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%e numerically investigate statistical properties of short-wavelength normal modes and the spec-
trum for the Helmholtz equation in a two-dimensional stadium-shaped region. As the geometrica1

optics rays within this boundary (bilhards) are nonintegrable, this wave problem serves as a simple

model for the study of quantum chaos. The local spatial correlation function

(f„(x+—,
' s)g„(x——,

' s) }and the probability distribution P„(f)of wave amplitude for normal modes

P„are computed and compared with predictions based on semiclassical arguments applied to this

nonintegrable Hamiltonian. The spectrum is analyzed in terms of the probability P(AE) of neigh-

boring energy-eigenvalue separations, which is shown to be similar to a signer distribution for the

eigenvalues of a random matrix.

I. INTRODUCTION

The growing interest in chaotic Hamiltonian dynami-
cal systems has naturally been accompanied by the search
for corresponding attributes of wave systems. The eikon-
al (WKB or semiclassical) approximation to the solution
of a wave problem establishes the connection with an as-
sociated dynamical system (the characteristic trajectories
of the eikonal equation) and thereby provides a basis for
examining the ways in which the structure of the phase
space of these trajectories is refiected in the properties of
the wave solution. Despite the fact that the applicability
of this asymptotic method to a system characterized by
nonintegrable trajectories has not been placed on a firm
theoretical foundation, it has nonetheless provided the
basis for many observations and predictions concerning
various aspects of the associated wave problem.

In this paper' we expand on the results reported in our
previous paper by investigating statistical properties of a
model wave equation for which, depending upon a single
parameter, the corresponding dynamical system is either
integrable or chaotic. Specifically, for the Helmholtz
equation in a two-dimensional stadium-shaped region we
examine the spatial structure of eigenfunctions (by means
of their spatial correlation and probability distribution of
wave amplitude} and the statistics of the spectrum. In
particular, Berry's ' predictions for the spatial properties
of individual "chaotic" eigenfunctions (based on the na-
ture of the Wigner function) is discussed in relation to
our particular problem in Sec. II; the results of our nu-
merical tests and the comparison with this theory appear
in Sec. III. In Sec. IV we construct the probability distri-
bution of wave amplitude P(g} for an individual eigen-
function, as well as for a superposition of neighboring
modes. The sensitivity of the eigenvalues and eigenfunc-
tions to variation in parameter (especially near the classi-
cal transition from integrabihty to chaos) is studied in
Sec. V. A statistical description of the spectrum in terms
of neighboring level spacings is presented in Sec. VI.
Among the conclusions in Sec. VII, we suggest that

whereas the Liouville density in the phase space of an er-
godic Hamiltonian dynamical system eventually spreads
uniformly over the energy surface, the expectation of
similar behavior of analogous properties of the corre-
sponding wave system may not be realized.

II. REVIEW OF THEORY

We consider the Helmholtz equation (V +k„)g„(x)
=0 in the two-dimensional stadium-bounded region (Fig.
l) with /=0 on the boundary. ' The shape of the
boundary is governed by the parameter y, de6ned to be
the ratio of the half length a of the straight section to the
semicircle radius R. We hold the area constant ( =sr) so
that the mean density of eigenvalues does not change as
this parameter is varied (the equation is solved at fixed

y ). This wave problem can be viewed as the time-
independent Schrodinger equation for the motion of a
particle (mass trt, energy F.„=Rco„=R—ik ~/2m and
momentum p=trtlt} in such a two-dimensional region [po-
tential V(x}=0 inside, V(x)= oo on the boundary). The
wave equation also describes transverse TM modes in a
cylindrical electromagnetic cavity (or waveguide) with
stadium cross section (wave frequency to„=ck„with lon-

FIG. 1. Stadium boundary for the Helmholtz equation. The
boundary shape is governed by the parameter y—:0 /8 with the
restriction that the area remain constant ( =m ).
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dx BQ dk
dt Bk dt

(2)

For this system, the rays in x space are simply straight
lines with specular reAection from the boundary.

In the case of a circular boundary (y =0), a typical sin-
gle ray trajectory is confined to an annulus (Fig. 2) de-
pending on initial conditions. This is due to the rotation-
al symmetry which makes the angular momentum a con-
stant of the motion in addition to the value of Q (the "en-
ergy"). The presence of two constants of the motion in a
system with two degrees of freedom implies" that a tra-
jectory in the four-dimensional (x,k) phase space lies on
a two-dimensional surface which is a torus. This is an ex-
ample of an integrable dynamical system. In the noncir-
cular stadium geometry (y &0), however, the presence of
the short straight section (of any length) breaks the circu-
lar symmetry and thus destroys the conservation of angu-
lar momentum. As shown in Fig. 3, a single typical tra-
jectory appears to cover the entire interior of the stadi-
um. Indeed, it has been shown' ' that almost all ray
trajectories ergodically cover the three-dimensional sur-

gitudinal wave number k, =0). It will be helpful to bear
these applications in mind as we discuss and interpret our
results in the following sections.

The connection between this wave problem and a clas-
sical dynamical system is provided by the eikonal approx-
imation. ' In this method (also known as the WKB or
semiclassical approximation) the solution g(x) is assumed
to have the form P(x)- A (x)exp[i/(x)], where the phase
P(x) is taken to be much more rapidly varying than the
amplitude A(x). Substituting this form into the wave
equation, the magnitudes of the derivatives of the phase
and amplitude are ordered as

~
VP

~
&&

~

A 'V A ~;
defining the local wave vector k(x) as the gradient of the
phase, this is the statement that a typical wavelength of
1((x) is much shorter than the scale length of variation of
its amplitude (here, taken to be the radius 8 ), or

~

k
~

R &&1. This assumption leads to the lowest-order
partial di8'erentia1 equation for the eikonal phase:
[VP(x)] =k„+k» =k„. Since the eigenvalue k„ is relat-
ed to the wave frequency ~„ in both the Schrodinger and
cavity mode equations, we write the eikonal equation in
the form

Q(x, VP) =Q(x, k) =k2+ ki=k2,

which defines the local dispersion relation Q(x, k) (i.e.,
the relationship between the wave vector k and the fre-
quency co, which may in general depend on position x).
In. the case of the Schrodinger equation we have
Q=2IH(x, p)/iri, where H(x, p) is the classical Hamil-
tonian; here, the value of 0 is proportional to either the
classical energy E or the wave-function frequency co. In
view of the correspondence with classical mechanics, one
may identify the eikonal equation (1) as the Hamilton-
Jacobi equation associated with the dynamical system
generated by the Hamiltonian (or local dispersion rela-
tion) Q(x, k) [where the phase P(x) plays the role of
Hamilton s characteristic action function]. The charac-
teristic trajectories, or rays, of this dynamical system are
governed by Hamilton's equations

ii ii I/ A/A

n ww 'l% w% XXVii 6 0

FIG. 2. Typical example of a single trajectory in the (y =0)
circle. Because of conservation of angular momentum, every
orbit is confined to evolve within an annulus between some
minimum radius and the outer radius of the circle.

face of constant Q =co (the only integral of the tnotion) in
phase space; furthermore, Bunimovich' has shown that
this billiard system is mixing. There are, however, spe-
cial trajectories which are not chaotic: these are the
periodic orbits such as the ones which bounce vertically
between the straight sections, or horizontally on the mid-
line of the stadium. The initial conditions which generate
these orbits constitute only a set of measure zero in phase
space and the trajectories are unstable to perturbations in
initial conditions.

The generalization of the traditional asymptotic semi-
classical quantization methods for one-dimensional sys-
tems (e.g. , the Bohr-Sommerfeld rules) to systems with
more than one degree of freedom is the Einstein-
Brillouin-Keller (EBK) method. '~ '6 This method (for a
good discussion, see Percival' ) can be applied only to in-
tegrable Hamiltonian ray systems because it is based on
the quantization of the action variables. As such, the
procedure requires the transformation of the Harniltoni-

FIG. 3. Typical example of a single trajectory in the y= I
stadium boundary.
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an Q(x, k) to a new Hamiltonian Q(I) which is a function
of the action variables I alone. For integrable systems
with Xdegrees of freedom, the X actions are defined as"

The quantization of the actions by (4) can be shown'
to be

I—: fzk.dx,

where the N paths [X[ are N irreducible and independent
circuits around the N-torus in phase space on which the
trajectories lie. Each of these actions is then quantized as

(4)

where the m are integers (m=0, 1,2, . . . ) and the num-
bers a are Maslou indices'0 which are related to the topo-
logical structure of the torus in phase space. These con-
ditions discretize the set of classical tori and implicitly
determine the eiyenvalues ra~=k~ in the wave spectrum
by setting co~=Q(I~). The interpretation of this quanti-
zation procedure is that a short-wavelength normal mode
of an X-dimensional wave system labeled by N integers
corresponds roughly to the family of trajectories of the
associated integrable dynamical system which lie on the
phase-space N-torus labeled by the corresponding values
of the N actions [given by quantization conditions (4)].

As our model system of rays bouncing inside a circular
boundary is integrable, the EBK quantization procedure
can be carried out as follows. The two irreducible paths

t X j required for the action integrals (3) can be visualized

by "infiating" the picture of the trajectory in Fig. 2 into a
torus: from the inner radius of the orbit, the ray moves
outward over the top of the torus, reflects at the outer
boundary, and then continues back toward the inner
minimum radius along the bottom of the torus. The two
irreducible paths are then the long way around the torus
(the angular direction) and the short way around the
torus (the radial direction); i.e., [X]=(H, r }. In this case,
these two paths can be separated by expressing the Ham-
iltonian 0 in canonical polar variables,

The term —, in the definition of I„ is the Maslov index for
the projection of the radial motion in phase space onto x
space (which accounts for the focusing of the rays along
the inside of the annulus and their refiection from the
boundary}. The substitution of these conditions into (6)
discretizes the set of classical tori and implicitly deter-
mines the eigenvalues in the wave spectrum,
co „=Q(m,I„). These expressions were first derived by
Keller and Rubinow' and yield eigenvalues which are in
very good agreement with the exact spectrum (the zeros
of Bessel functions).

If the ray system is not integrable (as in our case of
rays bouncing inside a stadium boundary) then the EBK
quantization procedure fails (the set of N actions does not
exist}. It is not known in this case what the correspon-
dence is between normal modes of the wave system and
objects in the ray phase space (such as the tori for inte-
grable systems), if indeed there is any correspondence at
all. It is one of the goals of this paper to examine the
solutions of the wave equation in the stadium geometry in
an attempt to discover and elucidate such a connection.
This investigation will be carried out in the light of
Berry's ' conjectures on the statistical properties of
eigenfunctions of the Schrodinger equation based on the
phase-space structure of classical ray systems which are
chaotic.

As the description of the ergodic properties of a Ham-
iltonian ray system is most natural in the (x,k) phase
space, it is advantageous to explore the implications of
such behavior for the corresponding normal modes in
terms of a phase-space representation of the waves. An
example of such a quantity is the Wigner function, '

which may be defined in terms of the x-space representa-
tion of a wave f(x) in N dimensions as

k2
a) =k„=Q(r, k„,ks) =k„+ W(x, k)= J f(x+ —,'s)g'(x ——,'s)e '"'d s . (8)

In this form, it is evident that k is a constant of the
motion and is in fact the angular momentum L, or angu-
lar action Is defined by (3). The radial action I, is given

by the integral around the radial direction (from the
inner radius a„L L /V'co to the pe——rimeter and back):

I„= f k„(r;L,co)dr
1

The properties and applications of this function have
been discussed by many authors. ' ' It is of interest be-
cause it is often regarded as a candidate for a wave analo-

gy of the classical Liouville density of the associated ray
system. The transform in (8) is invertible and yields the
product

P(x)g'(x')= J W'(k, —,'(x+x'))e'"'"
oc (2m}

( k„R L) ' ~ —L arccos—
7T k„R

(6)
while the projection onto x space is

where k„=co is the value of Q. This relation I„(L,co)

now implicitly defines a new Hamiltonian Q(L, I„) in
action-angle variables [by replacing k„with Q in (6)], as
well as the transformation I„(r,k„,k&) from the canonical
set of polar variables to action-angle variables by using (5)
to express k„ in terms of r, k„, and ks in (6).

i P(x) i
= J W(x, k)

(2m )

For a wave which is rapidly oscillating on x space
(such as in the eikonal approximation) the Wigner func-
tion is in general a rapidly varying function on phase
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space. Berry has introduced the local spatial average of
the %'igner function

( W'(x, k)) = „J Wx+s, k)d s,

with

but

multiple Fourier integral (8) over wave functions which
themselves must be computed numerically in nonsepar-
able geometry. Instead of investigating the %'igner func-
tion associated with a normal mode directly, one can gain
some insight by studying the eigenfunction itself. This is
because, as Berry points out, the approximations (12)
and (13) when substituted into (10) and (9) have implica-
tions for statistical properties of the individual eigenfunc-
tions f(x). In this way, predictions for the local average
intensity

lim —=0,
oA

where A, is a typical wavelength of g(x) and b, is the
smoothing length. (Thus we consider local averages over
many wavelengths of increasingly shorter wavelengths
modes, A, /b, ~O. } This averaging process eliminates
some of the oscillatory nature of the %'igner function
(typical of quantuin or physical optics elFects} and, to-
gether with the tendency to shorter wavelength, allows
one to make predictions for ( fV) based on its interpreta-
tion in terms of classical mechanics or geometrical optics.

For time-independent integrable ray systems with N
degrees of freedom, Berry has taken the crudest approxi-
mation

( W (x,k)) =5 (I(x,k) —I ), (12)

(13)

where I(x,k) is the set of N actions expressed in terms of
x and k, and the I are their corresponding quantized
values in the EBK analysis. This expression was ob-
tained" by using an eikonal representation for f(x) in (8)
and performing the integral in the stationary phase ap-
proximation. Although Balasz has shown that the
Wigner function can be a 5 function only on linear sub-
spaces of phase space, this approximation conforms to
the expectation based on the correspondence between the
classical phase-space tori and stationary states of the
wave system.

As we have noted, the correspondence between normal
modes and objects in the classical phase space of nonin
tegrable ray systems is unknown. However, the analogy
between the Wigner function and the classical Liouville
density has led Berry and Voros ' to take, as a crude ap-
proximation for time-independent ergodic ray systems,

and the spatial correlation function

C(x, s) =— (g(x+ —,'s)P'(x ——,'s) )
1

may be computed for either the integrable or chaotic
case. Here the local average ( ) is defined as in (11}.We
note that this definition of the spatial correlation differs
from that used recently by Shapiro and Goelman; we be-
lieve that (15) is a more natural definition in that it does
not rely on the prescription of some "self-avoiding
space-filling path in coordinate space. " Furthermore, the
present definition coincides with the standard correlation
function studied in wave propagation and turbulence
theory when the local spatial average ( ) is interpreted as
an ensemble average; in that case, the averaged %igner
function can be properly interpreted as the local spectral
function of the wave.

%e have attempted to test the accuracy of these
asymptotic forms of the Wigner function by numerically
investigating II(x) and C(x, s) for individual eigenfunc-
tions of the Helmholtz equation in both the circular
(y=O) and stadium (y &0) geometry. In the integrable
circular case, we have from (12),

( W „(r,k„,k )s) =5(ks —m) (5I„(r, „k, k )s I„}, (16}—

where we have used I ——L =k6) for the angular action.
For the radial action function I„(x,k)=I, (r, k„,ks) we

substitute co=A(r, k„,ks) from (5) into (6) to obtain

I,(r, k„,ks)= ——k r +ks 1—1 R & 2 & r

kyar—k& arccos

which is a one-dimensional 5 function selecting the
(2N —1)-dimensional surface (with volume I „) corre-
sponding to the eigenfrequency co„. Although Voros '

has to some extent justified this approximation, its status
is more that of a conjecture and indeed a proposal for the
definition of chaos in stationary states of wave systems.

The verification of these hypotheses [particularly (13)]
is an important step in determining the criteria for and
the nature of what has become known as quantum chaos
and its relation to corresponding classical concepts. The
signer function, however, is a dificult quantity to con-
struct and study numerically for systems with rDore than
one degree of freedom, due to its definition in terms of a

The quantization rules (7) have been used in (16) for the
I~. When (16) is inserted into (10), one finds the local
average intensity

(18)

for a short-wavelength eigenmode of the circle with semi-
classical eigenvalue k „. We observe that II „(r) is just
the classical density of rays with the quantized values of
the actions I. This expression is correctly normalized on
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the annular region between the boundary of the circle
and the radial turning point a =m /k „(where it be-
comes infinite), and is proportional to k, (r) in that an-
nulus. The singularity at a„ is of course "softened"
when wave e8'ects are considered; this is an example of
the caustic phenomenon observed in regions of x space
where rays focus.

The spatial correlation function is obtained by insert-
ing (16) into (9) and dividing by II „(r):

S
C „(r,8;s,P) =exp im —sin(P —8)

xcos Q—k~ „r' m'—c os(P 8)—

(19)

f 5(k —co„)d k
II„(x)=, zf d2x f 5(k —co„)d k

(20)

where A is the area of the stadium ( =m ). This uniform
intensity conforms to expectation based on the ergodic
nature of the rays which densely cover the interior of the
stadium. It should be remembered that this is the aver-
age local intensity; i.e., the short-wavelength oscillations
of the mode have been averaged out, so that it is a predic-

where (r, 8) are the coordinates of a point x inside the
circle, s is the distance measured from x, and P is the an-

gle of s (relative to the positive x axis). Again, this ex-
pression is valid only in the classically allowed annulus.
Note the definite anisotropy in the angle P at a fixed point
( r, 8) due to the contribution to P(x ) of only two (ingoing
and outgoing) local wave vectors, k+(r)=(kz, kk, (r)).
Thus, for s along the radial direction (/=8) the correla-
tion function has the spatial dependence of the local radi-
al wave number C=cosk„(r }s while for s in the angular
direction (P =8+m /2 }the variation is that of the angular
wave number C=exp(kims/r) (for small s, s/r= the
angular deviation from the point x). We also note that
for r=a„, C is approximately constant in the radial
direction indicative of the transverse correlation in the
caustic region due to the focusing of rays.

These expressions for H and C are in agreement with
the more general formulas derived by Berry in Ref. 3
(when made specific to the present problem). In that
work, he also discusses the general presence in integrable

systems of caustic singularities in II and the anisotropy in
C due to only a finite number of local wave vectors con-
tributing to tt at each point x. He also predicts the form
of II and C for a relatively general ergodic system (of
which the stadium with y ~ 0 is a simple example), based
on the assumption (13). Thus we have upon substitution
of (13) into (10) the local intensity for a wave in the (er-
godic) stadium geometry

tion of uniform average intensity. The correlation func-
tion is computed with (13) in (9),

C„(x,s)= f e'"'5(k —co„) 2 =Jo(k„s) .
II„(x I „ (2m )

(21)

Here k„=—~„, and the integral has been computed using
polar variables and Bessel's identity.

Following Berry, we observe that expressions (20) and
(21) for the ergodic stadium are strikingly difFerent from
the corresponding formulas (18) and (19) for the inte-
grable circle in two important respects: (i} The local
average intensity in the circle is dominated by the caustic
singularity while no caustics are expected to exist in the
stadium, and (ii) the correlation function in the circle is
nonuniform in x and anisotropic in s (being infiuenced by
a finite number of local wave vectors), whereas in the sta-
dium it is expected to be uniform and isotropic. This
isotropy of C seems reasonable based on the ergodicity of
the underlying rays: almost every point x in the interior
of the stadium will be "visited" (approached arbitrarily
closely} by any ergodic trajectory infinitely many times as
r ~ oo (and the angle of k will take on almost all values in
this neighborhood of x). Thus, if a normal mode of the
stadium in some sense corresponds to an infinite-time er-
godic trajectory, it could be thought of as being com-
posed of an infinite number of local eikonal contributions
with an almost continuous local wave-vector spectrum.

III. NUMERICAL RESULTS

We have numerically solved the boundary value wave
problem discussed in Sec. II using a boundary integral
technique developed by Riddell. This method permits
the independent investigation of any region of the spec-
trum (i.e., without computing all lower eigenvalues) as
well as the capability of constructing the values of any
particular eigenfunction over an arbitrary domain within
the bounded region (even at just one point}. These are
important properties because in order to test the predic-
tions of Sec. II one must examine short-wavelength eigen-
rnodes for comparison with semiclassical theories. The
geometry of Fig. 1 admits reAection symmetries across
the axes, which give rise to four independent parities of
solutions; we have restricted our study to the odd-odd
class (nodal lines on axes}. In a compromise between
large eigenvalues and numerical accuracy, we have con-
centrated on a small part of the spectrum near k„=65,
which is approximately 200 levels above the ground state
in this parity class; in this regime there are typically
15—20 wavelengths across the interior. We have tested
the precision of our numerical technique in the case of
the circle against the exact analytical solutions
J (k „r)sinm 8 (m even, for odd-odd modes). In the
range 50~ k ~ 100, 97/o of our numerically obtained ei-
genvalues have +0.001 absolute error, while 90% have
error less than +0.0005. Furthermore, numerically con-
structed eigenfunctions were found to have relative error
of about 10 . We assume that these error estimates car-
ry over to the case of the stadium.

A perspective view of a typical circular (y=0) eigen-
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function is shown in Fig. 4, where
~ g t

is plotted in the
positive quadrant for k4o 5=65.012 (angular quantum
number I =40, radial index n =5). The visual compar-
ison of

~ P ~
with the classical probability density is ap-

parent: (i) in the classically disallowed region (r &a )

the amplitude is vanishingly small; (ii) the caustic region
formed by the first and largest peak of J4o 5(k4o 5r ) corre-
sponds to the focusing of the geometrical optics rays
along the inside rim of the annulus; and (iii) the radial de-
cay of amplitude (smoothing over the rapid wave oscilla-
tions) within the annulus appears to verify Eq. (18).

In Fig. 5 we plot the local correlation function C(x, s}
for this mode. As a typical example we have chosen the
point x=(r, 8)=(0.866, 0.867) and have computed the
correlation as a function of

~

s
~

at three angles
/=0, n/4, n/2 The. crosses denote the numerical data
and are compared to the soli.d curve representing the
theoretical prediction based on the real part of Eq. (19).
It should be noted that the local average indicated in (15)
was in practice carried out for this case over an area en-
compassing only about two wavelengths as opposed to
the limiting process stated in (11); numerically we may
examine eigenmodes with large (but finite} wave number,
but due to (15) we must smooth only over regions where
the local average intensity H remains somewhat uniform.
Nevertheless, we may conclude two things on the basis of
these results: (i) The Wigner function for eigenstates of
systems which are classically integrable appears to be
concentrated on the torus in phase space corresponding
to the semiclassically quantized values of the actions [be-
cause expression (19) was derived from the approxima-
tion (12}],and (ii) the part of the spectrum we are examin-

ing is probably "asymptotic" enough to test predictions
based on semiclassical arguments.

In Fig. 6 we display a perspective view of
~ P ~

in the
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0.5

0.0

-0.5 (c)
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FIG. 5. Locally averaged spatial correlation function C{x, s)
for the circular {y=O) mode of Fig. 4. The point x is fixed at
(r, e)={0.866, 0.867) and the correlation is plotted as a func-

tion of
~
s

~
for three angles P of s relative to the x axis. Crosses

denote numerical measurements, solid line is theory based on
the real part of Eq. (19). (a) 4}=0. (b) P=m/4. (c) P=m/2.

FIG. 4. Intensity distribution
~

1( „~ (x,y) in positive qua-
drant (x,y ~ 0) of the {y =0) circle. This mode is

„=t(40, =J40( k40, r )sin408 with eigenvalue I~ 5
——65.012.

positive quadrant for a typical eigenfunction in the stadi-
um geometry (y= 1 }. The eigenvalue k =65.326 is again
approximately 200 levels above the ground state of the
odd-odd parity class (since, although we have stretched
the circle into a stadium, we have kept the area constant).
The irregular distribution of

~ f ~

over the stadium is in

striking contrast to that in the circle, and the connection
of such a "random-looking" eigenfunction with an under-
lying ergodic classical system seems at first appealing.
On the basis of the ergodic nature of almost all trajec-
tories in the stadium however, one mould expect a more
uniform distribution of amplitude than that which is ob-
served in Fig. 6(a); in fact, the semiclassical prediction of
(20) seems not to be borne out in this case. Instead, we
would characterize the appearance of this mode as con-
sisting of many small localized regions (of several wave-
lengths} with relatively high intensity somewhat random-
ly interspersed among 1arger areas of much lower intensi-
ty. As previously noted, ' the nodal curves as in Fig.
6(b) appear to wander randomly through the domain. Al-
though this behavior is frequently mentioned as a symp-
tom of wave chaos, we feel this feature should only be
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FIG. 6. Typical eigenfunction structure for y=1 stadium,
again plotted in the positive quadrant {this eigenvalue is
k =65.326). {a) Perspective of intensity distribution. {b) Nodal
curves.

0.0

-0.5

emphasized to the extent that it facilitates the visualiza-
tion of the local wave-vector spectrum: the random weav-
ing of these contours tends to indicate an isotropic distri-
bution of local wave vectors as predicted by Eqs. (13) and
(21).

The numerical computation of the correlation function
C(x, s) for this mode is presented in Fig. 7 (again denoted
with crosses) and compared to the prediction (21) at three
angles of s. The agreement with theory here is not as
definite as in the circular case and the expected isotropy
is not fully realized. These results were obtained by re-
placing the local average in (15) by an average over the
entire stadium (even though the local intensity

~ P ~
is

evidently not uniform) since any local average performed
as in the case of the circle for a finite wave number would
produce anisotropy in the correlation. Similar (and in
fact worse) agreement' with theory has been found for
other randomly selected modes, including ones near
k =100 (nearly 600 levels above the ground state). If we
assume that stadium modes in this part of the spectrum
can be considered to be "asymptotic" in the same sense
as circular modes in the same range, then we must con-
clude that the prediction (13) is not substantiated. In
other words, these results seem to indicate that the
%igner function corresponding to these modes exhibits
more structure on the energy surface than does the classi-
cal invariant Liouville density for an ergodic trajectory.
Thus, both the distribution of intensity and the behavior
of the spatial correlation suggest that an individual eigen-
mode of the stadium does not correspond to an ergodic
family of orbits (but possibly, to only a finite-time subset
of ergodic orbits).

-1.0
-0.00 0.05

I

0.10

FIG. 7. Locally averaged spatial correlation function for

y =1 stadium mode of Fig. 6. The reference point x is 6xed at
(x,y) =(0.76, 0.46) and C(x, s) is plotted against

~

s
~

for three
angles P of s relative to the x axis. Crosses denote numerical
measurements, solid curve is theory based on Eq. (21). (a) /=0.
(b}P=n!4 (c) P=.m/2.

%e have constructed' a number of eigenfunctions in
this region of the spectrum (k =65), as well as several in
the regime k =100; six consecutive modes in each range
are shown in Fig. 8. Most of the tnodes (approximately
80%) are similar to the one pictured in Fig. 6 in that they
share the property of random intensity distribution and
anisotropic correlation. A small number of modes (about
10%), however, were observed to have a more uniform
intensity distribution. In contrast, the remaining 10% of
the eigenfunctions we constructed were surprising be-
cause they appeared to correspond to periodic ray trajec-
tories. Examples of this are the modes shown in Figs.
8(d) and 8(i); these "bouncing ball" modes seem to be as-
sociated with ray trajectories which bounce between the
straight sides of the stadium (although the waves do ex-
hibit a finite value of k„). In later work Taylor and Bru-
mer and Belier have also observed this type of mode.
Although bouncing ball modes were predicted by Keller
and Rubinow' to exist for arbitrarily shaped two-
dimensional regions, their arguments assume that the
boundary was everywhere focusing and that the ray sys-
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(h)

FIG. 8. Intensity distribution for six successive modes near k =65 (a}—(fI and k =100 (g)—(1). (a) k =65.036. (b} k =65.326. (c)
k=65.412. (d) k=65.0556 (bouncing ball mode). (e) k=65.656 (spike near boundary due to numerical error). (f) k=65.736
(whispering-gallery mode). (g) k = 100.107 (whispering-gallery mode). (h) k = 100.144. (i) k = 100.202 (bouncing ball mode). (j)
k = 100.269. (k) k = 100.297. (l) k = 100.386.
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FIG. 8. (Continued).

tern was integrable. Although there is no firm theoretical
foundation for quantizing ergodic ray systems and con-
structing normal modes in terms of periodic orbits (which
are in general isolated and unstable to perturbation), Hell-
er has recently given arguments for the existence of such
periodic orbit modes in the spectrum of a general ergodic
ray (wave) system. Bai, Hose, Stefanski, and Taylor
have also offered an explanation of bouncing ball modes
based on an adiabatic quantization procedure. Another
class of mode we observed is represented by those in Fig.
8(f) and 8(g); this "whispering-gallery" type of mode was

also predicted by Keller and Rubinow, although again
the arguments were based on the existence of a torus cor-
responding to an integrable family of orbits which skips
around the boundary,

Percival' has introduced the term irregular to describe
modes corresponding to classically nonintegrable Hamil-
tonians (whereas integrable ray systems would possess
regular modes). In view of the difFerent types of modes
found in the spectrum of the stadium, some of which ap-
pear more similar to the regular modes of the circle than
to the majority of stadium modes, we propose to further
differentiate the types of irregular modes. Thus, we refer
to the majority of stadium modes (as in Fig. 6) as chaotic
waues, and term the more regular-looking modes [as in
Figs. 8(d), 8(i), 8(f), and 8(g)] localized waves. Here this is

suggested as a primarily subjective visual distinction, but
in the next section we shall consider a quantitative mea-
sure of the di8'erence between these classes of modes.

IV. AMPI. ITUDE DISTRISUTSON: P{y)

Berry has proposed a simple quantitative measure for
distinguishing between regular and irregular waves,

loosely based on the concepts of eikonal theory. If one
assumes that the wave f at a point x in the stadium can
be written as a sum of eikonal "wavelets, "each contribu-
tion arising from successive passes through an arbitrarily
small neighborhood of x along a single chaotic trajectory,
then f(x) would have the form

j=0
(22)

Since in this model the rays propagate freely between
rejections from the boundary, the phase of the jth con-
tribution to P is simply proportional to the total path-
length I.J between the (j—1) and jth arrival "near" x:
{{}J(x)= I k dx=

~

k
~

I. . Now, as this system is mixing,
the I.~'s may be considered to be independent random
variables. %'ith these assumptions, one concludes on the
basis of the central limit theorem that g(x) is a Gaussian
random Uariable for all x. Thus, the probability of finding
the value f at any point inside the stadium, without
knowledge of the surrounding values, is distributed as a

2
Gaussian, P(g)-e

Naturally, this should be viewed as only a qualitative
argument (indeed, this is probably not even a correct in-
terpretation of a stadium mode at all). Other amplitude
and phase contributions (such as those due to boundary
refiections and possible focusing) have been ignored, and
nothing has been said about quantization. It does, how-
ever, serve to convey this general idea: if an irregular
wave supported by chaotic rays may be represented by a
superposition of a large (possibly infinite) number of
eikonal wavelets, then the chaotic paths of the rays could
produce a phase decorrelation of the individual contribu-
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This is true for all modes at all values of y. Therefore,
each numerical P(P) at any value of y may be compared
with the same standard normalized Gaussian prediction:

Po(g)—:2 exp( mP /8—) . (24)

The result for the stadium mode of Fig. 6 at k =65.326
is displayed in Fig. 9. Despite the rough form of the nu-
merical data, it seems that the general shape of the proba-
bility distribution is fairly well described by the Gaussian
prediction. Actually, the jagged peaks are due to the
finite wavelength of the mode, as each peak in the distri-
bution represents a local minimum or maximum in the
wave (a wave peak). When the wavelength is shortened
(larger eigenvalue) each mode contains more waves and
the peaks in P(g) tend to coalesce. Figure 9 is typical of
the general agreement with this theory found for all of
the chaotic type of y =1 stadium modes examined. Simi-
lar results have been reported by Shapiro and Goelman,
although their experimental histogram for P(P) is not
compared with a standard Ga,ussian curve, and these au-
thors seem to be unaware of Berry's prediction.

tions, yielding a Gaussian random variable at each point.
This is a simple statistical test to perform. Evaluating

a single normalized eigenfunction P at approximately
5000 points in the interior of the quadrant, the probabili-
ty distribution P(P) is constructed as a normalized histo-
gram with 100 bins. For eigenfunctions normalized to
unity in the quadrant of area m/4, the width of the nu-
merical distribution P(g) is &4/ir,

P2, = I QP(P)dan=A ' I g d x=3 '=4/ir .

(23)

In contrast, the bouncing ball modes possess a some-
what di8'erent characteristic probability distribution as
shown in Fig. 10. While the "wings" of the numerical
P(g) seem to fit the Gaussian prediction, there is a
definite disagreement near /=0. Of course, this central
peak is readily explained in view of the localized bounc-
ing ball mode structure shown in Fig. 8(d): it reflects the
large semicircular ends of the stadium where these modes
are evanescent. In fact, the distribution for bouncing ball
modes is similar to those found for circular modes.

Figure 11 shows P(P) for the circular mode shown in
Fig. 4. Here, the effect of an evanescent region is
overwhelming: this is due to the large interior disk where
the high angular momentum mode has a very low ampli-
tude. Furthermore, the probability of 6nding large values
of g is greater for the circular mode than for the chaotic
stadium mode: this reflects the existence of the caustic re-
gion in Fig. 4. We conclude that a regular mode is
characterized by a non-Gaussian probability distribution„
in this case, P(f) displays a balance between the extremes
of high- and low-amplitude regions [since the width of
P(P) is constant] and in this way it describes the dom-
inant features of this type of mode. By this measurement,
localized stadium modes (such as bouncing ball modes)
are similar to regular modes, even though the nature of
the ray-wave correspondence which this association en-
tails remains unexplained.

In order to quantify these observations, for each mode
studied we have measured the fit to the proposed Gauss-
ian (24) by computing the residual defined by

0.4-

0.5-

0.2

FIG. 9. Probability distribution P(g) for y = 1 stadium mode
of Fig. 6 and comparison to Gaussian prediction {24). Each
jagged peak in the numerical data is due to a wave "crest" or
"trough" in the eigenfunction.

FIG. 10. Probability distribution P(g) for y= 1 bouncing
ball stadium mode of Fig. 8(d). Large central peak is due to the
large number of small values of @ sampled in the semicircular
ends of the stadium.
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The average probability distribution

0.0

P(P)—=—I P(P )da
0

is then computed by constructing the histogram P(g ) at
13 values of o.'for 0 & a & m and averaging.

In the circular case, the levels chosen were the high an-
gular momentum mode of Fig. 4 and a neighboring low
angular momentum mode with k4 &&

——65.067 for which
hk =0.055. An example of the superposed mode struc-
ture at a single value of o, is shown in Fig. 13; although
the nodal and intensity patterns for this combination ap-
pears somewhat "irregular, " they are not quite as ran-
dom as those found for chaotic stadium modes. The
average P(1() is displayed in Fig. 14 and the residual p of
the fit to the standard Gaussian is plotted in Fig. 12 as

FIG. 11. Probability distribution P(g) for y =0 high angular
momentum mode of Fig. 4. The peak near /=0 represents the
contribution from the 1arge evanescent central disk region ex-
hibited by this mode; the shift to the right of zero of this peak is
due to (an unsatisfactory) binning procedure.

g:—1(,+1(2cosa, (26)

where a is a relative phase and f is properly normalized.

Here, n is the number of bins in the histogram P(g) (we
have used n =100). This quantity was evaluated for sam-
ple eigenfunctions with 60&k &70 at both y=0 and

y = 1; in addition, we have also investigated the trend in

p as y takes on intermediate values. The results are
shown in the graph of p versus y in Fig. 12.

At y =0, the residual p varies over a wide range from
the worst ftt (large p) for high angular momentum modes
to the best for low angular momentum modes (small m ).
Almost all modes examined for y &0.25 exhibit a uni-
formly better fit to the predicted Gaussian by an average
factor of about 4. The obvious exceptions to this general
behavior (denoted by the squares) are the bouncing ball
modes, which have values of p typical of low angular
momentum circular modes; this again is consistent with
earlier remarks. The intermediate value of y=0. 125
represents the case where the wavelength of the modes in
this range of the spectrum is comparable to the irregular-
ity in the boundary (the length of the straight section)
and appears to mark a transition between systems with
regular and irregular modes (at least as far as this mea-
surement is concerned). If this transition is truly a wave
eff'ect (the mode "sensing" the irregularity) then the
threshold should decrease to lower values of y as the
wavelength is shortened as in the ray limit (where rays
are ergodic for all y ~ 0). In Sec. V, however, we present
an observation which would seem to contradict this idea
of a "wave threshold".

%'e have also considered the statistics of a linear super-
position of two neighboring levels @, and $2..

l

0 0 I 25 0 2'5

FIG. 12. Variation of residual parameter p with y. Dots at
each value of y denote separate measurements on different indi-
vidua1 eigenfunctions; squares denote measurements on bounc-
ing ba11 modes; crosses denote superposition averages.
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0.0
0

1.0

FIG. 14. Averaged probability distribution P(1() for the su-

perposition of low and high angular momentum circular modes
with standard Gaussian comparison.

the value of p gauging the 6t to the standard Gaussian.
The superposition of many modes and subsequent averag-
ing may produce better Gaussian statistics even for the
circular case.

%'e have also studied the statistics of the normal
derivative P„=—BPIBr) evaluated on the boundary for reg-
ular and irregular modes. As a comparison, both Berry24
and Ott and Manheimer have suggested that the mean-

0,0 i

0.0

FIG. 13. (a} Intensity distribution for linear superposition of
neighboring low and high angular momentum circular modes
k =65.012, 65.067. |,'b) Nodal structure of same superposition.

04

the cross at y =0. The 6t is nova better than for any pure
state, including that for chaotic stadium modes, despite
the fairly ordinary appearance of the wave function. One
reason for this is the smoothing out of the "vnngs" of the
probability distribution due to the better statistics in-
volved in the averaging: the jagged peaks have coalesced
with the varying amplitude of the wave peaks at diferent
values of a. Note that the central peak of P(f) near

P =0 persists.
For the y =1 stadium, we have studied the superposi-

tion of k, =65.326 and k2 ——65.412 (6k=0.086). The
averaged distribution P(P) shown in Fig. 15 is now an ex-
tremely good fit due to the averaging process; this is
confirmed by its value of p in Fig. 12 (the cross at y =1).
It seems that the net effect of averaging over the relative
phase of two superposed modes is about a factor of 3 in

FIG. 15. Averaged probability distribution P{g) for y= 1

stadium superposition (k =65.326, 65.412}and Gaussian corn-
parison.
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square value of the normal derivative of an irregular
mode should satisfy

(28)

0.01

where the average on the left is over the boundary and
that on the right is over the interior [i.e., by (23) it is
equal to the width g, =4/m]. We have tested this hy-
pothesis alld have examined the distribution P(1'~). Nu-
merically, we could sample the normal derivative at only
50-100 points along the one-dimensional boundary, as
opposed to the approximately 5000 interior sample points
available for constructing P(f). In order to increase the
statistics, we considered the superposition

/[8]:—tt, cos8, +$2cos8i (29)

and have allowed 8i and 8t to vary independently in
0 & 8 & m (keeping /[8] properly normalized). The aver-
aged distribution of a normal derivative is thus construct-
ed in analogy with (27):

0.0
-100

(30)

For the case of regular modes at y =0, we again exam-
ined the combination of the low and high angular
momentum modes previously introduced. The distribu-
tion P(g„) shown in Fig. 16 has a root mean square of
61.87, which is to be compared with the value k =65.0
(for both modes) to be used in (28). The distribution for
the superposition of the two irregular modes at y= 1

(k, =65.326, k2 ——65.412) is shown in Fig. 17, where the
width is 61.07. In both cases the root mean square is
near the predicted value [although (28) does not apply to

P(i)i )

FIG. 17 Averaged probability distribution of normal deriva-
tive P(f„) for superposition of the two stadium modes
(k =65.326, 65.412) and Gaussian comparison with same nu-

merically determined width ( =61.07).

regular modes] and, perhaps surprisingly, P(g„) for the
superposition of two irregular modes is fairly well ap-
proximated by a Gaussian.

These results tend to substantiate the prediction that
chaotic irregular modes can be characterized as Gaussian
random functions. They also point out that in terms of
P(tt ) as a criterion, the classification of regular and irreg-
ular waves based on corresponding ray properties may
need refinement (at least for this system) in order to ac-
count for the anomalous properties of bouncing ball
modes. Moreover, while most stadium modes are chaotic
by this standard, they do not manifest the uniform inten-
sity expected from a primitive concept of ray-wave
correspondence. As previously argued, these are also as-
pects of higher eigenvalue ranges so that they do not ap-
pear to be 6nite-wavelength effects.

V, VARIATION OF MODES %ITH y

0.0 '—'
-100

I

100

FIG. 16. Averaged probability distribution of normal deriva-
tive P(g„) for superposition of the two circular modes of Fig. 13
and Gaussian comparison with same numerically determined
width ( =61.87}.

We have observed another peculiar qualitative aspect
of the contrast between stadium and circular eigenfunc-
tions in terms of the differing properties of the corre-
sponding rays. As previously stated, almost all orbits in
the stadium are ergodic for all values of y &0, whereas
the graph of p versus y in Fig. 12 seems to indicate that
in order for wave functions to become chaotic, y has to
be large enough for the wavelength to "sense" the
straight section a in the boundary. Thus, even though
the modes in the range of the spectrum near k =65 meet
the eikonal condition for y =0 [kR(y) =65,A, /R =0.1],
the values of ka =kgb or a/k=yR/A, are a factor of y
smaller. (Recall that a, the half length of the straight
section, and R, the radius of the semicircle, are both y
dependent since the area is held constant: R ( y )
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=[I+(4y/m. )] ' ). For these modes, the threshold y
for irregularity should be such that

a(y) R y) ~ 4y (31)

67.0

I

e {2)

66.5

65.5

— — -~ {58)

65.0
0.00

1

0.02 0.04 0.06

FIG. 1S. Evolution of six eigenvalues as y is increased from
zero. Numbers in parentheses denote angular mode number m
at y =0. The inset schematically illustrates the possibility of an
avoided eigenvalue degeneracy at the several trajectory intersec-
tions indicated in the main figure.

which for k =65 gives y =0. 1 as observed in Fig. 12.
In an attempt to observe this wive transition, we have

followed the evolution of several eigenvalues and eigen-
functions as y is increased slightly above zero. Figure 18
is a graph of the trajectories of six eigenvalues as a func-
tion of y for 0&y &0.07. The parenthetical number la-
beling each curve refers to the value of m (angular
momentum) of that mode at y =0. Immediately obvious
is the quite disparate behavior of the high and low angu-
lar momentum modes, the latter displaying much greater
sensitivity to the change in boundary shape even at very
small y. A similar sensitivity of low angular momentum
modes to perturbation has been noticed by Tabor in a
different problem, but here these modes seem to be "feel-
ing" the straight section in a regime much lower than the
threshold (31).

Equally striking is the evolution of the eigenfunctions
of the low angular momentum modes. The pictures in
Fig. 19 depict the changes in J2(k2 20r)sin28 at 0.01 in-

tervals for 0& y &0.07. Particularly interesting are the
mode structures at y =0.02 and y =0.05. Further
analysis shows that near y=0.05, the eigenvalue of this

mode is very near another eigenvalue (although not
shown in Fig. 18) so that this fairly chaotic pattern may
be due to the mixing of nearly degenerate modes. This
e6'ect of the collision of eigenvalue trajectories wi11 be dis-
cussed below.

The structure of the mode in Fig. 19(c) is very reminis-
cent of that found in stadium bouncing ball modes. In
the interval 0&@&0.02, the nodal line which at y=0
was the positive x axis has swung radially leaving behind
a large section of the quadrant with very small amplitude.
This could be interpreted as an eftect of spontaneous cir-
cular symmetry breaking compatible with the ray pic-
ture: the low angular momentum mode represents almost
diametrically oscillating rays (with a„=0.03), so that
as y is increased slightly the most stable family of rays
(i.e., the ones bouncing between the straight sections)
with nearly this property are "favored" to represent the
mode. Although there is no rigorous theory for this
correspondence (since even the low angular momentum
ray torus in phase space is destroyed when y difkrs from
zero), it would be interesting to determine if the bouncing
ball modes observed at y=l do indeed originate from
small m modes at y=O.

The rather insensitive behavior of the high angular
momentum eigenvalues in Fig. 18 is accompanied by only
a slight change in the eigenfunctions. Figure 20 shows
that the rapidly oscillating angular structure of an m =48
mode is modulated so that the amplitude is diminished
near e=n /4 (although the caustic peak seems
unaffected). These whispering-gallery-type modes may
persist and evolve into similar structures such as the
mode shown in Fig. 8(f), but this connection has not been
investigated.

In Sec. VI the spectrum of eigenvalues will be analyzed
statistically at different y in terms of the probability dis-
tribution of neighboring energy-level spacings P(b,E) for
E—:k . The graph of eigenvalue evolution in Fig. 18 has
a bearing in this regard as it reveals several instances of
apparent eigenvalue trajectory crossings. Such an inter-
section implies a degeneracy of modes at that value of y,
and as such is an important contribution to P(hE) at
DE=0. It is common lore that eigenvalues generically
do not cross under perturbation and that such a degen-
eracy marks a symmetry of the system. Although there
has been much discussion of this phenomenon and
its relation to the integrability of the corresponding ray
system, we shall not address the general question of ei-
genvalue crossings for the present system, except in the
light of Fig. 18 and the computation of P(hE). It is im-
portant to remember that the twofold degeneracy of
modes in the circle (sinm8 and cosrn8, due to the con-
tinuous angular symmetry) is removed when the modes
are separated into reAection parity classes. Therefore,
crossings or near degeneracies due to this e8'ect do not
appear in Fig. 18 or in P(b,E ).

Considering the wide range of eigenvalue sensitivity to
boundary perturbation exhibited in Fig. 18, it is natural
to expect the several crossings indicated. However, it is
diScult to determine numerically whether these trajec-
tories actua11y intersect or narrowly avoid each other as
schematically illustrated in the inset; the numerical error
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FIG. 19. (a) Intensity distribution of y =0 circular mode J2(k& 2&r )sin28. (b} Intensity structure of the same mode at y =0.01. (c)
y=0.02. (d) @=0.03. (e) @=0.04. (f) @=0.05. (g) y=0.06. (h) y=0.07.
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in the eigenvalue produces an uncertainty in both trajec-
tories in a small neighborhood of the apparent crossing.
Even the computation of the eigenfunctions of the two
modes involved at values of y before and after the inter-
section is not necessarily a good test because in the vicini-
ty of the near degeneracy there is considerable mixing
and the identity of the eigenvalue-eigenfunction associa-
tion is 1ost.

The behavior of the eigenvalues as a function of y near
y=1 is similar to that found for small y; that is, most
modes are fairly insensitive to changes in the boundary,
but there are exceptions. The eigenvalues of bouncing
ball modes in this regime follow trajectories which can be
understood in terms of the fact that they are quite accu-

rately given by a rectangular quantization formula:

m n
k =n

a R
I+ (m +y2n ),y'

dk 2k k (m/yn )~

4y+~ y 1+(~/y~)'

(32)

where the approximation n ~~m has been made corre-
sponding to these modes with large k~. From this it is
clear that both the 6rst and second derivatives are of the
order of k. Other authors have used the second
derivatives (or second differences) or eigenvalue trajec-
tories to classify the regular and irregular spectrum, not-
ing that irregular modes are generally more sensitive to
perturbation. This result is contradictory in that respect,
bouncing ball modes (which seem to share more of the
properties of regular modes) are very sensitive, whereas
the chaotic irregular stadium modes are stable and in-
sensitive to perturbation.

Whispering-gaBery modes, on the other hand, are
much less sensitive. Considering an approximate one-
dimensional perimeter quantization rule, one has

2rrn n [1+(4y/n )]'~2

4a+2m'R 1+(2y/m )

1+ 2y

At y =1, the numerical factor in brackets is about 0.052
which greatly diminishes the dependence on k. In fact,
for very small y,

dk 4ky2
Gff

which explains the insensitivity of high angular momen-
tum modes near y =0.

VI. STATISTICS OF THE SPECTRUM

1.0

FIG. 20. {a) Intensity distribution of the mode at y=0.0125
which evolves from the circular high angular momentum mode
Jgg {k4g 3 f )sin4S8 at y =0. Note the diminished amplitude at
the rim of the circle near 8=+/4. {b) Nodal structure of the
same 1Tlode.

In addition to the striking qualitative and quantitative
differences between circular and stadium eigenfunctions
presented in the previous sections, we have also statisti-
cally compared the eigenvalue spectra of the circular and
stadium cases. Many authors have considered
diferent properties of the spectrum in order to character-
ize the nature of quantum chaos and its relation to the er-
godic properties of the corresponding classical system. A
statistical description of the spectrum in terms of the
probability distribution of neighboring level separations
has received particular attention, and in a previous pa-
per we 6rst reported numerical results on this measure-
ment for the present problem. In more recent work Bohi-
gas, Giannoni and Schmit, Casati, Chirikov and Guar-
neri, Seligman, Verbaarschot and Zirnbauer, and oth-
ers have attempted to relate this and other statistics (for
the spectra of other Hamiltonians) to similar statistics
found for ensembles of random matrices. Here, we ana-
lyze our results for the stadium in ihe light of recent



37 %'AVE CHAOS IN THE STADIUM: STATISTICAL. . . 3083

theoretical investigations which describe the tendency of
levels to "cluster" or "repel" depending on the nature of
the underlying ray phase space.

As stated in the numerical analysis of Sec. III, we have
considered eigenvalues of only one parity (odd-odd), and
due to computational restrictions we have limited our in-
vestigation to the region of the spectrum 50 ~ k ~ 100. In
two dimensions, the mean asymptotic density of eigenval-
ues 1s

ponential, but in order to test this hypothesis we have in-
stead studied the cumulative probability

X(b,E )—:I P(s )ds (36)

of level separations less than AE. %ith our statistics, this
is a smoother function of EE and does not depend on the

50

n(k )dk =2m kdk = ,'kdk—
(2m)

(34)
— 0.05

(since the area A =const =m ). Using this, the number of
eigenvalues (of a single parity) expected in this range is
approximately 450, with k=50 about 150 levels above
the ground state. %e shall be interested in theoretical re-
sults concerning the statistics of the energy eigenvalue
E =k, which in two dimensions is more appropriate as
the density n(E) is constant due to (34). Thus for a sin-
gle parity p, we expect the density and average separation
to be

n(E)=n(k) =—k
dk 1 1

p(AF)

30

20

—0.03

—0.02

n (E)= ,'n(E)=——,', ,

AE=n~ '(E)=16 .

(35)
10

—0.01

In the circular (y =0) case, we numerically computed
451 odd-odd parity eigenvalues in this range of the spec-
trum. As a check, these results may be compared with
the exact number of 454 obtained using standard Bessel
function routines. The discrepancy in number is due to
our numerical procedure which missed 16 eigenvalues
while determining 13 "spurious" ones. Comparing indi-
vidual eigenvalues, we determined our reliable error in k
to be +0.001; this is an error in E of about 20.2 (for k
near 100). We assume this estimate to be valid even when

y ~0.
From the eigenvalue data for the circle, we compute

the level spacings and construct a histogram for the prob-
ability distribution P(bE ) with bin size ATE =2. In Fig.
21(a) we present the results obtained from the numerical
eigenvalues, and in Fig. 21(b) is the distribution using the
exact eigenvalues. The numerical omission of some ei-
genvalues and inclusion of several spurious ones is largely
responsible for the disagreement between these two histo-
grams although the general structure is the same for
both. The feature to be emphasized is the fact that the
distribution is peaked at hE =0, signifying that the spec-
trum is clustered; this is countered by the existence of a
rather long tail (values of b,E up to 71 were observed) in
order to maintain the average value given by (35) (numer-
ically AE=16.654, exactly DE=16.544 due to the ab-
sence of the m =0 modes for odd-odd parity). Berry and
Tabor have shown that for a generic integrable Hamil-
tonian, the distribution P(EE) is of exponential form
(Poisson statistics) when efFects of the average eigenvalue
density dependence on E are subtracted (these do not ap-
pear in two dimensions).

The distribution in Fig. 21 has the appearance of an ex-
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FIG. 21. Histograms measuring probability I'(AE) of neigh-
boring circular eigenvalue (E=k } spacings with bin size
5&E=2. Smooth curve is best exponential fit (37) determined

by examining the cumulative distribution X(A,E). {a) Numeri-
cally obtained eigenvalues. {b)Exact eigenvalues.
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choice of a bin size as does the histogram. Thus, if the
normalized probability distribution has the form

P(bE) =ae (37)

X(aE)=i —e-"'. P(AF)

The experimental N(hE) from our numerical data and
the best one-parameter fit of the form (38) (demanding
normalization) are displayed in Fig. 22; this fit was ob-
tained for the value of a= 1/20. 77. Since for a normal-
ized distribution of this form a =hE, this result for the
mean level separation is in disagreement with numerical
evidence and the asymptotic theory of (35). We therefore
conclude that, although the probability distribution of
level spacings P(AE ) for the circular (integrable) case ex-
hibits the characteristics of the prediction (37) indicating
level clustering, it must not be of this simple form. There
are two possible explanations: (i) the circular case is too
special {i.e., it does not meet the genericity requirements
of Ref. 37), or (ii) we have not investigated a large enough
region of the spectrum to include more "asymptotic" ei-
genvalues.

For the nonintegrable stadium (y = 1), we have numer-
ically computed 44S eigenvalues in the same range of the
spectrum. The histogram representing the spacing distri-
bution P(bE) is shown in Fig. 23, again with bin size
ATE =2. By comparison with the circular case, this dis-
tribution indicates a more uniform arrangement of the ei-
genvalues; very few small or large spacings were detected
while the distribution is peaked near the average value
(35). Zaslavskii has attempted to explain this tendency
of the levels to "repel" [the behavior of P(b,E) as
hE ~0] in terms of the Kolmogorov entropy of the asso-
ciated dynamical system. The authors in Refs. 33—36
have tried to relate this feature to the similar behavior ex-
hibited by the eigenvalues of random matrices as studied
by Wigner, Dyson, Mehta, and others. In these

—0.03

— 0.02

—0.01

0
0

I

20
I

60

FIG. 23. Histogram P(AE} for y=l stadium eigenvalue
spacings with bin size 5&E=2. Smooth curve is best At of the
form (39}determined by examining the cumulative distribution
N(hE).

theories it is found that P(bE) has the form

P(aE) =n(aE) e-~'""
so that the repulsion is modeled by

P(B,E)=a(EE) for (bE/hE) && I .

(39)

(40)

Again, we test this prediction by attempting to fit the
integral of (39) to the smoother numerical N(hE) shown
in Fig. 24. The best two-parameter fit (demanding nor-
malization) yields the values a=0.71,P=0.0025. The
average value AE of the normalized theoretical curve

0t
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0.6

0 4

0.2

FIG. 22. Cumulative distribution N(AE) of circular eigen-
value spacings. Solid smooth curve is best numerical At of the
form (38}.
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CD A C7 A CD 4) O A C)
CV

AE

FIG. 24. Cumulative distribution %(AE) of stadium eigen-
value spacings with best-At prediction (smooth solid curve)
based on the integral of Eq. (39).
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with these parameters is 16.1, as compared with the data
average of 16.4.

Zaslavskii has related the exponent o; to the K entropy
Eby

(41)

where C is some constant that depends on the system.
Using extremely simplified formulas given in Ref. 32, we
And for the stadium that E =2y =2 so that the constant
C in (41}is 0.49; this is in remarkable agreement with the
value of about —,

' calculated by Zaslavskii and Filonenko3
for skipping electrons. Actually, one should measure the
dependence of a on EC (or y) in order to test the validity
of the prediction (41}.

VII. CONCLUSION

%e have numerically examined the statistical proper-
ties of short-wavelength eigenfunctions and the eigenval-
ue spectrum of the solutions of the Helmholtz equation in
a stadium-shaped two-dimensional region. These results
were analyzed with a view towards understanding the
features of the waves and spectrum in terms of the prop-
erties of the corresponding geometrical optics rays, which
for the stadium are ergodic. We also compared our nu-
merical findings with theoretical predictions based on
semiclassical arguments applied to bound nonintegrable
Hamiltonian systems. Our results can be summarized as
follows.

(1) Most eigenfunctions for the stadium appear to be
composed of small regions (of several wavelengths) with
relatively high intensity randomly interspersed among
larger areas of low amplitude. This chaotic wave struc-
ture difFers considerably from the uniform intensity dis-
tribution over the interior of the stadium which would be
expected on the basis of the ergodic nature of the rays.

(2) Many eigenfunctions are quite regular in appear-
ance and share many of the features of circular modes.
Moreover, most of these localized modes display an obvi-
ous relationship with underlying periodic ray trajectories.
This is especially so for the largest class of this type
which correspond to the family of bouncing ball orbits.
Also in this category are the whispering-gallery modes
which appear to have been identified.

These qualitative remarks contrasting the wide variety
of eigenmode structures found in the stadium with the
comparatively ordinary circular modes have been sub-
stantiated to a degree with a statistical analysis. The con-
struction of the probability distribution P(P) has provid-
ed one method for distinguishing between the circular
and the localized stadium modes on the one hand and the
chaotic stadium modes on the other. The principal con-
clusion is the following.

(3) Chaotic eigenfunctions may be described by Gauss-
ian statistics [i.e., P(f) and P{BQ/Bg) are well approxi-
mated by a Gaussian distribution]. This result supports
the idea that a wave constructed from many contribu-
tions at a point duc to the m.ultiple random passages of
mixing ray trajectories is phase decorrelated. In this
respect, the chaotic nature of most stadium modes seems
to be related to the similar behavior of the corresponding

rays despite the fact that the eigenfunctions do not exhib-
it uniform intensity over the interior. Like circular
modes, the localized stadium eigenfunctions (such as
bouncing ball modes) exhibit extremely non-Gaussian dis-
tributions.

Considering the apparent contradiction noted in (1)
above between the crgodic nature of the rays and the
nonuniform intensity distribution observed in chaotic sta-
dium modes, we have attempted to illuminate the
correspondence between these normal modes and some
object in the ray phase space. Therefore, we have numer-
ically computed the local spatial correlation for several
regular and chaotic modes, and have compared our re-
sults with theoretical predictions derived from rather
crude assumptions for the locally averaged Vhgner func-
tion. The numerical evidence seems to infer the following
conclusions.

(4} The locally averaged Wigner function associated
with a short-wavelength regular mode of an
dimensional integrable ray system can be fairly well ap-
proximated by an N-dimensional 5 function in phase
space which is nonzero only on the torus which corre-
sponds to the mode in the eikonal (EBK) theory.

This conclusion was inferred from the extremely accu-
rate matching of the numerical correlation function of
sample circular modes with the prediction based on this
singular behavior of the locally smoothed Wigner func-
tion. In this way, the %'igner function provides a realiza-
tion of the correspondence between regular modes and in-
tegrable rays.

(5) The locally averaged Wigner function constructed
from asymptotic irregular modes is probably not de-
scribed as simply by a one-dimensional 5 function on the
frequency surface corresponding to the frequency eigen-
value. It may have more complicated structure either
within this surface or in the transverse direction off the
manifold. This is to some extent corroborated by the
uneven intensity distribution observed in chaotic stadium
modes.

Again, this is a judgement inferred from the compar-
ison of the numerical correlation data with theory based
on just such a 5-function assumption; here the agreement
was not as clear as in the circular case. Since the %igner
function itself was not explicitly constructed, the
correspondence between chaotic modes and chaotic rays
(if indeed one exists) remains uncertain.

(6) Finally, the spectrum of the stadium geometry can
be characterized by a distribution of neighboring level
spacings which is similar to the %'igner distribution
found for ensembles of random matrices.
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