
GENERAL PHYSICS

THIRD SERIES, VOLUME 37, NUMBER 2 JANUARY 15, 1988

Finite basis sets for the Dirac equation constructed from B splines

%. R. Johnson, S. A. Blundell, and J. Sapirstein
Department ofPhysics, Uniuersity of Notre Dame, Notre Dame, Indiana 46556

(Received 31 July 1987)

A procedure is given for constructing basis sets for the radial Dirac equation from B splines.
The resulting basis sets, which include negative-energy states in a natural way, permit the accurate
evaluation of the multiple sums over intermediate states occurring in relativistic many-body calcu-
lations. Illustrations are given for the Coulomb-Aeld Dirac equation and tests of the resulting
basis sets are described. As an application, relativistic corrections to the second-order correlation
energy in helium are calculated. Another application is given to determine the spectrum of thalli-
um {where 6nite-nuclear-size e8ects are important) in a model potential. Construction of B-spline
basis sets for the Dirac-Hartree-Pock equations is described and the resulting basis sets are applied
to study the cesium spectrum.

INTRODUCTION

Relativistic many-body perturbation theory applied to
calculations of properties of heavy atoms starting from
the radial Dirac equation often leads to sums over inter-
mediate states that are difficult to evaluate accurately.
Part of the difficulty stems from the fact that the spec-
trum of the Dirac equation is complicated; it consists of
an infinite set of bound states, a positive-energy continu-
um, and a negative-energy continuum.

One method used to evaluate sums over intermediate
states is to saturate the contributions from the discrete
part of the spectrum and to add integrals over the con-
tinuous parts of the spectrum. The principal source of
difnculty with this direct approach is that one must ac-
count for the remainders of the sums and integrals using
inherently inaccurate extrapolation techniques. Al-
though the direct method is dificult to apply with high
accuracy, it has been used successfully to evaluate sums
occurring in nonrelativistic' and in relativistic many-
body perturbation theory.

An alternative that is often used to evaluate single
sums is to convert the sums into integrals over the solu-
tions to inhomogeneous differential equations using the
Siernheimer or Dalgarno-Lewis method. In the rela-
tivistic case the differential equations are inhomogeneous
Dirac equations that can be solved with high accuracy
using standard finite-difference methods; the integrals
can also be evaluated accurately using standard numeri-
cal techniques. This is the simplest method to obtain
highly accurate values for sums over a single set of inter-
mediate states.

Double sums over intermediate states such as those

occurring in the evaluation of the second-order correc-
tions to energies can be converted into double integrals
over solutions to partial differential equations in two ra-
dial variables. The resulting equations (the pair equa-
tions} are routinely solved in the nonrelativistic case. s

Because of the extra spatial dimension, it is relatively
time consuming to solve a pair equation and obtain the
corresponding pair function with the same high accura-
cy as is typically achieved in solving one-dimensional
differential equations. Furthermore, in the relativistic
case there are usually restrictions on the range of the
summation indices, leading to the appearance of projec-
tion operators in the inhomogeneous term of the pair
equation. Although projection operators for the Dirac
equation in a potential are not known in closed analytic
form they can be obtained by an iteration scheme. An
application of the relativistic pair equation to the helium
isoelectronic sequence has recently been made by Lin-
droth.

To facilitate the accurate evaluation of intermediate
state sums, especially multiple su&os, we introduce a
finite basis for the radial Dirac equation, and replace
sums over states of the Dirac equation in a potential by
sums over the finite basis set. Since the resulting sums
are finite, there are no remainders to evaluate. Further-
more, in the relativistic case, projection operators may
be introduced directly by restricting the range of the
summation indices. Finite basis sets for the Dirac equa-
tion have received a great deal of attention during the
past few years, and a number of successful attempts have
been made to apply finite basis techniques to problems in
relativistic quantum mechanics.

We are particularly interested in applying the finite
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basis states to analyze relativistic pair functions. From
nonrelativistic studies it is well established that pair
functions are compact; the pair functions vanish ex-
ponentially outside atomic dimensions. For our pur-
poses it is therefore possible to constrain the basis func-
tions used to approximate the pair functions to a cavity
of finite radius R. (In practice we choose R =40 a.u. for
calculations of alkali-metal atom pair functions, and in-
crease R by a factor of 1.5 to determine the sensitivity to
the cavity radius. }

If we let P„,(r) denote a nonrelativistic radial wave
function, then the cavity constraint is imposed using the
boundary condition

P„t(R ) =0 .

In the relativistic case the generalization of this condi-
tion is given by the Massachusetts Institute of Technolo-
gy (MIT) bag-model boundary condition'

P„„(R)=Q„„(R),

and adjust the coefficients of the resulting piecewise po-
lynomials to fit the functions of interest as well as possi-
ble. Approximating known functions by piecewise poly-
nomials can be done in a completely systematic way us-

ing 8 splines. '

DESCRIPTION OF THK 8-SPLINE
APPROXIMATION SCHEME

1, t; (x (t(+)
0, otherwise

(4)

Our aim is to approximate solutions of the Dirac
equation in a cavity of radius R with piecewise polyno-
mials, using 8 splines to systematize the analysis. Fol-
lowing the notation of deBoor' we designate the end-
points of the segments on the x axis by the "knot se-
quence" It, I,i =1,2, . . . . The 8 splines of order k,
8; k(x}, on this knot sequence may be defined recursively

by the relations'
C

where P„„(r) and Q„„(r) are the large and small com-
ponent radial wave functions, respectively. The relative
phase in Eq. (2) depends on the phase convention used in
the angular separation of the single-particle Dirac wave
function: in the following paragraphs we adopt the con-
vention

and

x —t,
8; k(x)= 8;„,(x)

t, +&
—x

+ 8i+ &, k —&(x }

(3)

where X„(r) is an b coupled spherical spinor. We use
the MIT-bag-model boundary conditions in order to
avoid problems with the "Klein paradox" that arise in
the relativistic case when one attempts to confine a parti-
cle to a cavity using an in6nite potential barrier at
r =R.' Imposing the MIT-bag-model boundary condi-
tion modifies the spectrum of the Dirac equation. The
modified spectrum consists of two infinite discrete spec-
tra, one with positive energies and one with negative en-
ergies. The positive-energy branch of the cavity spec-
trum contains the terms that belonged to the bound-state
spectrum as well as terms that belonged to the positive-
energy continuum of the unmodNed spectrum. The
low-lying positive-energy states in the cavity spectrum
agree very closely with the low-lying states in the origi-
nal discrete spectrum, but as the principal quantum
number increases the effects of the cavity modify the
spectrum more and more strongly. It is the discrete
finite-cavity spectrum, not the original spectrum of the
Dirac equation, that we approximate by a finite basis set.

One way to understand our particular finite-basis-set
approximation is to imagine that we are approximating
solutions to the Dalgarno-Lewis differential equation in
the one-dimensional case, or to the pair equations in the
two-dimensional case. The solutions to these difterential
equations are smooth functions of r that vanish outside
atomic dimensions. It is possible to approximate such
smooth compact functions to high accuracy using piece-
wise polynomials. First, the radial grid from r =0 to
r =R is divided up into segments. %e then introduce a
family of polynomials of a fixed degree on each segment

It follows that 8, „(x) is a piecewise polynomial of de-
gree k —1 that vanishes except in the interval
t; (x (t, k. A software package written in FORTRAN is
available' to generate all of the nonvanishing 8 splines
of order k associated with the knot sequence It, j using
the recursion relations. As an example consider the
knot sequence t, =t2 ti=0, t; =—(i —3}, i =4, . . . , 12,
and t» ——t, 4

——t» ——10. The endpoints 0 and 10 are as-
sociated with "multiple knots" (in this case, knots of
multipHcity 2) and are calculated using limiting forms of
the above recursion relations. In Fig. 1 the 12 8 splines

l.o

0.8
0
4

0.6
OJ

0.4

0.2

0.0
0 l0

FIG. 1. The twelve 8 splines of order k =3, 8; 3(x), for the
uniform knot sequence t& ——tz ——t3 ——0, t4 ——1,t5 ——2. . . , t&z ——9,
t „=t, 4

——t» ——10 are shown. At any point there are three non-
vanishing functions that sum to 1. In our applications to the
Dirac equation, 8 splines of orders 7—9 are used and the knot
sequence is distributed exponentially rather than uniformly.
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of order 3 associated with the knot sequence [t, j,
i =1,15 are shown. Each of these functions 8; &(x) van-

ishes outside the interval t,. &x ~t, +3, in the interval

each function is a polynomial of degree 2. At the known

boundaries between segments each function 8;3(x) is

continuous and has a continuous first derivative. At the

endpoints, which are knots of multiplicity 2, the func-
tions 8, 3(x) and 8i23(x) are discontinuous, whereas

8i &(x) and 8» z(x) have discontinuous first derivatives.
It should be noticed that the sum of the nonvanishing 8
splines at any point is exactly 1. In this example we
have shown 8 splines of order 3 on a uniform grid with
endpoints of multiplicity 2. In our applications we use 8
splines of higher order; we have found that splines of or-
ders k =7 and 9 are accurate enough for most of our
calculations, without being too cumbersome to manipu-
late. The knots defining our grid have k-fold multiplici-
ty at the endpoints r =0 and r =8 =40 a.u. , and are
distributed exponentially rather than uniformly in the in-
terval between the endpoints.

The set of 8 splines of order k on a knot sequence [ t; )

forms a complete basis for piecewise polynomials of de-
gree k —1 on the intervals defined by the knot sequence.
%e represent the solution to the Dirac equation as linear
combinations of these 8 splines and we work with the 8
spline representation of the functions, rather than with

the functions themselves. The radial Dirac equation can
be written

V(r) c(d/dr ~/—r)
—c(dldr +«/r) —2mc + V(r) Q„(r)

P, (r)

Q ( )
(6)

This form is slightly diferent from the one appearing in
textbooks in that we have replaced the energy E by
e=E —mc to facilitate comparisons with nonrelativistic
calculations. The negative-energy states are those with
e g —2mc, ~hereas the positive-energy states have e & 0
for low-lying states and @~0 for the higher states. One
approach to approximating Eqs. (6) is to expand the
equations in terms of basis functions and then demand
that the resulting equations be satisfied at a suitably
chosen set of collocation points. This approach has been
successfully applied to the Dirac equations by Bottcher
and Strayer. ' Another approach, which is employed
here, is to use a Galerkin method the equations are ex-
pressed in terms of an action principle, and the action
integral is expanded in terms of basis functions. The ra-
dial Dirac equations (6) can be derived from an action
principle 5S =0, with

(9)

RS= —,
' f [cP„(r)(d/dr « Ir)Q—„(r)—cQ„(r)(d Idr +z/r)P„(r)+ V(r)[Q, (r)2+p„(r)2]

2rnc Q„(—r) ]dr ——,'e f [P„(r)2+Q„(r)2]dr . (7)

From the point of view of the vanational principle, the parameter e is a Lagrange multiplier introduced to ensure that
the normalization constraint,

f [P„(r) +Q„(r) ]dr =1, (g)

is satisfied. The first variation of S is given by
R5S= f (5P„(r)[c(d/dr «/r)Q„(r)+ V—(r)P„(r)]—5Q„(r)[c(d/dr+«Ir)P, (r)+[Zmc —V(r)]Q„(r)])dr

—e f [5P,(r)P„(r)+5Q„(r)Q„(r)]dr+—,'c[P„(r)5Q«(r) —Q„(r)5P„(r)]o .
0

The requirement 5S=O for variations of P„(r) and Q, (r) satisfying the constraints 5P„(0)=5Q„(0)=0 and
5P„(R ) =5Q„(R)=0 leads to the radial Dirac equations written down in Eq. (6). Specific boundary conditions can be
imposed on the solutions by removing the boundary constraints from the variational functions 5P„(r) and 5Q„(r) and
by adding appropriate boundary terms to the action integral S. In the present case we add to S the boundary term

[P,(R ) —Q„(R—) ]+—P„(0) ——P,(0)Q, (0) for «& 0,

[P,(R) —Q„(R) ]+c—P„(0) —P„(0)Q„(0) for «) 0—.
2

(10a)

(10b)

Combining the boundary term in Eq. (9) with the terms obtained from the variation of Eqs. {10a) and (10b) lead to
boundary terms given by

2 " " ' 2
[P„(R)—Q„(R )]5Q—„(R)+ [P„(R) —Q„(R )]5P—„(R)—cP„(0)5Q„{0)+cP„(0)5P„(0),«& 0

(11a)
5(S +S')b„„d„y——'

2 " 2
[P,(R) Q„(R)]5Q„(R)+——[P„(R) Q„(R)]5P—„(R)—cP—„(0)5Q„(0)+2cP„(0)5P„(0), ~) 0 .

(1 lb)
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P(r)= g p, B,(r),
i=1

Q(r)= g q;8;(r) .
(14)

For variations of P„(r) and Q„(r), nor subject to bound-
ary constraints, the boundary terms in Eqs. (1 la) and
(1 lb} vanish if

P„(R)=Q„(R), (12)

which is just the MIT-bag-model boundary condition,
and if

P„(0)=0 . (13)

The choice of the boundary terms in Eqs. (10a) and (10b}
is to some extent arbitrary; the particular choice made
here was found to eliminate spurious states that can
occur in the spectrum for ~ g 0 when the Dirac equation
is expanded in terms of 6nite basis sets. 9

We expand the radial functions P„(r) and Q„(r) in
terms of 8 splines of order k as

The n X n matrices (C), (D), ( V), and (il/r) are given by

(C);.= f 8; (r)8 (r)dr,

(D );j
——f 8; (r)dBj (r )ldr,

( V) i ——f 8;(r)V(r)B (r)dr,

(x'Ir };j=f 8;(r)x/rB (r)dr .

(21a)

(21b)

(21c)

(21d)

One important numerical point to be mentioned is that
the matrices (C), (D), ( V), and (a/r) are diagonally dom-
inant banded matrices, so that the numerical solution of
the generalized eigenvalue equation (16) can be carried
out with high accuracy even when the dimensions of the
basis set become very large. To solve the eigenvalue
problem we use subroutines from the FORTRAN EISPACK
library. ' lf we let u, be the eigenvector associated with
eigenvalue ei then we find.

d(S+S')/dp, =0, i =1,2, . . . , n (15a)

d(S+S')Idq, =0, i =1,2, . . . , n . (15b)

These equations can be expressed in the form of a
2n X 2n symmetric generalized eigenvalue equation

(16)

The subscript x' has been omitted from the functions
P„(r}and Q„(r) and the subscript k has been omitted on
the functions 8; k(x) for notational simplicity. Substitut-
ing these expressions into the action functional leads to a
quadratic form in p; and q, for S+S'. The variational
principle reduces to the following system of algebraic
equations:

gu; (8);,u, =5i„ (22)

f [P (r)P (r)+Q (r)Q (r)]dr =5& (23)

To summarize, the symmetric generalized eigenvalue
equation (16) is solved to give 2n eigenvalues ei and 2n
orthonormal eigenfunctions

P (r)= g u;8;(r),
i=1

(24)

Written in terms of the approximate eigenfunctions
P (r) and Q (r) this equation expresses the orthonor-
mality conditions

where the 2n vector u is given by

"=(pl p2 p ql q2~ ~ ~qn) ~ (17)
Q (r)= g u,. B,.(r) .

i =n+1
(25)

where the 2n )&2n matrix A' is a contribution from the
boundary terms

r

C Cc~i, l ~j, 1 2 i, 6I ~j,n + 1 ~in1~ j+,1,
C C+—5; „5 „——5, 2„5.2„, a. ~ 0, (20a)

tJ

~i, l~J, 1 ~&, 1~J,n+1 2 ~&,n+1~J, 1

C C+—5; „5J„——5; 2„5J2„, a ~ 0 . (20b)

and where A and 8 are symmetric 2n &2n matrices.
Specifically,

r

( V) c [(D)—(v/r)]
—c [(D)+(a/r )] —2rnc (C)+( V)

I

(C)
0 (C)

Let us consider, as an illustration, the case of a
Coulomb Geld with charge Z =2. We choose a cavity
radius R =40.0 a.u. , and examine the approximate cavi-
ty spectrum of the Dirac equation for a.= —1. We ex-
press our wave functions as Hnear combinations of 8
splines with n =40 and k =7. In Table I we list the 80
eigenvalues given by solving Eq. (16). As is seen from
the table, 40 of these eigenvalues lie below —2mc, awhile

the remaining 40 eigenvalues (the positive-energy group)
grow from small negative values to large positive values.
The lowest few terms of the positive-energy spectrum
given in column 3, the eigenvalues of the low-lying
bound states, are seen to be very close to the exact eigen-
values of the Coulomb-field Dirac equation in the ab-
sence of a cavity, given in column 5 of the table.

There are several tests of the quality of this spectrum
that can be easily carried out. One test is to determine
how well the Thomas-Reiche-Kuhn (TRK) sum rule is
satisfied. This rule can be formulated in the relativistic
case in terms of the two partial waves ~= I, and
~= —I —1 associated with orbital angular momentum I
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21+1 „"' ' ' 21+1g. of &&= —1 n=0lr I~=I ~&
I + X~nol &~= —1 &=0fr l~ ——I —1 ~&

f

~here co„0=a„„—eo, . For the nonrelativistic case the
corresponding TRK sum rule is

+co„o f
& I =0, n =0

f
r

f
I, n & f

I (I +1)+1

The sum over the positive-energy states in the relativistic
TRK sum rule gives a value close to the nonrel@tivistic
expression, but this value is precisely cancelled by the
negative-energy sum. A test of the TRK sum rule using

the spectra for higher values of angular momenta gen-
erated using 8 splines with n =40 and k =7 in a
Coulomb potential with Z =2 is given in Table II. It is
seen in the second column of the table that the cancella-
tion between positive and negative terms is better than
one part in 10 for all I from 0 to 9. By increasing the
number of splines to 50 and the order to k =9, vie can
improve the cancellation to one part in 10' . The devia-
tion of the sum over positive-energy states from the non-

TABLE I. Eigenvalues of the symmetric generalized eigenvalue equation using the 8-spline ap-
proximation to the radial Dirac equation with x= —1 in a Coulomb potential with Z =2. Cavity ra-
dius R =40 a.u. First interior knot =0.002 a.u. In this example we use 40 8-splines with k =7.

State

8-spline
negative energy

+mc

8-spline
positive energy

—mc 2

Coulomb-field Dirac
equation

nl E„I—mc

1

2
3

5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

—0.078 471 97
—0.109 143 10
—0.142 954 85
—0.180036 09
—0.221 198 17
—0.294 385 07
—0.410 869 99
—0.434 354 48
—0.646 069 74
—1.013 370 89
—1.637 309 78
—2.715450 51
—4.614 618 75
—8.024 337 76

—14.252 754 33
—25.796 495 63
—47.437 726 81
—88.352 223 09

—166.134287 73
—173.523 244 22
—314.400 61326
—596.702 31465

—1130.S36 31738
—2127.138 566 52
—3938.569 289 68
—7106.585 370 09

—12 381.547 232 42
—20 732.296 337 31
—33 412.084 262 86
—52 139.484 483 56
—79 416.568 374 23

—119041.601 91054
—177001.370 250 39
—263 213.774 924 33
—395 381.458 683 81
—608 884.963 766 40
—987 203.926 834 66

—1 779 801;13063116
—4 087 410.996 309 64

—23 278 423.462 308 17

—2.000 106 51
—0.500 033 30
—0.222 234 07
—0.125 006 46
—0.079 983 39
—0.053 800 99
—0.027 408 78

0.006 542 98
0.054 643 23
0.100681 88
0.299 878 95
0.409 558 14
1.248497 17
3.201 91043
7.428 459 45

16.209 284 03
34.021 348 79
69.61421924

139.990 167 71
173.420032 77
277.929 605 23
545.830 743 09

1059.861 618 26
2028.071 81496
3800.195 101 68
6913.111748 28

12 110.643 789 28
20 352.198 334 24
32 877.223 807 26
51 383.705 083 68
78 342.163985 55

117500.669 513 58
174 761.830 893 22
259 891.669 075 92
390 289.406 599 54
600 640.062 501 82
972 520.980 500 20

1 748 823.576 101 66
3 994 928.S16607 04

22 637 209.288 29002

1s
2$

3$

4s
5$

6s

—2.000 106 51
—0.500 033 29
—0.222 234 06
—0.125 005 41
—0.080 002 90
—0.055 557 28



312 %'. R. JOHNSON, S. A. BLUNDELI. , AND J. SAPIRSTEIN 37

TABLE II. Test of the relativistic TRK sum rule Eq. (26) for various l using a 8-spline representa-
tion of the Coulomb-6eld Dirac equation confined to a cavity of radius R =40 a.u. %e use 40 8-
splines anth k =7. The basis set for ~= —1 is the same as that used in Table I.

Sum over positive-
and negative-
energy states

6.6~ 10-'
6.8 g 10-'
6.3 g 10
6.3 g 10-'
6.3 g10-'
6.4x10-'
6.8~ 10-'
6.6y 10-'
7.0 &&

10-'
7.7 y 10-'

Sum over positive-
energy states

only

0.499 74
1.499 73
3.497 33
6.488 21

10.466 37
15.42440
21.353 69
28.244 58
36.086 54
44.868 31

Nonrelativistic
limit

[(l + 1 )l + I ]/2

0.5
1.5
3.5
6.5

10.5
15.5
21.5
28.5
36.5
45.5

relativistic limit shown in column 3 is a real relativistic
effect, independent of the radius of the cavity.

Another test of the quality of the spectrum is the
value of the dipole polarizability o,&, which is known ex-
actly for an electron in a Coulomb field in the nonrela-
tivistic limit, and analyically to order (aZ) in the rela-
tivistic case; for Z =2, the n =50, k =9 spline routine
gives

The quantities Rt(a, b, c,d) are Slater integrals, defined

by

R&(a, b, c,d)= f dr f dr' I, [P,(r)P, (r)+Q, (r)Q, (r)]

X [Pb(r')Pg(r')+Qb(r')Qd(r')] .

ad ——0.281 187 877 a o

compared to Kaneko's analytic result'

ad =[—,
' ——',"(aZ)'+ ]Z ao

=0.281 187 873 a o .

(28) (32)

In Eq. (31) the sums over n and m are restricted to the
positive-energy states. The nonrelativistic sums corre-
sponding to Eq. (31) have been carried out to high accu-
racy giving E„','= —0. 15766643 . Using our 8-
spline basis, with n =50 and k =9 for helium, we find

Other tests of the spectrum include energy weighted sum
rules such as the second energy weighted sum rule:

S~ = —, g ro'„o [ ( K = —1, n =0
~

r
~

K =1, n ) (

'

+—, pro„o (
(K= —1, n =0~ r

~

K= —2, n )[ =cr

We obtain the value a to an accuracy of one part in
10 using the n =40, k =7, Z =2, Coulomb-field spline
spectrum, and to one part in 10' using a spectrum with
n =50 and k =9.

As a direct application of the 8-spline basis to a prob-
lem arising in relativistic many-body perturbation theory
we have considered the calculation of the second-order
corrections to the energy of helium starting from a
Dirac Coulomb-field approximation. ' The expression
for the second-order energy, which contains a relativistic
pair function implicitly, is

I R I ( n K, m K, 1$, 1$ )

I (2l+1) nm (» « ~& «=I

R I (n K, m K, ls, ls)
+

(21 +1) „(2&i,—&„„—&~„)

(31)

E'2'= —0. 157 68147= —0. 157 66643 —0.071(aZ )

(33)

HEI, I = —(0.071+0.563)(aZ ) = —0.634(aZ) (35)

with values obtained by Drake ' who calculated the
leading coeScients in a 1jZ expansion of the relativistic
interaction using correlated nonrelativisiic basis sets

bE'„,' = —(0.070+0.565)(aZ ) = —0.635(aZ ) (36)

It is seen that the 8 splines provide a basis of high
enough quality to permit the study of the small relativis-
tic effects in an atom as light as helium.

A further application of the 8-spline approximation is
given in Table III where the low-lying positive-energy
levels of the thallium atom (Z=81) determined by solv-
ing the Dirac equation in a Tietz potential are compared
with the lowest positive-energy eigenvalues obtained us-
ing the 8-spline approximation with n =50 and k =9.
The cavity radius was chosen to be R =50 a.u. For a

The corresponding second-order Breit interaction (one
Breit plus one Coulomb) gives the result

a "I= —0.563(az )' .

We can compare the total relativistic corrections to the
second-order energy,



37 FINITE BASIS SETS FOR THE DIRAC EQUATION. . . 313

TABLE jgg. Comparison of energies (a.u. ) of low-lying positive-energy states in TI (Z =81) determined by numerical integration
of the Dirac equation in a modified Tietz potential (Ref. 25),

o, Z —IV(r)= ——1+ 2
e

I,'1+ Ir)2

with the corresponding states determined using the 8-spline approximation with n =50, k =9, and R =50 a.u. Tietz parameters:
t =2.3537, y =0.3895. Nuclear charge distribution: uniform 8RMs

——5.483 fm.

Tietz

—3244.088 041
—600.337909
—144.284 503
—31.769 938
—4.877 629
—0.453 947
—0.101906

—101.791 588
—15.808 594
—0.648 139
—0.058 334
—0.032 425

—4.301 590
—0.031 418
—0.020 122
—0.013970

S 1/2

d 3/2

7/2

8-spline'

—3244.088 175
—600.337 931
—144.284 508
—31.769 939
—4.877 630
—0.453 947
—0.101 906

—101.791 588
—15.808 594
—0.648 139
—0.058 334
—0.032 415

—4.301 590
—0.031 414
—0.019458
—0.007 897

Tietz

—587.968 349
—136.371 558
—27.753 537
—3.454 693
—0.224 542
—0.069 323

—97.296 059
—14.872 298
—0.565 324
—0.057 804
—0.032 166

—0.020005
—0.013 894
—0.010208

I 1/2

d 5/2

g 7/2, 9/2

8-sphne

—587.968 347
—136.371 558
—27.753 538
—3.454 693
—0.224 542
—0.069 323

—97.296 059
—14.872 298
—0.565 324
—0.057 804
—0.032 155

—0.019781
—0.010 178

0.003 559

Tietz

—504.453 288
—117.163 505
—23.123 674
—2.661 872
—0.183 199
—0.063 913

—4.517 716
—0.031 418
—0.020 122
—0.013971

—0.013 889
—0.010204

P3/2

5/2

8-spline

—504.453 288
—117.163 505
—23.123 674
—2.661 872
—0.183 199
—0.063 913

—4.517 716
—0.031 414
—0.019458
—0.007 897

—0.012427
—0.001 413

'The first nonzero knot on the radial grid, t,o, is chosen to be 0.0001 a.u. for s and p states, Q.001 a.u. for d and f states, and Q.Q1

a.u. for g and h states.

strong Coulomb potential the effects of nuclear 6nite size
are important, especially for s and p states. %e include
finite nuclear size in this example assuming a uniform
nuclear charge distribution. The first nonzero knot for s
and p states is chosen to be at 0.0001 a.u. in order to
force the first k 8 splines to overlap the nucleus. For
states of higher angular momentum the first knot was
moved further out in order to improve the knot distribu-
tion over the cavity. Small differences seen in the table
for the energies of the s, &2 and p, &2 states could be re-
duced by choosing a denser grid near the origin. The
differences seen for the very weakly bound states of high
angular momentum illustrate the effects of the finite cav-
ity radius.

%hile it is useful to have a basis for the Dirac equa-
tion in a central potential that is of high quality, it is
even more useful to have a finite basis for the Dirac-
Hartree-Fock (DHF) equations. Finite-basis-set tech-
niques have been used previously to obtain DHF core
orbitals by Kim and more recently by Goldman and
Dalgarno. Our goal is somewhat different; we are in-
terested in obtaining a "complete'* set of DHF basis or-
bitals that can be used to carry out the intermediate-
state sums occurring in higher-order perturbation
theory.

In our applications we are particularly interested in
solving the V(N —1) DHF equations for alkali-metal

atoms and other atoms having one electron outside a
closed core. For the core electrons the V(N —1) DHF
equations may be written

(H„+VHF)y, (r)=e, g, (r) .

where y, (r) is a two-component radial wave function for
orbital a, and where 8„+VHF is a 2)&2 radial Hamil-
tonian operator, such as that written out on the left-
hand side of Eq. (6), but with the core Hartree-Fock po-
tential added to the nuclear potential V (r). The
Hartree-Pock potential can be included without
diSculty in the action functional S of Eq. (7). The ma-
trix A in Eq. (16) becomes considerably inore complex
with the Hartree-Fock potential, owing to the presence
of nonlocal exchange terms, but the form of the eigen-
value equation remains unchanged.

The procedure used in the DHF case is to solve the
DHF equations using a point-by-point numerical in-
tegration scheme, then to use the core DHF orbitals to
calculate the potential VH„ in the action functional S.
Once the matrix A has been constructed, the eigenvalue
equation is solved to find the entire DHF spectrum for a
given x. The radius of the cavity is chosen large enough
that the low-lying positive-energy states of a given angu-
lar symmetry agree closely with the input DHF states of
the same angular symmetry. In addition to the core
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TABLE IV. Comparison of the DHF eigenvalues for some low-lying bound states of cesium, Z =55, determined from the 8-
spline approximation using n =50, k =9, 8 =50.0 a.u. , with eigenvalues calculated using standard 6nite-di8'erence methods. Nu-
clear Fermi charge distribution parameters: c,„,=S.674 fm, t„„,=2.3 fm.

DHF 8-spline DHF 8-spline DHF 8-spline

—1330.118917
—212.564461
—45.969 741
—9.512 822
—1.489 806
—0.127 368
—0.055 187

—28.309 496
—3.485 618
—0.064420
—0.036 087
—0.022 622

—1330.118530
—212.564 413
—45.969 731
—9.512 820
—1.489 806
—0.127 368
—0.055 187

—28.309496
—3.485 619
—0.064420
—0.036085
—0.022 123

—199.429 431
—40.448 293
—7.446 284
—0.907 898
—0.085 616
—0.042 021

—27.775 1S3
—3.396 901
—0.064 S30
—0.036090
—0.022 613

d 5/2

—199.429 429
—40.448 293
—7.446 284
—0.907 898
—0.085 616
—0.042 021

—27.775 153
—3.396 901
—0.064 530
—0.036 088
—0.022 111

—186.436 550
—37.894 301
—6.921 001
—0.840 340
—0.083 78S
—0.041 368

—0.031 274
—0.020019
—0.013 903

—186.436 550
—37.894 301
—6.921 001
—0.840 340
—0.083 785
—0.041 367

—0.031 269
—0.019325
—0.007 673

—0.031 273
—0.020020
—0.013903

—0.031 270
—0.019326
—0.007 675

—0.020000
—0.013 889

—0.019776
—0.010634

—0.020000
—0.013 889

—0.019776
—0.010634

states, the 8-spline spectrum contains approximations
for the remaining positive- and negative-energy terms in
the DHF spectrum. One test of how well the parame-
ters defining the spline approximation are chosen is how
well the input and output core states agree with each
other. Comparisons can be made between valence states
calculated using the 8-spline approximation and valence
DHF functions obtained by direct numerical solution of
the DHF difFerential equations to see whether or not the
cavity radius has been chosen properly. Such a compar-
ison is given in Table IV, where the energies of occupied
states and low-lying valance states of cesium, calculated
using a 8-spline approximation with n =50, k =9, and
8 =50 a.u. , are given together with energies obtained by
solving the DHF equations using nnite-difFerence
methods. The small difFerences seen in the innermost s-
and p-state energies are not caused by the finite cavity
radius; these differences can be reduced by choosing a
denser grid near r =0. The differences seen in the table
for the weakly bound d, f, and g states are due to the
finite cavity radius and can be reduced by choosing a
larger cavity radius. To generate 100 terms in each of
the 19 DHF 8-spline spectra for cesium corresponding
to ~= —1, 1, —2, , —10, required a total of about

10 min on a CRAY XMP/48 computer.
In the above paragraphs we have given a detailed

theoretical description of how 8 splines can be used to
provide practically useful sets of basis functions for the
Dirac equation, and to show a few of the tests that have
been made to determine the quality of the resulting
basis. Applications of the 8-spline basis sets to calculate
second-order energies and third-order hyper6ne con-
stants and transition amplitudes for alkali-metal atoms
have been carried out and reported in Ref. 22. Further
applications to calculate third-order energies and to
determine correlation corrections to parity nonconserv-
ing amplitudes are underway.
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