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Power-law mass distribution of aggregation systems with injection
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We introduce a new family of aggregation models with constant interjection. In our models, the
asymptotic distribution of particle mass, s, always follows a power law, P(>s)xs % where
% <a< % It is clarified that this power law is realized by a balance of two effects, injection and ag-

gregation.

I. INTRODUCTION

The aggregation phenomenon is one of the most typi-
cal irreversible processes, and has a long and steadily
continuous history in statistical physics going back to the
pioneering works of Smoluchowski.! In recent years, it
has attracted much interest along with the extensive stud-
ies carried out on fractals.? Aided by powerful comput-
ers, our knowledge about aggregation is now increasing
very rapidly.

We can find two interesting aspects of the aggregation
phenomenon, considered from the viewpoint of fractals.
One is the geometrical structure. The structures of
diffusion-limited aggregates® and cluster-cluster aggre-
gates* have been studied intensively and found to be well
described by fractal geometry. The other is a scale-
invariant statistical quantity, that is, the power-law size
distribution. In the aggregation problem we often en-
counter a distribution which follows a power law. The
best-known example is the distribution of cluster size at a
sol-gel transition point.” The power-law size distribu-
tions are experimentally found not only at a critical point
but also in many other aggregation systems, such as aero-
sols.® There may exist a wide class of aggregation sys-
tems which give the power law.

Recently, a general statement relating to this problem
was proposed by one of the authors (H.Takayasu) and
collaborators that “‘constant injection of small particles
makes an aggregation system asymptotically follow a
power-law mass distribution.” This statement has been
confirmed theoretically under a mean-field approxima-
tion’ and numerically in a one-dimensional system of
shock-wave aggregation.® Such a statement was first
pointed out by White® who studied steady-state solutions
to coagulation equations of the mean-field type.

In this paper, we introduce some random aggregation
models with injection, and show that, as expected, all of
them asymptotically approach statistical stationary states
where the particle mass distributions obey power laws.
In Sec. II, we introduce two basic models. The definition
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of the models and the numerical results are given in Sec.
II A. Theoretical analyses of both models are performed
in Secs. II B and IIC. In Sec. III we discuss some gen-
eralization of the model. Section IV is devoted to a short
summary.

II. BASIC MODELS

A. The basic models and results of the computer simulation

We consider simple models of random aggregation.
For convenience, in computer and theoretical analyses,
every quantity in our models is discretized. That is, par-
ticles with integer mass are placed on each site of the
one-dimensional lattice, and they aggregate by random-
walk processes with discrete time steps.

The time evolution of our models is defined by the fol-
lowing procedure: At the beginning of each time step,
there are particles on every site of the lattice. All of them
independently jump to randomly chosen sites according
to a given probability. If two or more particles come to-
gether at a site after the jump, they are combined to form
a new particle with a conserved mass. Then, a particle
with unit mass is added to every site. Thus the evolution
of one time step is completed and we repeat this process
of aggregation without considering any fragmentation.
As a result, there is nonzero integer mass on every site at
every time.

The above dynamics can be represented by the follow-
ing stochastic equation for S;(n), the mass of the particle
on ith site at time n:

j

where W;;(n) is a random variable given by

1, with probability g (i —j)

0, with probability 1—gq (i —J) . 2)

Here W;;(n) denotes the realization that the particle on
the jth site jumps to the ith site at time » and that
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g (i —j) is its probability of occurrence. Hence we need
the following two constraints:

The system is translationally invariant, and all the parti-
cles jump in the same way, independent of their masses.
Note that we neglect the geometrical structure of the par-
ticles.

In this section we analyze the two simplest cases: case
A,

1, fori,j=0or1

q(i,j)= .
0, otherwise ;
case B,
q(i—j)=1/N,

where N is the total number of sites. The boundary con-
dition is periodic in both cases. We choose the initial
condition as S;(0) equals 1 for all i.

In case A, particles jump, at farthest, to their nearest-
neighbor sites as shown in Fig. 1. Figure 2 shows the
corresponding trajectories in (1 + 1)-dimensional space-
time. There, we can find interesting dendritic structures
such as rivers. Actually, this model has been shown to be
equivalent to Scheidegger’s model of rivers. !°

This model also has a profound relation to the “voter”
model.!! The votor model is a model composed of ran-
domly interacting “frickle voters.” Each votor has a
favorite candidate but he easily changes his mind if he is
told by a neighbor that another candidate is better. If we
place all the voters in a line, the propagation of an
opinion can be illustrated by a diagram exactly identical
to Fig. 2 with reversed time axis.

Another obvious connection can be found with direct-
ed percolation and stochastic cellular automata. Our
model of case A is equivalent to the special case
of Domany and Kinzel’s model'> with P(1]0,0)=0,
P(1|1,1)=1, and P(1|0,1)=, where

P(vi,z+l | vi-l,nvi+l.r)

denotes the conditional probability which governs the
time evolution. This case is just on the phase transition
point and the model is known to show some critical be-
haviors.

o 0
T TS R

FIG. 1. In case A, the particle at the ith site stays at the same
site or jumps to the (i + 1)th site with probability %
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FIG. 2. An example of particle trajectories of case A. It is
drawn in oblique coordinates in order to show that this model is
equivalent to the model of rivers.

In case B, each particle jumps to any site with equal
probability. So, contrary to case A, there is no spatial
effect.

The existence of the injection of unit mass particles is
critical for asymptotic behavior of the system. Without
injection, the number of particles decreases with time and
the density of particles approaches zero. Moreover, in
d <2 dimensions, the system will finally reach the trivial
state where only one particle possesses the total mass.
The injection keeps the system nontrivial by filling up va-
cant sites. As is shown in the following, our system
asymptotically approaches a statistically stationary state.

We analyze a few statistical properties of the systems
at sufficiently large n. Especially, we focus our attention
on the distribution of particle mass,

1 s+ds ,
p(s,n)ds—_-—ﬁ;fs ds'd(s;(n)—s’") . (5)
The results of computer simulation are shown in Fig. 3.
Here we plot the cumulative distribution,
P(>s5)= ["p(shds’, (©)
instead of p (s). In both case A and case B, we obtain the

following power-law asymptotic distribution independent
of initial conditions;

P(>s)xs™®, (7

where the exponent is given by

DISTRIBUTION P(Z'S)

10" 103 10° 107
SIZE S

FIG. 3. The cumulative mass distribution of case A after
sufficiently large time steps. It clearly obeys a power law. The
cutoff size (about s =107 in this figure) tends to be shifted to
infinity as the time step becomes larger and larger.
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= 0.331£0.006 (case A) (8a)
0.499+0.009 (case B) . (8b)

In Secs. IIB and IIC, we are going to discuss these
asymptotic forms of the mass distribution.

B. Theoretical analysis of case A

Instead of treating the distribution density p (s) direct-
ly, we introduce its Laplace transform, that is, the
characteristic function

Z(p,n)=(e )= i e Pp(s,n). 9)

s=1

The asymptotic behavior of P( >s) for s >>1 corresponds
to that of Z(p) for |p| << 1. More precisely, if the dis-
tribution behaves as Eq. (7), we equivalently have

Zp)=1+c|p|® (|p| <), (10)
J

r—1

> qli+k—je
k=0

—pRj(n)—p

J

Z,(p,n +1)~_—=< I1

r—1

+ 1= 3 qli+k—j)
k=0

HIDEKI TAKAYASU, IKUKO NISHIKAWA, AND HAL TASAKI 37

where c is a constant.
Although we hope to solve the problem with this

characteristic function only, the aggregation process

makes it impossible. Consequently we need to introduce

a set of r-body characteristic function {Z,] generally

defined as

—p(si1 +s,-2+ s )

Z,(p,n;iyiy, ... 0)=(e "y, (11)

where ( -+ ) denotes the average taken over the sto-
chastic variables {W,-j(m); m =0,1,...,n—1}. Excep-
tionally, in case A, owing to the short-range interaction,
it is sufficient to consider the following r-body charac-
teristic function Z,(p,n) for r-adjacent sites:
“P(si+si+l+.”:i+r—l))

Z.(p,n)=(e (12)

Substituting the evolution equation (1) into Eq. (12), we
obtain the basic equation for Z,(p,n),

])

(13)

=e PZ,  (p,n)+2Z,(p,n)+Z,_,(p,n)]/4 .

Furthermore, we can convert this time evolution equa-
tion into the following simple simultaneous equations for
r=1,2,3,..., by assuming that Z,(p,n) converges to
Z,(p) in the limit n — o0 :

Z, (p)+(2—4e™)Z,(p)+Z,_,(p)=0, (14)

with the boundary condition
Z,=(1)=1. (15)

The solution Z,(p) is readily obtained in the form of the
continued fraction,

Z,(p)= L .16

4ef -2 —

1

4e¥ 20— —
4ef -2,

In particular for |p | <<, this becomes
1

Z,(p)=

2+4+4p— 1

2

~1l+cp% a=0.333---, 17

where c is a constant. Here the value of a is obtained by
numerical calculation. Clearly, Eq. (17) is in good agree-
ment with the result of direct simulation, Eq. (8).

We can make the following geometrical and intuitive
explanation for this result. It should be noticed that the
mass of a particle is given by the number of connected
lattice sites which constitute a riverlike cluster in
(1 + 1)-dimensional space-time. That is, the mass distri-

bution in one-dimensional space is equivalent to the dis-
tribution of river size in (1 + 1)-dimensional space-time,
while the river size is equal to the area size of the
drainage basin surrounded by the left and right ridges
(see Fig. 4). Since those ridges are trajectories of Marko-
vian random walks, we have to estimate the size distribu-
tion of the area surrounded by two random-walk trajec-
tories. Roughly speaking, the area is proportional to the
product of its height (or vertical length) and width, and
the width is expected to be proportional to the square
root of the height. Hence, if we denote the area and its
height by s and A, respectively, we get

FIG. 4. The particle mass is equal to the area of the drainage
basin of the corresponding river pattern surrounded by left and
right ridges.
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sochh'2=p3"7 (18)

Since h can be regarded as the first collision time of two
Brownian motions, its distribution p (k) is approximately
given by the well-known recurrence time distribution of
Brownian motion in one dimension; '*

p(h)=(2m)~ V2 12y =372 p =372 (19)
Combining Egs. (18) and (19) we have
P(>5)as2/A=G/D+1_g—1/3 (20)

This result indicates that the exact value of a in case A is
1

Another approach to Eq. (13) is possible. Equation
(13) can be viewed as a difference equation with discrete
space r and time n. Therefore the continuation of Eq.
(13) formally leads to the following partial differential
equation for Z in the vicinity of p=0:

9Z 193z

< Za = _p;xz, @1

where the continuum variables ¢ and x correspond to n
and r, respectively. The first term in the right-hand side
comes from the effect of aggregation by the nearest-
neighbor random walk, while the second term comes
from the uniform input. In a steady state these two terms
are balanced to yield

1
2pxa 2

By introducing a new variable £ =p!/’x, we can eliminate
the explicit p dependence as

Z(p,x)— (p,x) . (22)

1
Z( x)=Z(p,x) , (23)
which leads to the following scaling solution:
Z(p,x)=F(p'x) . (24)

Assuming that the solution F is an analytic function, we
have the following expression:

Z(p,x)=co+c,p'*x +c,(p"*x)+ - . (25)

Now returning to the discrete variable r with the bound-
ary condition Eq. (15), we finally obtain

Z,(p)=l4c;p'+ - . (26)

This result also coincides with the previous discussions.

C. Theoretical analysis of case B

Since there is no spatial effect in case B, we can exactly
make a mean-field analysis. Time evolution of the mass
distribution function p (s,n) is given as follows by consid-
ering all possible realizations of the aggregation:

I1pGs;m)

+s,=si=1

N
pis+ln+1)=3 a, >

r=1 Sy, + e

(27)
with the boundary condition
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p(l,n)=a, (n>0), (28)

where the coefficient a, denotes the probability that r par-
ticles come together at a site, and it is given by
N—r

’ r=0,1,2,...,N.

r

a,=NC, 1“'

1 1
N N

(29)

Here {a,} satisfies the following two constraints. One is
the normalized probability conservation,

N
> a=1. (30)

The other is the particle number conservation held by the
uniform and persistent input of unit particles,

N
S ia=1. 31)

i=1

By Laplace transformation, Eq. (27) becomes the equa-
tion for characteristic function

N
Zpn+1)=e~" S a,Z(p,n) . (32)
r=0

If we assume the convergence to Z(p) at the limit of
n— o, Eq. (32) is reduced to the following algebraic
equation:
N
Z(p)=e=* 3 a,Z(p). (33)
r=0

This may be expanded in terms of a new function
y(p)=Z(p)—1. In the vicinity of p=0,

&2— N
I+y(p)=|1—p+ 7 — S a[1+y(p))
r=0
N N N _
=Ear+2rary+2 r(r2 l)ary2+."
r=0 r=1 r=2

(34)

Here, Egs. (30) and (31) make the coefficients of the y°
and y' terms in the right-hand side vanish, respectively,
and thus we obtain

y(p)«p'’?, (35)

which implies that the exact value of the exponent a in
Eq. (8)is

S
I

(36)

09—

The preceding derivation indicates that if the conserva-
tion of particle number is violated, namely, if the
coefficient of the y! term in Eq. (34) is not equal to zero,
we have y «p'; consequently, the mass distribution de-
cays exponentially. Therefore, we know that the injec-
tion in our model is essential for the power-law mass dis-
tribution.
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III. GENERALIZATION

In Sec. II, we proposed the aggregation model with in-
jection and proved that the asymptotic distribution of the
particle mass obeys the power law in the simple cases A
and B. Here, we generalize our model of case A in two
ways. One way is to extend the spatial dimension from 1
to a higher integer d, and the other is to enlarge the range
of jumps. In each generalization, the model contains one
new parameter, and the original model of case B is natu-
rally included as an extreme case. The aim for consider-
ing such a generalization is to elucidate the universality
of the results in cases A and B. In Secs. IIIA-IIIC we
report the results obtained by computer simulation. It is
shown that in both generalizations the distribution of
particle mass always obeys a power law, whose exponent
a changes continuously between the two limiting values
of 1 and 1, depending on each parameter.

A. The extension to higher spatial dimension

It is straightforward to define our model in a higher-
dimensional space. Let a site in d-dimensional Euclidean
lattice space by specified by i=(i,,i,,...,i;). On every
site there is one particle with integer mass and it is com-
bined with others by nearest-neighbors random walks.
This process can be expressed in the same way as Egs. (1)
and (2),

Si(n +1)=2W1J(n)sj(n)+l , (37)
j
1, with probability g (i—j)
Wijin)= [o, with probability 1—g (i—j) (38)
where the jumping probability is now given by
. 1/2%, iy=0o0r 1 forall k=1,2,...d
q(i)= . (39)
0, otherwise ,

which is independent of mass. After all of the particles
have jumped according to this probability, unit mass par-
ticles are uniformly added on all sites. Then the particles
which take a common site are unified to one new particle.
Repeating this process, in (d +1)-dimensional space-
time, we obtain clusters with treelike structures which
anisotropically grow in the direction of the time axis.
Note that, in contrast to the case d =1, the branches of
the tree can intermingle each others when d > 2, just like
branches of real trees do.

The results of numerical simulation are given in Fig. 5
and Table I, where the cumulative mass distribution

TABLE I. The spatial dimension d and the power exponent
of mass distribution a.

d a

1 0.331+0.006
2 0.465+0.003
3 0.491+0.007
4 0.496+0.010
5 0.500+0.005
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FIG. 5. The cumulative mass distribution for d =2 and 4.

P( >s) for several values of d are shown. We find the fol-
lowing interesting properties.

(1) Every distribution obeys a power law.

(2) The exponent of the power a increases with d from
1to L.
3 2

(3) There seems to exist a critical dimension d, above
which a takes the mean-field value, 1. The value of d, es-
timated from Table I is 4.

The properties (1) and (2) are definitive, especially proper-
ty (1) can be proved rigorously. We have also simulated
some cases with a slightly modified jumping probability
for each d. In any case, the value of a takes an almost
identical value as long as the range of jumping is short.
Hence we expect that a has such a universality that it is
uniquely determined by the spatial dimension d only. As
for the third statement, there remains some doubts since
we cannot precisely determine the value of ¢ with numer-
ical simulation. Some discussion about the critical di-
mension will be given in Sec. III C.

B. Extension to long-range jumping

Here we treat the random walk in one-dimensional lat-
tice space, whose jumping probability is given by

gieci P (—1<B). (40)

We choose such a power-law distribution because it has
no characteristic length. If the jumping probability has a
finite characteristic length, we expect that it can be re-
duced to the nearest-neighbor case by considering a suit-
able spatial renormalization. If this conjecture is correct,
we will have a power-law mass distribution with the ex-
ponent a=1 in such cases. We have simulated several
cases with Gaussian jumping distributions, and it is
confirmed that when the mean deviation of jumping is
much smaller than the system size, the distribution be-
comes a power law with the exponent very close to 1.
The new jumping probability, Eq. (40), includes the
previous two cases in Sec. II. Obviously B= —1 corre-
sponds to the mean-field case, case B. And in the limit
B— «, the new model becomes the nearest-neighbor case
since the probability of taking a long jump vanishes. Our
aim is to answer the following questions: First, does the
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a is the specification of the r-body characteristic function.
In general, the r-body characteristic function is defined
Z 05fee., by specifying r sites as Eq. (11). Consequently, there are
= ‘e as many r-body characteristic functions as the number of
@ AN combinations of r distinct sites. As a rough approxima-
o 04} . tion we neglect differences among the r-body characteris-
g ¢ R . tic functions and denote them simply by Z,(p,n). Then
o 03} we have an evolution equation for Z,(p,n),
(%]
< d
b
f Zr(pyn +1):e—pr _(A:‘erH(P,n)
u R . .
10 20 30 40 50
o b(r)
] EXP OF JUMPING PROB B + [1-2 N Z.(p,n)
FIG. 6. Relation between the jumping probability exponent 8 b(r)
and the exponent of power in mass distribution a. + N Z,_i(p,n)|, 41)

mass distribution follows a power law for any B8? If this is
true, then how does the continuous parameter 3 connect
the value of a from 1 to 1?

The results of our numerical simulation clearly give an
affirmative answer to the first question. Therefore, we
can determine the dependence of the exponent a on .
The relation of a and B are shown in Fig. 6. As expected,
a takes the value from J to | as a continuous monoto-
nous function of 8. Furthermore, we can find a critical
value for B below which a always takes the mean-field
value, % From Fig. 6, the critical value denoted by f, is
estimated as B, =1.

C. Theoretical approaches

Here we introduce some approaches to the preceding
generalized models. Since the problem is not so simple,
the theory is not complete, unfortunately.

First, we again consider the r-body characteristic func-
tion introduced in Sec. II B. In case A, Z, satisfies the
simple evolution equation, Eq. (13), which is, however,
quite exceptional. In the generalized models, the evolu-
tion of an r-body characteristic function is governed by
all the other characteristic functions because any number
of particles may jump into one site. That is, the evolution
equation inevitably becomes a set of an infinite number of
difference equations. We can formally write down the
equations, but it is too complicated to be solved directly.
Therefore, we introduce a simplification and an approxi-
mation.

So far, we let particles jump simultaneously every time
step; however, this synchronism can easily be proved to
be not essential. We have simulated the systems where
only one particle jumps at one time step. Then the evolu-
tion becomes necessarily very slow, but the obtained
asymptotic mass distributions are identical to those with
synchronous jumps. Hence, it is sufficient to consider
only one jump at a time step. This modification makes
the analysis much simpler. In such a case, an r-body
characteristic function at time step »n is governed only by
(r —1)-body, r-body, and (r+1)-body characteristic
functions at time step n — 1.

However, there still remains a complicated problem. It

where b (r) is a function intuitively defined as the expec-
tation value of the number of effective perimeter sites.
For example, in case A, b(r) equals 1 because the r sites
are compact and the jumps can reach, at most, a neigh-
bor site. In case B, all sites can be viewed as directly con-
necting to the other sites; hence, b (r)=r. In the general
models we anticipate the following functional form for
b(r):

b(r)«rd, 0<8<1. 42)

This assumption can be interpreted in geometrical termi-
nology as letting the fractal dimension of the perimeter of
the cluster D be given by

D =d§ , (43)

where d denotes the spatial dimension, and in the long-
range jump model, d =1.

A steady solution of Eq. (41) with Eq. (15) can be ob-
tained numerically. From the asymptotic behavior we
find the following relation between a and &:

-1
=3

As expected, a changes continuously and monotonically
from § to ; as 8 moves from O to 1. Results of Secs. III A
and III B indicate that § is a monotonous function of d or
B; however, its explicit functional form has not been elu-
cidated yet.

In the d-dimensional voter model, the following
asymptotic behavior is known for the distribution of life-
time of reputation:'*

a (44)

L2 d=1
p(>L)x {(InL)/L, d=2 (45)
L', d=3

where L is the lifetime of a repute which corresponds to
the height of a river denoted by 4 in Sec. II B. This quan-
tity has also a deep connection to Eq. (42) in the follow-
ing sense. Equation (41) can be viewed as a diffusion
equation in r space, which describes the Markovian
nearest-neighbor random walk of a fictitious particle on
the discrete positive space.'* The probabilities of going
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up (r—r +1) or down (r—r —1) are both proportional
to b(r). In this space, the area surrounded by the
particle’s trajectory and the axis » =0 is equivalent to the
mass s, and the length of the recurrence time is identical
to the reputation life time L and the height of river A.
Since the distribution of recurrence time of the fictitious
random walk should follow Eq. (45), the form of b(r) is
determined self-consistently as

const, d=1
b(r)ec ir/Inr, d=2 (46)
r, d=3.

Equation (46) with Eq. (44) implies that a={ for d =1
and a=1 for d >2. Thus we get d, =2 for the critical di-
mension, which does not agree with the numerical results
d.=4.

We have another fact which also suggests d,=2. By
using some statistical properties of random-walk trajec-
tories, we can prove the following relation:

24+(d/2)

, d<2
(sz(n))«[ 3 <

n°, d>2, “7

where S (n) denotes the size of a river which contains the
origin at n =0. This shows that the variance of mass dis-
tribution changes its behavior at d =2. Again this result
is consistent with a=1 ford =1 and a=1 ford > 2.

As for the long-range jump case, we first introduce an
effective dimension d 4 defined as

B>2

1,
der= ‘2/3, 2>8>0. “8)

Random walks with the power jumping probability are
called Levy flights,? which are fully characterized by d ¢
only. It can be shown that Eq. (47) is also valid if we re-
place d by d 5. This suggests that the critical dimension
of d.g is 2, or equivalently, that means B, =1, which also
contradicts the numerical estimation 3, = 1.

There seem to be two ways to cope with these discords.
One is to doubt the numerical results and the other is to
believe them. Although fluctuation of the value of «a is
estimated to be not so large, there might be a systematic
shift caused by the finiteness of the system size, which be-
comes more apparent in the long-range jumping case.
From a theoretical point of view, a is expected to be
when 3> 2 because in that region d.s=1. However, Fig.
6 shows only a very slow convergence to + as f— .
This overestimation of @ may be due to the finiteness of
the system size. That is, if the system size is comparable
to the random walk’s mean deviation, then the value of a
may be estimated large because of the mean-field effects
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among the sites within a distance of the deviation.
Therefore, the exact value of a in both generalized mod-
els might be a little bit smaller.

However, this systematic shift does not explain the
discords between theory and simulation at all. For if « is
smaller, then d, becomes larger and B, becomes smaller.
This is a negative correction. Finiteness of the number of
time steps can also be shown to work negatively on the
correction of exponents. Since we cannot find any mech-
anism in the simulation to make us underestimate the
value of a, we hence conclude from numerical data that
d, or B, cannot be 2 or 1, respectively.

As mentioned above, we do not have any satisfactory
theory for d, and B,; therefore, we would like to propose
our conjectures, d.=4 and B, =1, as open questions. It
might be stressed that, in view of Eq. (48), our conjec-
tured critical values are consistent with each other.
Moreover, it is known!® that a certain time correlation
function in the voter model is strong for d <4 and weak
for d >3, so there are some indications for d,=4. If
d.=4, B.=1 is really the case, our characteristic func-
tion analysis must fail (perhaps) because of the nontrivial
geometric nature of the clusters.

IV. SUMMARY

Without any injection, an aggregation system will final-
ly reach a trivial stationary state, that is, all particles will
stick together forming some giant clusters. On the other
hand, if small particles are continuously injected, the sys-
tem is expected to approach a nontrivial quasistationary
state where the rate of aggregation balances with the rate
of injection. In such a state the total mass and mean clus-
ter size are divergent; however, the cluster size (or mass)
distribution function may be convergent and physically
meaningful.

We have introduced and analyzed several random ag-
gregation models with injection, and shown that in all
models the mass distributions follow power laws in the
final quasistationary state. This result supports the gen-
eral statement that constant injection of small particles
leads an aggregation system to follow a power-law size
(or mass) distribution.
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