer times the amplitude of the instability is
becoming large and the instability is moving beyond the
regime where the linear analysis holds. Thus distortion
in the packet is not unexpected as nonlinear efFects begin
to play a role.

The analysis predicts that the height of the packet will
grow like o' . The fjtt between the data and the analysis
as shown in Fig. 7 is good. However, the question is to

what extent this data distinguishes between an exponent
of 1/4 and another exponent of, say, 1/2 or 1. Here,
plots of lnam, „against r are reasonably straight for a in
the range of 0.2—0.7. However, the good quantitative
agreement of the measured slope with that from the
analysis seems to be strong evidence in favor of having
obtained the right analytical form.

D. W'idth at half height

where

4 ln2(1 —h)v' vt p

C3
(6.6)

The width of the outline of the packet at half height was
measured and ln5cr is plotted as a function of ln~ in Fig.
8. Table I gives the slope and 5a o for the various param-
eters and compares them to the values predicted by the
analysis. Note that the plots, as can be seen from Fig. 8,
are quite straight. However, the measured values of the
slope are not that close to the power of —', predicted by the
analysis. Despite the relatively straight lines and the re-

—QO'For a Gaussian, e, the width at half height is given
by 5a =2&ln2/a. Using (5.26) to determine a gives

(6.5)

X
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FIG. 7. The height of the maximum in the outline of the packed as a function of time. The packet measured is sho~n in Fig. 2 and
the height and time are given in scaled units. The solid line gives the slope predicted by the analysis and is drawn with a convenient
intercept. Note the good agreement of the slopes.
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The last four measurements have dealt with the insta-
bility packet resulting from a single perturbation of the
tip. Now consider the wave train resulting from a stream
of perturbations or noise acting on the tip. %ith the
presence of noise, (5.30) gives crsz. Recall from Sec. II
that o.sz is the distance from the tip at which the side
branching grows to a certain threshold, here taken to be
one tip radius. os& was measured for a variety of noise
strengths fo. From Sec. III the noise strength

~
rI(co)

~

is proportional to fo . Substituting into (5.30) gives

(1—b, ) v,
crsn —— ln (Cf0 ),

16e',
(6.7)

where C is some constant. Taking the fourth root,

suiting small errors for the measured slope and
intercept —here the error is given by a least-squares
analysis of the data —the measurement of the width of
the packet depends sensitively on the shape and height of
the packet. As the packet develops it may be distorting
slightly, thus resulting in a faster growth rate of the
width than predicted by the analysis. Nevertheless, there
is general agreement.

2cj
lnf o+ 2c i

I/2

inc . (6.8)

Figure 9 is a plot of o sn against lnf—o for 6=0.75,
A, =0.1, and a=0 with ro ——20 and fo from 5&(10 to
5 g 10 . Here noise was added only to the tip; the slope
remains essentially the same when noise is added along
the whole dendrite. The measured slope is 0. 174+0.02
which compares well with (1—h)vt~ /c, =0.161. Simi-
lar good agreement is obtained for a variety of other pa-
rameters, con5rming the analytical result.

Overall, some diSculty is encountered in measuring
both the shape of the packet resulting from a single dis-
turbance at the tip and in measuring the o sz due to a
stream of noiselike perturbations in the tip region. As
mentioned, the shape of the packet is determined from
the extrema in a(s). However, when the packet is small
there are few extrema and this introduces uncertainty
into the exact shape. But when the packet is larger and
its overall shape is more readily determined, nonlinear
efFects begin to play a role. Also, the perturbation in the
numerical simulations must erst traverse the tip region
while the analytical results deal only with large o. Nev-
ertheless, the agreement between the numerical simula-
tions and the analytical work is reasonably good„ indicat-
ing that the analytical results are capturing the initial
sidebranching dynamics.

~g 0~S

~$

3.7

FIG. 8. The width of the packet at half height as a function of time. The packet measured is shown in Fig. 2 and the width and
time are given in scaled units. The solid line is given by the analysis and the dashed line is a fit to the data. See Table I for the value
of the slope and intercept.
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2.5 4.5 8.5 10.5

FIG. 9. ass' as a function of 1nfo for 5—=0.75, 2, =0.1, and a =0.0. Here fo is the noise strength and o ss is the distance from
the tip at which the sidebranches reach a height of ~, . The solid line gives the slope predicted by the analysis and is drawn with a
convenient intercept.

VII. CONCLUSION

Experiment lends support to this picture of noise gen-
erated sidebranching. Considerable experimental work
has been done by Glicksman et al. ' and more recently
by Dougherty et al. ' on a single dendrite growing in an
unconstrained environment and covering an extensive
range of undercoolings. The velocity and radius of the
tip and the sidebranching behavior have been carefully
observed for these three-dimensional dendrites. The
work by Dougherty et a/. ' resolves the solid-liquid in-
terface with great accuracy and focuses on the side-
branching in the tip region.

First, no oscillation of the tip velocity is observed.
Second, a plot of the amplitude of the sidebranching at a
given distance back from the tip is oscillatory, but inter-
mittent: The Fourier transform has a rather broad peak
about a given wavelength. Thus, rather than simply ob-
serving steady, periodic sidebranching as would be ex-
pected with a tip oscillation, the sidebranching has inter-
mittent breaks and shifts in the oscillating wave train.
Third, with a tip oscillation, the sidebranching on oppo-
site sides of the dendrite would tend to be correlated,
especially near the tip. However, no significant correla-
tion is observed. Finally, from the careful measurements
made by Dougherty et al. ,

' the rms amplitude of the
sidebranching is observed to increase exponentially from
the tip and there is no apparent onset of sidebranching.
These provide reasonable evidence for a noise-dependent

mechanism.
Here, only thermal noise has been considered. Other

types of noise are possible as well, such as fluctuations in
the solidification rate or perturbations produced as de-
fects are incorporated into the solid. Indeed a tip oscilla-
tion could itself act as a sort of regular perturbation
which in turn continually triggers the MS instability in
the tail, thereby giving rise to sidebranching. Or more
speculatively, if the inherently nonlinear tip dynamics
turns out to be chaotic in the parameter regime of in-
terest, this too could provide the noise required for per-
sistent sidebranching. This, of course, assumes that a
dynamical tip oscillation would have a small amplitude
and that it would act only to trigger the MS instability on
the side of the finger. Alternatively, the oscillation could
be large enough that its frequency would dominate in
selecting the wavelength of the sidebranching and this
would result in correlation of the sidebranching on the
two sides of the dendrite.

%'hile the bulk of experimental work confirms a noise-
dependent picture, note should be taken of some —so far
limited —experimental work under special conditions
where noise amplification is clearly not the mechanism.
First, dynamical oscillations have been reported for den-
drites that are electively two dimensional and grown at
low undercooling. ' In these experiments the dendrites
are constrained between two glass slides which have a
separation on the order of the tip radius. Regular den-
drites are observed at higher undercoolings. As the un-
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dercooling is reduced, a tip oscillation with periodic and
correlated sidebranching is clearly observed. However,
no systematic study of these oscillating states has yet
been done. There remain uncertainties, such as the possi-
bility of impurity effects, and there are also difFiculties
with experimental work at low undercooling because of
the large di8'usion length; see Ref. 1. The tip oscillation
may be related to the instability of the tip described in
Sec. II as the critical anisotropy, or here the critical un-
dercooling, is reached. From Fig. 3, as the undercooling
is reduced at constant anisotropy, the sidebranching
spreads more and more quickly until, at the critical un-
dercooling, the sidebranching spreads quickly enough to
stay abreast of the tip and result in a tip oscillation.
However, this occurs only at one specific undercooling.
Detailed experimental work is needed for comparison.

Also, in directional solidification, as the many parallel
cells begin to form into dendrites, there is a clear correla-
tion of the emerging sidebranches across the field of view
which includes tens of fingers. Here, of course, the den-
drites interact strongly with each other and this may pro-
vide a basis for a dynamical oscillation.

Thus the bulk of the experimental work with single,
unconstrained, and hence three-dimensional dendrites
supports the noise amplification mechanism. However,
as mentioned, there is also preliminary evidence that, un-
der certain conditions, dynamical oscillations are ob-
served. This is not unreasonable. From the BLM it was
seen that the tip is very sensitive to perturbations and this
sensitivity can easily lead to both type of mechanisms.

Note that only initial sidebranching behavior has been
explored. In experimental work, at about 10p, from the
tip, the sidebranching wavelength coarsens through com-
petition. Here, some branches begin to slow down rela-
tive to neighboring branches and eventually they are left
behind. This behavior is not dealt with by the analytic
work which considers only small linear perturbations,
nor by the numerical work as the approximations made
in the BI.M limit it to modeling a thin layer of heat. The
thickness of this layer does not remain small relative to
the curvature in well-developed sidebranching.

The main thrust here has been to examine the origin of

sidebranching. This work with the BLM indicates that
sidebranching emerges from the Mullins-Sekerka instabil-
ity of the relatively Hat sides of the finger and that this in-
stability is triggered by noise in the tip region. In the
frame moving with the finger, the instability resulting
from a single perturbation of the tip moves back from the
tip at roughly the tip velocity. This instability grows and
spreads but, above the critical anisotropy, the instability
spreads at a speed less than the velocity of the tip. Hence
the instability moves out of the frame moving with the
finger. For continuous sidebranching to be observed, the
instability must be continually triggered by noise in the
tip region. In other words the sidebranching pattern re-
sults from the selective amplification of noise. This con-
cept of a pattern depending on noise has also been dis-
cussed in the context of the Ginzburg-Landau equation.

Note that the packet observed on the side of the den-
drite is remarkably similar to that observed on a plane.
For example, the wavelength that emerges on the sides of
the dendrite is within 15% of the wavelength of the
fastest growing mode for a plane with the corresponding
velocity. This means that the initial sidebranching on the
dendrite is relatively easy to understand in an intuitive
fashion in terms of the Mullins-Sekerka instability being
triggered by noise. It seems reasonable to expect this to
carry over to the full model.
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