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Any proposed approximation to the ground-state kinetic energy of a system of noninteracting

fermions in terms of the particle density p(r) can be used to estimate the potential field U (r) that

will give rise to a given p(r), or the p(r) that will result from placing a given number of particles in

a given u(r), Comparison with exact quantum-mechanical calculations thus gives two possible

types of tests for any proposed kinetic-energy functional. This paper reports such tests for a re-

cently proposed nonlocal functional applicable to one-dimensional systems, comparing its predic-
tions for several simple problems not only with the correct answers but also with the predictions
of Thomas-Fermi and Thomas-Fermi-%eizsicker functionals, to which the new functional proves
considerably superior. The comparisons yield useful insights on the virtues and defects of the new

functional, and on the directions in which improvements should be sought. Particular attention is

devoted to Friedel oscillations and shell structure. It is shown that functionals of the Thomas-
Fermi-%'eizsacker type can never predict multiple maxima in p if v 11as only a single minimum and

no maxima; the new functional does not have this defect, though it yields density oscillations rath-

er weaker than the exact quantum-mechanical calculations. A natural general inference from the

present tests is that any satisfactory kinetic-energy functional must (as ours does) replace the entire
Thomas-Fermi term by a nonlocal expression.

I. INTRODUCTION

A previous paper' has discussed the problem of ex-
pressing the ground-state kinetic energy of a many-
fermion system as a functional of the single-particle den-
sity distribution and has argued that for an approxima-
tion to such a functional to be suSciently accurate to be
useful in typical practical problems„ it must be fully non-
local. Some general desiderata for such a kinetic-energy
functional were developed, and for the special case of
one-dimensional problems a particular functional with
promising characteristics was chosen for evaluation on a
number of examples. This functional approximates the
minimum total kinetic energy T consistent with a given
density distribution p(x, s) for particles of each spin s, by
the quantity T, defined as

m.2T= g T Ip(x, s)I+ I
s 6 " ."~ [g,(X,s)]2M(x, s)

where T is the %'eizsacker energy de6ned as

i dp(x, s)ldx
i

dx
oo p(x, s)

for spin s, and where for each s the integral is over the
set of all one-particle intervals x' to x'+Ex =x", each
labeled by its midpoint

(x'+x")/2=x,
and with

p xs x=1,
X

f dx
x' p(x, s)

In Ref. 1 the quantity g, was called the "remoteness" of
x " from x ', since it becomes large when there is a high
potential barrier between them. The upper and lower
limits of x, x,„,and x;„,respectively, are normally
+so, but may be 6nite if there are impenetrable con-
straining walls. Atomic units (8=m =1) are used for
brevity. In the earlier paper (Ref. 1, Table I) this func-
tional was shown to give kinetic energies for a wide
variety of problems within a few percent of the correct
ones. The object of the present paper is to explore the
accuracy with which one can infer from the approxima-
tion (1) either the single-particle potential v(x) from
which a given density distribution was derived, or the
density that arises from placing a given number of parti-
cles in a given potential. Since for each problem this is a
comparison of the entire course of a calculated function
with the correct function, it is a much more informative
test than the calculation of the total energy, which is a
single number for each problem. It will thus reveal
shortcomings of the present approximation and call at-
tention to ways in which it needs improvement.

As was noted in Secs. I8 and IC of Ref. 1, practical
problems are usually solved by a self-consistent-6eld pro-
cedure in which one computes a series of successive ap-
proximations to the particle density and to the effective
single-particle potential. The quantum-mechanical as-
pects of an approximation procedure can be introduced
either in the determination of the density going with a
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given potential, or in the determination of the potential
needed to produce a given density. Since our approxi-
mation (1) is formulated in terms of a given input densi-

ty p(x, s), the second, or "p~u" procedure is the one
that is more easily implemented. %'e shall devote Sec. II
to the derivation of an explicit expression for the varia-
tional derivative of the kinetic-energy expression (1) with
respect to the density, which, as discussed In Sec. I 8 of
Ref. 1 is, to within an arbitrary additive constant, the
negative of the single-particle potential which would
yield the given density. In Sec. III we shall present ex-
plicit evaluations of this expression for the particle den-
sities of a number of problems whose exact wave-
mechanical solutions are known —specifically, some of
the ones described in connection with Table I and Fig. 4
of Ref. 1. These will be compared not only with the
correct potentials, i.e., those used for the wave-
mechanical solutions, but also with the potentials that
would be inferred from the Thomas-Fermi approxima-
tion, with or without gradient corrections. Section IV
will take up the more difFicult but perhaps more interest-
ing problem of determining the density corresponding to
a given single-particle potential. To compute this using
the scheme of Eq. (1), it will be necessary to proceed by
successive approximations, a rather laborious procedure,
though no more laborious than what always has to be
done for real-world problems where the efFective single-
particle potential is not known at the outset. Section V
will summarize some of the lessons to be learned from
these comparisons.

II. THE POTENTIAL AS A

VARIATIONAL DERIVATIVE

A. Potential resulting from the approximation (i)

Let us consider the first-order variation of the two
terms of (1) when a small variation 5p(x, s) is made in
the density. If the variation is reduced to the form

5T= —g f 0(x,s)5p'(x, s)dx,
S

then 0(x,s) can be interpreted as the effective single-
particle potential for particles of spin s as given by the
starting approximation (1), since if the approximations
were indeed exact, 8'would be the true single-particle po-

5x'+5x"=0

and from (4),
II

p(x")5x'"—p(x')5x'+ f 5p(x)dx =0 .
X

From these and (5) we obtain

5(b,x)=5x"—5x'

=25x"=—2[p(x")+p(x')] ' f 5pdx,
X

{10)

5((i)
5x" 5x' f ~" 5pdx

p(x") p{x ) "' p
x"

p(x')p(x" ) x'

x" 5pdx
X P

Inserting these in the variation of the second term of (1)
gives a double integral on x and x in which 5p occurs
only as 5p(x).

To extract its(x) as the coefficient of 5p(x) in this last
expression, we must interchange the order of integration
on x and X. Since for each x, x runs from x'(x} to
x "(X), the region of integration in the xx plane is the
hatched area of Fig. 1. When the order of integration is
interchanged, the range of x for a given x is from a
lower limit x, (x) to an upper limit xb(x) as shown. The
coefficient of 5p(x) in the subsequent integration on x
gives, on insertion of the factor —m /6, the desired
quantity i}'s(x ):

tential. Since we shall be considering only problems in
which the potential is the same for both spins, we shall
henceforth consider only particles of a single spin and
for brevity shall drop the spin index s.

The two terms in (1) give separate contributions u

and u& to O'. The former, or %eizsacker, contribution
can be written down at once: It is [cf. Eq. (11) of Ref. 1]

2
1 dp 1 dp

4p dx gp dx

To evaluate the contribution U, we first need the vari-
ations of M and g. These involve 5p not only directly
but also through its effect on x' and x". For fixed x, we
have from (3)

ue(x }=— dx 2 1
— 2 — —. .. +

[g~(x)] M(x) bx(x)[p(x'}+p(x")] [g,(x)] p(x')p(x")

x&(x) 6(X+ {12)

The expression (12) is easily evaluated numerically for
any given function p(x) using the definitions (3), (4), and
(5). Note that since the integrands in (12) do not depend
on x, the values of the integrals for any x can be derived
from those for a neighboring x by addition of the incre-
ments due to changes of the limits.

Note that the approximation (12) reproduces an im-

portant property known to be possessed by the true
ue(x), that it is everywhere less than or equal to its value

at infinity. '
Since one of the conditions imposed in obtaining the

approximate functional (1) was that it should give the
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search which led to the second term of (1) as a plausible
candidate, one of the criteria used was that the approxi-
mate u should agree as closely as possible with the true
U for the case of an almost constant particle density
whose nonuniformities are treated to 6rst order. A
comparison of the Fourier coeScients of U& and the
present Ue was given in Fig. 3 of Ref. 1. Possession of
the explicit expression (12) now enables us to make the
corresponding comparison in coordinate space. Thus, if,
for a single spin,

IIx= xmir}

IX= Xrnax

p(x}=pa+pi(x»

with po constant and p1 small, we can write to 6rst order

U, (x}=U, 1+~p, (x)/p,

+ f Q(2k+
i
x —x'

i
)pi(x')dx'

CURV
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FIG. 1. Region of integration (hatched) for the double in-

tegral on x and x that results when (11) is inserted into the
second term of (1): (a) for a density p(x) that decays gradually
to zero as x~kao, (b) for a density con5ned between irnpe-

netrable barriers at x =x;„andx =x,„.
correct kinetic energy when the density is uniform or
departs from uniformity only slightly in a Fermi wave-
length, we would expect expression (12) to be exactly
correct in the limit of uniform p. Indeed one finds that
if p=po ax =1/po g'zi= 1/po' and

and a corresponding equation for Ue(x) obtained by om-
itting the tildes in (15); here uo is the Thomas-Fermi po-
tential npo/2 —for density po, measured relative to a
zero at the Fermi energy. To evaluate the constant A
and the Q from (12},we must use the first-order expres-
sions for M (x } and (2i(x ). These are easHy found to be

x + 1/2pp
lid = — f pi(xi )dx i (16)

Po Po "—'/2pp

x + 1/2ppf pi(x i )dx i (17)
po p20 x —1/2pp

The 6rst-order expressions for the limits of integration
are

r
X~ =X — + pi(xi )dx i

2Po 2Po

i)s= —77 po/2,2 2

which is the correct value.

(13)
x + 1/pp

xb =x + — f pi(x i )dx i
2Po 2Po

(19)

B. AN)proximate 1inear response in position space

In the search for satisfactory approximations Te to
the non-Weizsacker part Ts of the kinetic energy, a

I

x +1/pp
Curly bracket =3po —2psp i (x )——,

'
po pi(x i )dx ix —1/pp

With use of (16)-(19) the first-order expression for the
curly-bracket expression in (12) becomes, after partial
collection of terms,

x + 1/2pp x + 1/2pp x + 1/2pp——,'po f dx[p, (x —1/2po)+pi(x+1/2po)j+14po f dx f pi(x, )dxi . (20)

The last double integral can be converted to a single in-
tegral by interchanging the order of integration, so that
all terms of (20) beyond the first two take the form of in-
tegrals on x, of p, (x, ) times simple functions of
(x —x, ). After final collection of terms, the i}s of (12)
reduces in first order to an expression of the form (15},
with

(21)

(22)

7lu I
( iu i

(2n)
Q(2kF f

x —x'
f
}=Q(u)=

0 (fu i
)2m).
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ually decaying long-range oscillations. The latter defect
is related to the failure of the corresponding approxi-
rnate response function in Fourier space to reproduce
the sharp singularity of the correct response function at
wave vector 2kF. Correction of this defect would re-

quire use of a functional involving density correlations of
longer range than a one-particle interval, e.g., two-,
three-, etc. particle intervals.

I I I I I I ~ I I I I

4 6 8 lO l2
U

III. POTENTIAL FOR SOME GIVEN DENSITIKS

A. General course of 8'q(x)

FIG. 2. Exact and approximate forms for the position-space
linear-response kernel in one dimension, defined by (15). Full
curve, correct kernel Q(u) [Ref. 1, Fig. 2(a) and Appendix A];
dashed curve, kernel Q(u) given by (22), corresponding to the
approximate T of (1).

These may be compared with the corresponding quan-
tities for the linear-response behavior of the exact U&,

namely, A = ——', and the function Q(u) plotted as the
smooth curve in Fig. 2. It will be seen that Q gives
about as good a representation of Q as one could get
with a function of 6nite range and simple triangular
shape, but lacks certain 6ne features, especially the grad-

0

The integral (12) for the function 0's(x) was evaluated
numerically for a number of different densities p(x) cor-
responding to the exact quantum-mechanical ground
states of two, three, or four parallel-spin noninteracting
particles in various simple potentials U(x). Each such
Ue(x) was then added to the U„(x)given by (7) to yield
u(x), our suggested approximation to the true potential
U(x) associated with the given density distribution. Fig-
ure 3 shows, for six sample densities (graphs of these
densities are given in Fig. 4 of Ref. 1), the comparisons
of t)(x) (light solid curves) with U(x) (dark solid curves).
Also shown are plots of the potential UTF(x) given by
Thomas-Fermi theory, namely,
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FIG. 3. Sample comparisons of the "true" potentials U(x)
from which each of a number of densities p(x) were generated
for X noninteracting particles by wave mechanics {dark
curves), the corresponding approximate potentials 0(x) gen-

erated from the same p(x) by evaluation of (12} and (7) {light
solid curves), and the more familiar approximations UTF(x) [Eq.
(23), dashed curves] and UzF(x)+U (x)j9 (dotted curves).
Plots (a) and {b),box with impenetrable walls. Plots (c) and (d),
harmonic oscillator. Plots (e) arid (f), box with impenetrable
walls at x =+1 and a square barrier of 6nite height from
x = ——to —'.1

2 2'

FIG. 4. Comparisons, as in Fig. 3, of di8'erent potentials as-
sociated with the radial density p{x) of three noninteracting
particles in the 1s, 2s, and 3s states of an attractive Coulomb
potential. Shown are the "true potential" U = —1/x used to
generate p(x) (dark curve), the approximate potential U of (12)
plus (7) (light solid curve}, the UT+ of (23) (dashed curve), and
uT+ plus the full U of (7) {dotted curve}. Plots (a) and {b) show
the range of large and small x, respectively.
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u (x)= [5T—/5p(x)], 0(x)= [5T—/5p(x)] (24)

where the subscript minus sign means that the variation-
al derivative, which for the exact case is discontinuous
across any surface in density-parameter space corre-
sponding to an integral total number of particles, is to
be evaluated on the low-number side of such a surface.
With this definition u (x) is referred to a zero at the level

of the energy of the highest occupied single-particle
state. This convention has been used for the u (x) curves
in Fig. 3, but not in Fig. 4, where its use would shift the
u(x) curve upward by —,', hartree and make it almost

hide some of the other curves at large x.
I.et us consider for the present just the shapes of the

curves in Figs. 3 snd 4, without regard to their absolute
vertical positions. Several aspects of these shapes are
worth noting.

(i) The Thomas-Fermi potential u TF has two major de-

fects: It oscillates rather wildly because of the oscilla-
tion in p, even when the true v (x) is fairly smooth, and
it becomes fiat at the value zero (i.e., the Fermi energy)
in the tails where p is small if v is going to infinity.

(ii) Adding a fraction of the Weizsicker potential u„
to uTF improves the behavior in the tails, but at the cost
of worsening the oscillatory behavior. Since u„is known

to approach the correct u in the tails, addition of the
full U would give an excellent approximation here, but
usually horrible oscillations elsewhere.

(iii) The 0 obtained from (12) and u represents the
true U very well in two types of regions: In the tail re-
gions, where u exceeds the energy of the highest occu-
pied single-particle state and where the necessity for
quantum-mechanical tunneling has reduced the density
to a low value, and in Fig. 4 at the small-x end
(Coulomb singularity). This was to be expected since in
both types of regions it is easily shown that

~
08

~
&& ( u~ (

and u /u-+1. For a box with an impe-
netrable wall the "tail" regions as we have just de6ned
them consist merely of the U =00 regions outside the
box; however, the lower left case in Fig. 3 hss an ap-
proximate tail region near the center of the barrier,
where the density is indeed quite low.

(iv) Overall, 0 gives a much better approximation to
the true U than does any combination of vT& snd U .
However, 8 still manifests some spurious oscillations,

uTF(x)= —n [p(x)] /2

(dashed curves), and plots of the sum vs(x)+u~(x)/9
(dotted curves). Figure 4 shows a similar comparison for
potentials derived from the radial density of three
parallel-spin particles occupying the Is, 2s, and 3s states
of a Coulomb potential. (This problem, incidentally, can
be related to that of a highly ionized atom with occupied
s, p, and d shells, . thanks to a theorem due to March. )

A word of explanation is in order regarding the verti-
cal positioning of the curves. If one merely requires of
u(x) that it give rise to the given p(x), then u(x) and
u(x) plus any arbitrary constant are equally acceptable.
However, we may remove this arbitrariness by defining,
for the exact kinetic-energy function TIpI or for any ap-
proximation TIpI to it,

and sometimes even has mild singularities, which we
shall now discuss.

(v) All the u plots of Fig. 3 are marred by cusplike
singularities, which occur at the points x";„andx',

„

identified in Fig. 1; in Fig. 4, s singularity of this sort
occurs at x";„,but not at x',„.As is shown in the Ap-
pendix, the occurrence of such singularities depends on
the behavior of the function p(x) at its left- or right-
hand end: For the simple exponential decay characteris-
tic of most physical problems (e.g., the large-x region of
Fig. 4), no singularity occurs; for a quadratic decay to
zero at a finite cutoff point (e.g., an impenetrable box
wall or the x=o Coulomb singularity}, d0'8/dx becomes
inSnite as (x —x ";„)~ or (x ',„—x) ~; for harmon-
ic oscillator problems, there is a weaker (logarithmic}
divergence of d08/dx

(vi) The "box" examples in Fig. 3 show that 0& itself
diverges near an impenetrable wa11, the divergence being,
as shown in the Appendix, inversely proportional to the
distance from the wall, with a rather small coefficient. A
similar negative divergence of U occurs at @~0 in the
Coulomb problem, but it is not very noticeable in Fig. 4
because the coefficient is much smaller than that occur-
ring in the real potential u, as manifested in u„(=0.098
versus 1, for the case of Fig. 4).

8. Absolute level of 8'q and its N dependence

Now let us focus attention on the absolute level of the
potential curves in Figs. 3 and 4, i.e., their positions rela-
tive to the energy of the highest occupied state. We
have already commented on the vanishing of vTF in the
tails where p~0 (the well-known zero ionization poten-
tial of simple Thomas-Fermi theory) and on the fact that
in these tail regions adding to u~F any fraction of u„
adds the same fraction of the difference between the true
potential snd the energy of the highest occupied state.
We have also noted that our approximation 0' to the po-
tential eventually becomes correct in tails of exponential
type, because 08~0 there. This is illustrated in the
right-hand region of Fig. 4, which is the only
exponential-tail region in our examples: As noted above,
displacing the u curve upward by —,', hartree (to shift its
zero to the energy of the highest occupied state} would
bring it very close to 0in this reg'ion. Indeed, the agree-
ment is better than one would be justi6ed in expecting
on the basis of the reasoning of the Appendix. In the
Gaussian tails of the harmonic-oscillator distributions of
Fig. 3, 0' runs parallel to U but does not coalesce with it,
because, again as shown in the Appendix, 8' approaches
a small constant value instead of zero. Percentage-wise,
the error is small, however, as the total U is becoming
quadrstically infinite.

A spectacular consequence of our having de6ned the
zero for U as the energy of the highest occupied state is
that if one considers distributions p(x) yielding nonin-
tegral values of N = f p(x)dx, the u (x) curve must shift

discontinuously when X increases through an integral
value, since a new one-particle state begins to be occu-
pied. Thus if we consider a sequence of p's correspond-
ing to closely spaced X values for distributions in s po-
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0—

FIG. 5. Approximate potentials 0'(x} calculated from (12)
and (7} for densities corresponding to various nonintegral
values of the number N of particles (of a single spin), for the
harmonic-oscillator potential U = 2x' —e,„.Here e,

„

is the

single-particle energy of the highest occupied state; the three
heavy curves are the correct u's for e,„=0.5, 1.5, and 2.5 and
hence should apply for N & 1, 1 ~ X & 2, and 2 ~ N & 3, respec-
tively. (Note that O'= U for N & 1.)

3 become rather uniform for both systems with little sign
of the proper discontinuous behavior. For the range
N=1 to 2, shown only in Fig. 5, the behavior is better,
as 8; which coincides exactly with U for N &1, has al-
ready changed at N=1.2 to values that are closer to the
curve for N=2, even in the central region.

Figures 5 and 6 provide a natural explanation for a
pervasive defect in our approximate 0 curves, evident in
Fig. 3 though less clear in Fig. 4. Namely, there is a
tendency for 0 to lie, on the average, a little lower than
the correct v. In sequences like those of Figs. 5 and 6
the true U remains constant as N increases toward an in-
teger value N', and then shifts discontinuously down-
ward to a new constant value as N passes through N'.
Any approximate U that varies continuously with N is
therefore likely, if it gives approximately the right level
for U on the average over a range of N, to be too low for
N g N* and too high for N ~ N'. Since our
specification (24) of the reference level for U when
N =N' is that obtaining at N' —0, 8' might be expected
to lie usually too low.

tential of given shape, the true v should remain fixed
over the range N+e to % +1 (e infinitesimal), and then
shift uniformly downward at N + 1+a. Figures 5 and 6
show to what extent our 8' follows this behavior, for
harmonic-oscillator and Coulomb examples, respectively.
%e see that the V of the Coulomb problem does indeed
show approximately the correct behavior in the tail re-
gion (large x); this is, of course, a consequence of the
smallness of Ue with respect to U here, and the fact that
here p, and hence u, are dominated by the contribution
from the highest occupied state. For the harmonic-
oscillator problem 0 in the tails also seems to be ap-
proaching a discontinuous behavior, although its agree-
ment with the exact u is marred by the small constant
ofFset mentioned above. In the regions of large particle
density, however, the variation of 8 as N goes from 2 to

O. I

-O.I—

IO

X

FIG. 6. Same as Fig. 5, for densities corresponding to vari-
ous numbers N of particles in a Coulomb potential. Upper and
lower dark curves refer to %=2 and 3, respectively. (In com-
paring vnth Fig. 4, note that the convention of measuring U rel-
ative to e was not used there. )

T T~+ Tg (25)

is always greater than or equal to 0, as is T„itself, so
that it makes sense to focus on approximations that keep
the term T and simply approximate Tz. In such case
the adequacy of this latter approximation is the only is-
sue, and one should judge this coinparing the 0& derived
from our approximate Tz with the true Ue, defined as
U —U„. Such a comparison can, however, be made for
any approximation to T, regardless of whether it con-
tains a full T term (e.g., the popular Tr~+ T !9). As
March has noted, the problem of finding an adequate
approximation to the kinetic-energy functional T can be
viewed as that of finding an adequate approximation to
ue {the negative of his aptly named "Pauli potential" ).

Since comparisons of correct and approximate Uz's

really give the same information as those of correct and
approximate U's, we shall present the former here for
only three of the densities used in Fig. 3 and shall com-
pare our approximation to Uz only with the simple
Thomas-Fermi form. These comparisons, given in Fig.
7, wiB suSce to illustrate one or two points more clearly
than the presentation of Fig. 3. As in Fig. 3, all energies
in Fig. 7 [except part {d)] are measured relative to the
chemical potential, e~, i.e., the energy of the highest oc-
cupied one-particle state; thus the "correct U" is

C. Evaluation via uz alone

Thus far, in our comparisons of the potentials generat-
ed by our approximation (1) with the true ones or with
those given by previous approximations, we have simply
juxtaposed plots of U, P, etc. , as functions of x. This is a
natural thing to do, because the physical meaning of U

needs no explanation and because any approximate
kinetic-energy functional whatever can be made to yield
a corresponding approximation to U by functional
difFerentiation, as in (6) or (24). However, one of the
facts pointed out in Ref. 1 was that the quantity Tz
defined by
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IU. DENSITIES FOR SOME GIVEN POTENTIALS

A. Densities minimizing 1"+ & u &

'The eff'ective potential 0', which we have plotted for
various densities in Figs. 3 and 4, was defined in (6) as
the negative variational derivative of our approximate

T0 !

! !!!
!
!

!!!! !! !
I! !! t

&™y
8

TF

0—

I-
-2

Ld

O
CL

0 5 l0

ue(x)=u(x) —u (x)—e„
and the Thomas-Fermi approximation is (23).

All parts of Fig. 7 show again the great superiority of
our u& over u&~ as an approximation to the true v&.

What is particularly clear in panels (b}-(d) is that the os-
cillations in U&z are almost exactly opposite in phase to
those of the true U&, whereas those of 0'& are in thc
correct phase, though not quite large enough. Of partic-
ular interest is the comparison of us and i)'8 for four par-
ticles in a box, as this case begins to approximate that of
an infinite gas of free fermions with a sinusoidal density
modulation. Approximate correctness for the latter case
in the linear-response limit was one of the criteria that
guided the choice of the T functional (1) in Ref. 1. As
can be seen from Fig. 3 of that paper, no short-ranged
functional is capable of fitting the correct linear-response
behavior for wave numbers close to twice the Fermi
wave number kF where the correct linear-response func-
tion has a cusplike singularity. Indeed, the largest error
in the T function of (1) comes just at 2k~, and is sizable.
For boxlike systems of finite size, hence a finite number
of density oscillations, one might expect that what would
be important would be an average over a range of wave
vectors near 2kF, and for such an average the error
should be less than that at exactly 2kF. In Fig. 7(d},
where the systematic lowness of the Decurve'has been

approximately eliminated by giving it an arbitrary up-
ward shift, it can be seen that for four particles in a box
the errors in the oscillatory part of 0'e are modest,
though appreciable.

kinetic energy T with respect to density. So if an
inffnitesimal number 5N of particles are transferred from
a region at x, to a region at x2, the change in
E= T+ (u ), our approximation to the total energy, will
be

5E =5%[u (x2 ) —0'(x z ) —u (x, )+u (x i )] . (27)

Thus if we start with a given u (x) and a given trial den-
sity po(x), a convenient way to construct a new density

p, (x) that will give a lower E will be to shift the u (x)
curve rigidly up or down until it has about the same
average height as i)'(x), and then to increase po slightly in
regions where (u —i)') is negative and decrease it slightly
where (u —0') is positive; the integral f pdx must, of
course, stay constant at the number N of particles we
wish to study. The transfer Mt must be kept small so
that nonlinear eff'ects will not upset the prediction that E
will be lowered; however, we can always calculate the
new V after the transfer, and repeat the whole process as
often as necessary to achieve a convergence of 0' to a
form essentially equal to u, i.e., to minimize E. We shall
now describe our implementation of this procedure for
three of the situations presented in Figs. 3 and 4; some
intermediate stages will be illustrated for one of these
problems in Fig. 8.

The first case undertaken was that of two particles (of
a single spin) in a parabolic potential, for which the ex-
act quantum-mechanical density was used to generate
the curves of Fig. 3(c). A number of simple analytic
forms for the density were tried, optimized with respect
to parameters, and modified using the above comparison
of 0with u. 'The density after several iterations was fair-
ly close to the correct two-peaked p(x) given by wave
mechanics, but the dip at the center, relative to the two
peaks on either side, was only about two thirds as deep
as for the correct p.

A more careful test was undertaken for the case of
three particles in a parabolic potential, that of Fig. 3(d).
A simple algorithm was set up to convert any given trial
density p, (x), normalized to three particles, into a slight-
ly improved density pz(x), and this algorithm was iterat-
ed repeatedly by computer. %e used a rather crude al-
gorithm, consisting of the following steps: (i) calculate
0(x) for the given p, (x), from (7) and (12); (ii) form the
difference b,u =u 0 b„where u is t—he —true potential
and b is the mean of u i)weighte—d b'y p„(iii)form the
new density

p2(x)=pi(x)][1 —a bu (x)/! hu ! ], (28)

TF
! !50L ~ M I50

0 0.5 I.O 0 0.5 l.o

FIG. 7. Comparison of the correct Uz function with the ap-
proximation 0& given by (12) and with the Thomas-Fermi ap-
proxixnation (23), for three sample densities: (a) three s elec-
trons in a Coulomb 6eld; (b) three particles in a harmonic-
oscillator potential; (c) four particles in a box; (d) comparison
of the Uz curve of (c) with the 0'q curve arbitrarily shifted up-
ward by 25 units.

where a is a constant much less than 1 and ! bu! is
the maximum value of ! hu! (note that pz will be nor-
malized); and (iv) define p2(x) as a smoothed version of
pz(x). Only rather small values of a could be tolerated,
so that many iterations were needed. (This appeared to
be necessary to avoid instabilities due to repeated nu-
merical difFerentiation and to the singularities in uz not-
ed in item (v) of Sec. III A.) The procedure proved rath-
er ine%cient. Nevertheless, an approximate convergence
was achieved, with the results shown in Figs. 8 and 9.
These suggest several conclusions. The idea of using
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FIG. 8. Successive approximations to the density p{x)
minimizing f+( V)'for the case of three parallel-spin particles
in a harmonic potential u = z'x . {a) The P calculated from the

initial approximation to p{x) {crosses), that from a typical in-

termediate approximation {open circles), and that from the
final approximation {Slled circles), compared with the true v

{solid curve); each approximation has been vertically shifted to
make (u —0') =0. (b) The corresponding three approximations
to p{x).

x)

FIG. 9. Comparison of the "final" p{x) of Fig. 8 {dashed
curve —same as the black circles of Fig. 8) vrith the quantum-
mechanical density for three parallel-spin particles in the para-
bolic potential {solid curve), and eath the Thomas-Fermi densi-

ty given by equating the right of {2,3) to z'x2 —eF, with eF
chosen to make I p dx =3 (dotted curve).

(28}, or something like it, to iterate to self-consistency is
supported by the fact that for densities departing sizably
from the optimum, the calculated U 's in the upper part
of Fig. 8 cross the desired parabola at about the same x
values as where the corresponding densities in the lower
part of the figure cross the self-consistent one; similarly,
large deviations of 0 correspond roughly with large devi-
ations of p. The final density —the one minimizing E—
is, as Fig. 9 shows, very much closer to the true
quantum-mechanical one than is the Thomas-Fermi den-
sity, which lacks both the central oscillations and the
Gaussian tails. While inclusion of part or all of the
Weizsicker energy in the Thomas-Fermi model would
improve the behavior in the tails, it would never —as we
shall prove in Sec. IVB below —yield multiple local
maxima in the density. Our solution tracks the true
solution closely in the tail regions, but the central oscil-
lations are, as for the two-particle case, not sufBciently
pronounced. This defect is doubtless related to the fact
that the expression (1} we have adopted for T yields a
much less pronounced minimum at wave vector 2kF in
the linear-response function for small departures from a
nearly uniform p than does wave mechanics (see Figs. 3
of Ref. 1).

A 6nal comparison of a density minimizing E with the
corresponding quantum-mechanical density was made
for the case of three particles (of a single spin} in the s
states of a Coulomb potential, i.e., the case used for Figs.
4, 6, and 7(a}. For this case we were not successful in

designing an adequate algorithm for a fully automated
iteration to self-consistency, probably mainly because the
singularity in 0& noted in Sec. III A is, as detailed in the
Appendix, more pronounced than that for the harmonic
oscillator. Having found that simple iterations based on
(28) failed to converge adequately, we tried the alterna-
tive iteration scheme of determining a new trial density

p2 from an initial density p& via

u Ip', ;x) =u(x) —ug(p, ;x),
an equation which by (7) amounts to a Schrodinger-type
equation for the "wave function" (pz)'~ . (This has also
been suggested by Levy et al. as a broadly applicable
procedure. } However, we found that to avoid diver-
gences the new approximation pz had to be taken much
closer to p, than to the pz determined from (29), and in

spite of further experimentation along these lines we
were unable to get a satisfactory convergence. Since our
goal was merely to get a self-consistent density for this
one problem, and not to develop a general algorithm for
use with the present arbitrarily chosen T functional for
the practically unimportant case of one-dimensional
problems, we decided to seek self-consistency by a suc-
cession of hand-picked modifications to the density.

Figure 10 shows the results. There is, of course, no
sign of shell structure in the Thomas-Fermi density, and
we may note that, according to the theorem to be
proved in Sec. IVB, no kinetic-energy functional made

up by adding various (positive) amounts of Thomas-
Fermi and %eizsicker energies could yield a nonmono-
tonic density for the present problem. Use of the T of
(1), on the other hand, yields a weak but real peak in
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is impossible for a potential well with only a single
minimum to give rise to a density with multiple maxima.
More precisely, we postulate that the kinetic energy is
given by a functional

TTFfV TF TTF +m Tm (30)

p 0.4-

+ ~ le ~ ~ ~ ~ J ~ ~ ~ ~ ~ ~

FIG. 10. Various approximations to the radial density p(x)
for the problem of three parallel-spin particles ( f pdx =3}in

the lowest s states of a Coulomb potential. Dark curve, quan-
tum solution. Ligbt solid curve, density approximately minim-

izing T+ ( V). Dashed curve, Thomas-Fermi density. Dotted
curve, a sample trial function used in an unsuccessful iteration
scheme, obtained as the eigenfunction of a Schrodinger-type
equation of the form (29). Inset, comparison of the potentials
0'&+U calculated for three of the densities with the true poten-
tial U = —(1/x)+ —,'8 (dark curve). Open circles, dots, and

crosses refer, respectively, to the density approximately minim-

izing T+(U), the correct quantum-mechanical density, and
the non-optimal sample density, respectively. {Note that the

x
latter shows singularities in its I both where p&dr=1 and

where f"p~dx= 1.}

U (X ) = iUTF U TF (X )+ iu~ U~ (X), (32)

where uTF is given by (23) and u„by (7).
Now suppose that p has s local maximum at some

point x,„and a local minimum at some other point
xm;„. Then with only the first term of (7) contributing,

v (x,„)&0&u (x;„),
while

UTF(xmax) & UTF(xmi~) ~

so (32), (33), and (34) require that

(33)

(34)

~here mT+ and m are each greater than or equal to 0,
TT+ is the Thomas-Fermi energy,

TTFIPJ= 6 f P'dx (31)

and T„is the Weizsicker energy given by (2); we assume
all particles to have the same spin. The density p
minimizing the sum of the kinetic energy (30) and the
potential energy ( V) = f pu dx in a given external po-
tential u (x) will then obey

U(x,„)&u(X;„). (35)

p(x) near the proper position for the 2s shell and al-
though it does not quite produce a peak in the 3s region,
it does produce a quite noticeable shoulder there. Thus
the conclusion from Fig. 10 is similar to that from Fig.
9: Our approach yields density oscillations of the right
sort, but these are insufficiently pronounced, doubtless
because in the linear-response limit our Ts does not ade-
quately reproduce the depth and sharpness of the
minimum st 2k+ in the correct linear-response function.
Again, the upper right of Fig. 10 shows that the compar-
ison of the 8' derived from a trial density pT will typical-
ly differ considerably from the true u whenever pT differs
sizably from the correct p, i.e., that our self-consistency
criterion is a reasonably sensitive measure of the correct-
ness of pT.

Note that in the language of the Schrodinger-type
equation (26) or (29), local maxima and minima in p(x)
must be associated with suSciently strong minima and
maxima, respectively, in the effective potential U —v,
and hence will often correlate with maxima and Ininima,
respectively, of U. As Fig. 7 shows, our 0& often has
roughly the right pattern of such extrema.

8. Theorem on densities derived
from Thomas-Fermi-%eixsacker Aanctionsls

%e shall now show that if the relation between densi-
ty and potential is assumed to have any form made up
from the Thomas-Fermi and %eizsacker expressions, it

If p has more than one local maximum, there must be a
sequence of points x",'„&x;„&x','„between which v

first increases, then decreases. This is impossible if u has
just a single minimum on either side of which it rises
monotonically. For such a potential, therefore, p can
have only one local maximum.

Minor generalizations of this theorem can easily be
made. For the attractive Coulomb potential, for exam-
ple, U~ —ce at one end of the allowed range of x; its
monotonic increase with x is inconsistent with the ex-
istence of a maximum in p away from x=0, if (30) is as-
sumed. In three dimensions, too, where TTF a: f p dx
and T involves |}'p and

~ Vp ~, the kinetic energy
again requires that v at a local maximum in p be less
than U at a contiguous local minimum.

V. CONCLUSIONS

The most important message of the present paper is
its strengthening of the general conclusion of Ref. 1, that
it is possible to obtain usefuHy accurate approximations
to the true kinetic-energy functional of noninteracting
fermions by interpolations that possess, or nearly pos-
sess, the correct behavior both in the limit of nearly uni-
form density and in the limit where certain regions con-
taining not more than one particle of a given spin be-
come isolated from the rest of the distribution. %e have
illustrated this possibility by calculations using a specifIc
interpolation functional, namely, that given by Eq. (1),
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for one-dimensional problems. These calculations have
revealed some virtues of the expression (1), some defects
of it, and some serious shortcomings of some alternative
approximations to the kinetic energy that fail to fit the
two limiting-case criteria just mentioned.

In terms of the nonlocal relation between particle den-
sity p and external potential u, i.e., the functional u {p}
or p{u j, we may describe virtues or defects of any ap-
proximation such as (1) in terms of comparisons of the
functionals V {p j or p {u j to which it leads with the
correct quantum-mechanical functionals. Virtues of (1),
which could presumably be duplicated or improved by
other approximate functionals constructed according to
the same philosophy, include asymptotically correct rep-
resentation of u {p j, and near correctness of p {v j, in the
decaying tails of a distribution; nearly correct V{pj or
p{u j near a Coulomb singularity of the potential; fairly
reasonable V{p} over the whole range for a wide variety
of problems; and a p {v } that shows Friedel oscillations
(or shell structure) roughly though not accurately in ac-
cordance with the correct quantum-mechanical ones.

Defects of the functional (1) include the fact that the
just-mentioned oscillations in p{v} come out somewhat
too weak for typical few-particle problems with rapid
variation of u near the "walls" of the potential well; its
failure to approximate the discontinuous jump of V {pj,
measured relative to the highest occupied level, when the
particle number N, for spin s changes through an integer
value, except for N, near 1 or in the tails of the distribu-
tion; and the fact that for some problems in which u be-
comes infinite u {pj can have spurious weak singularities
(usually just in its derivative, but for rigid-wall potentials
also in its magnitude). All of these defects could doubt-
less be ameliorated by making reasonably tractable
modifications in the T of (1). For example, the first two
defects (re oscillations and discontinuities, respectively)
would probably be helped by allowing the T functional
to depend not only on a remoteness variable like the g' of
(5), but also on similar variables defined for two-particle,
three-particle, etc., intervals. Similarly, modification of
the definition of g might eliminate the occasional singu-
lar behavior of V {pj. However, as was pointed out in
Ref. 1, pursuit of such improvements for one-
dimensional problems is probably of less interest at this
time than the search for tractable kinetic-energy func-
tionals in three dimensions.

In the present paper the performance of the approxi-
mation (1) to the kinetic-energy functional has been
compared with that of only one category of alternative
approximations, namely, those that represent the kinetic
energy as a linear combination, with positive coefficients,
of a Thomas-Fermi term T„Fand a %eizsicker term T,
i.e., for one-dimensional cases, of the expressions (31)
and (2). Such combinations, particularly ones using a
coeScient unity for the Thomas-Fermi term, have been
very popular in the previous literature. However, our
examples show that all such choices for the approximate
functional T in one dimension yield far worse results
than our expression (1), in that, in cases where p has
Friedel-type oscillations, they yield Ve{pj, whose oscilla-
tions tend to be opposite in phase to those of the correct

V& {p j, so that u {pj acquires large spurious oscillations,
which become worse the larger the coef6cient of T;
they never yield Friedel or shell-structure oscillations in

p{u j if u has a simple single minimum; they yield u {p j
and p{u j with wrong behavior in the tails of the distri-
bution if the coeScient of T„,is other than unity; and
they always yield a V {p j that varies smoothly with X,
even near X= 1, though correct behavior can be
achieved in the tails if the coef5cient of T~ is unity.

Other approximate kinetic-energy functionals have
been proposed, which we shall not attempt to discuss in
detail. However, a few general comments are in order.
Local functionals, ' which approximate the kinetic ener-
gy as an integral of some function of p and its deriva-
tives at each point, can never yield a u {p) that behaves
reasonably for all densities p. For such u{pj must also
be local functionals and hence must, over any range of
coordinate space containing less than one particle of a
single spin, coincide with the V{p, j for the pi of a one-
particle problem so defined that p&

——p over this region.
If the assumed functional and its V' are to be good ap-
proximations when the density is p, , then V {p, j must be
close to u {p,j, where u, given in one dimension by (7),
is the functional derivable from the approximation
T= T . As our many examples have shown, " such an
approximation would be very bad for most many-
particle distributions.

In parallel with the recent spurt of interest in nonlocal
exchange-correlation functionals, some explicit nonlocal
kinetic-energy functionals have been studied by Alonso
and Girifalco' and by Plumer and Geldart. ' The latter
authors recognized the need for nonlocality and the utili-
ty of the linear-response function of the uniform Fermi
gas as a guide to setting up an appropriate nonlocal
theory, However, the kinetic-energy functionals they
chose for study have the form of T +Tr~ plus a gen-
erally negative nonlocal correction 6 {pj expressible as
an energy associated with each pair of points r, r'. Qual-
itative considerations based on our criteria support the
conclusion they reached from numerical studies of atom-
ic examples, that such functionals are rather inadequate.
It would be hard to make a Gz of this form behave
properly, e.g., to reduce to —T&F for one-particle prob-
lems, or to undo the huge spurious oscillations in V {pj
which T +Tz~ would give for typical several-particle
problems. Note too that their procedure would give
rather poor results for u {pj for cases like Fig. 3(e) where
adjacent high-density regions are separated by a weakly
penetrable barrier. What one must do is rather to re-
place Tzz in its entirety by a nonloca) expression, as our
form (1) does.
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APPENDIX: SINGULARITIES
AND ASYMPT{OTIC BEHAVIOR GF 8'g(x)

FOR CERTAIN TYPES OF DENSITIES

dec -(xm;„—x'),
g2 (A8)

x -(x'+x";„)/2, dX-dx'/2,

hx -(x" —xo),

x, (x)-(xo+x";„)/2, xb(x)-(x+x";, )/2

(Al)

(A2)

%'e wish to examine possibilities for the expression
(12) for us(x) to become infinite, or to have an infinite
derivative. For the former possibility to occur, a p in
one of the denominators would have to go to zero.
However, this produces no divergence in the second of
the terms arising from the first square bracket, if p is ap-
proaching zero as

)
x —xo (

with a )2, or as e ~ ' ore, since in all such cases the factor [gi(x)] in the
denominator compensates the behavior of p(x') or
p(x" }. These cases cover behavior near an impenetrable
wall or a Coulomb singularity, and the behavior at
in6nity in a Snite or parabolic potential. The contribu-
tion from the first term in the first square bracket is like-
%1se 1nocuous.

Thus for the sorts of problems we have been consider-
ing, an infinite 1}(8x) c'an arise only from p(x) approach-
ing zero in the last term of {12). Consider first the case
p-a{x —xo), x &xo. For this case the height of the
hatched region of Fig. 1(b) becomes zero at the left end,
where x =xo and x=(xo+x";„)/2. If x varies over
some small range near xo, (4) implies that x" varies very
lit&le in comparison with the variation of x', so long as
p(x") is not especially small. Thus

last integral in (12)-b Ae2~/4(x";„—x) . (A9)

Since the terms arising from the 6rst square bracket in
(12) are exponentially small as x —+ —ao, we have in this
limit

i}'8(x)-—m A, /24(x",„—x),
so that Ve behaves qualitatively like the correct Us which
must go to zero in the exponential tails of the distribu-
tion, though the algebraic decay of (A10) is not as fast
as the true decay should be.

Similar reasoning can be carried through for cases,
like the harmonic oscillator problem, where p-be
The result for this case is that us approaches a finite lim-
it as

~

x
~

~ ao. Since U ~ 00 as x, 0ebeco'mes much
less than U, but it does not approach zero as the correct
Ug should.

Singularities in the derivative of 8'& may occur when
x =x";„orx',„(seeFig. 1), since at these points the
derivative of (12) involves dx, /dx or dxb/dx„which be-
comes infinite. For most physically realizable situations,
where p decays at infinity as be, no infinity in di}'s/dx
actually occurs, because the integrands go to zero at the
limit of integration, and do so suSciently rapidly to
more than compensate the divergence of dx, /dx or
dxbldx. But for impenetrable-wall cases the balance is
less favorable. Consider the case where x is just to the
right of x";„in Fig. 1(b), so that when x is near x„x'is
near x;„;here let

and by {5)

$21-(x' —xo)' /i2(1 —a)+0(1) .

With y =x' —xo, we can now write, for x near xo,

Last integral in (12)- „J2

i22(1 —a)2 " "o dy

2(x";„—xo) 0 y

a2(1 —a)2(x —xo)

2(2a —1)(x";„—xo)

(A4)

(A5)

p{x } u {x xmin )

a behavior applicable both to impenetrable-wall prob-
lems and to the Coulomb problem. From the definition
of x, in Fig. 1 we have

dx 1 dx' p(x") P(xmin)

dx 2 dx 2p(x') 8g (x x . )2

(A12)

Because of the [p(x)] multiplying this in (12), (12) will
be dominated by its last term, so that as x ~xo, In the integrands of (12) we have

m (1—a)us(x)-—
12(2a —1 )(x";„—xo }(x—x 0 )

{A6)
M -(x";„—x;„),
g-1/a (x' —x;„)-I/2a (x —x;„),

(A13)

(A14)

An analogous expression, of course, results for the
symmetrical case p-i2(xo —x), x ~xo. In the Coulomb
problem and at an impenetrable wall we have a=2, so
(A6) 1'cduccs to 7l' /36(x miii x o )(x x 0 ) Sliicc thc
correct Ue(x) for such problems is easily shown to be
6nite as x ~xo, this divergence, though weak, is a defect
of the approximation used in the present paper.

For the more realistic class of problems where p —be
as x —+ —00, or p-be as x ~ ao, Vz remains 5nite.
For the former case, for example, (Al) still applies, and
we have

0
Integrand-

(x~„—x;„)p(x";„) (A15)

dpi'

48(x. —x,„}'
Here x, is determined by

(A16)

Multiplying (A12) and (A15) and including the factor
—1r /6, we have for the asymptotic behavior of (12)



x'(x =x )

p(x ";„)(x—x ";„)—f a (x, —x;„)dx, ,
min

=—(x' —x;„)— (x, -x;„)
(A17)

for the harmonic-osrillator cases. For the latter, the
asymptotic behavior of p(x) as x ~—oo is proportional
to x "e ",where (n +1) is the quantum number of the
highest occupied state. Repetition of steps analogous to
(A12)—(A18) gives

Thus finaBy

dos a

dx 12 &&
32is p(x ";„)(x—x ";„)

' 2/3

-const)&e '" ' /(x') ",
First integrand in (12)-const(x') "+'e

Oe
-const

~

x'(x =x, )
~
-const ln(x —x";„).

(A19)

(A20)

(A21)

This describes the singularities in Figs. 3 and 4, except The singularity is thus weaker than that of (A18).
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