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Analog simulation of underdamped stochastic systems driven by colored noise: Spectral densities
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Stochastic relaxation in underdamped nonlinear potentials driven by exponentially time-

correlated noise is studied thoroughly by means of analog simulation. The experimental data re-

ported herein should help to tie down future theoretical investigations. A novel dependence of the
observed quantities on the noise correlation time ~ is revealed: all of the quantities measured are a
function of H. In particular, the escape rate in a quartic double-well potential decreases exponen-

tially with increasing H. The relevant spatial spectral densities are also determined for both the
monostable and the bistable quartic potential on varying ~. Previous theoretical predictions for the
white-noise (~=0) limit are thus checked. The frequency of the resonance peak is shown to shift

depending on ~ . Finally, some eHort has been paid at justifying theoretically the results obtained.

I. INTRODUCTION

The theory of stochastic processes has been successful
in modeling a variety of physical phenomena in statistical
mechanics, chemical physics, and microelectronics. '

Most models comprise one or more dynamical variables
driven by mechanical (nonlinear) forces and subject to
external ffuctuations, the statistics of which has to be
determined. The random variables describe the subsys-
tem of interest; its interaction with the external environ-
ment, assumed at equilibrium (thermal bath), is separated
into a deterministic and a stochastic coupling. For the
splitting of the whole system into a subsystem of interest
and a thermal bath being realistic, the ffuctuations ac-
counted for in the model ought to be represented by non-
Markovian (colored or time-correlated) random variables.
Moreover, the very same interaction with the thermal
bath provides for the damping (or dissipation) mecha-
nism, which in turn ensures the existence of s stationary
state for the model stochastic process.

The study of nonlinear stochastic systems driven by
colored noise hss been undertaken by a number of investi-
gators. ' It must be said that in spite of much effort no
conclusive theory has been elaborated that reproduces
the relevant features of such a problem. For the sake of
simplicity most authors addressed the limit of large
damping (overdamped limit), where perturbation expan-
sions in the noise parameters (intensity and correlation
time) may be formally worked out. ' Perturbation
schemes, whatever the generating technique, are not
applicable to non-Markovian processes, because in most
cases they result in intractable asymptotic expan-
sions. ' Up to now, reliable solutions to non-
Markovian stochastic differential equations (SDE) are
only obtainable by means of numerical algorithms. ' '"
An alternative approach to this class of stochastic pro-
cesses is provided by both analog' snd digital simula-
tion. ' In conclusion, we can con5rm that nonlinear
stochastic systems in the overdsmped limit have been
characterized satisfactorily, even if a comprehensive
theoretical treatment is still missing.

In the limit of vanishingly small damping (under-
damped limit), instead, much work has to be done. After
Krsmers's pioneering paper' not much attention was
paid to the problem of stochastic relaxation in the limit
of zero damping. Only in recent years has new interest
been conveyed to the question of the escape rate in under-
damped bistable potentials —the results of theoretical,
numerical, and digital simulation studies are reported in
Refs. 15-17. Perturbation expansions are known to
work for weakly anharmonic monostable potentials. ' '
In sll of these investigations, however, the external Auc-
tuation is assumed to be Markovian (white or time delta
correlated). No attempt has been made at incorporating
the effect of colored noise, because of the discouraging
difficulties encountered. Indeed, the convergence of the
numerical algorithms of Refs. 2 and 11 (continued frac-
tion expansions) for underdamped non-Markovian pro-
cesses is poor, since the minimal set of variables is too
large to treat. Moreover, digital simulation produces re-
sults with far too low statistics to be reliable. Even the
most sophisticated digital simulation technique expound-
ed in Ref. 13 cannot be applied in the presence of colored
noise due to the lack of an explicit expression (not even
numerical) for the stationary probability distribution
function.

In spite of these difBculties, stochastic relaxation of un-
derdsmped nonlinear systems is an unavoidable problem
to deal with in many areas of statistical mechanics and
applied physics. ' In the present paper we attack the
problem by means of analog simulation. It is our purpose
to present a comprehensive collection of experimental re-
sults for both bistable and monostable systems which
should provide a clue to the theory of non-Markovian
processes. The accuracy of our analog simulation hss
been assessed by comparison with the existing predictions
for the white-noise limit. %'e believe that, at the present
stage of our knowledge, analog simulation is the most re-
liable tool for tackling this problem.

The paper is organized as follows. In Sec. II we intro-
duce the study model we chose for our simulations.
One-dimensional Brownian motion is studied in both a
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monostable (Dufflng oscillator} and a bistable (quartic
double-well) potential driven by an exponentially time-

correlated noise. Details on the analog simulator are re-

ported in the Appendix. Sections III and IV are devoted
to the presentation and the discussion of our results for
the bistable potential. The spatial autocorrelation func-
tion and the relevant spectral density are determined in

Sec. III for several values of the damping constant and
the noise correlation time. An exponential decrease of
the escape rate with the square of the noise correlation
time is observed and discussed in Sec. IV. The spatial au-
tocorrelation function and spectral density of Brownian
motion in the monostable potential are reported in Sec.
V. General properties of the dependence of the quantities
studied on the noise correlation time are evidentiated and
interpreted theoretically in Sec. VI.

II, THE MODEL

The stochastic process simulated in our investigation
obeys the following SDE for Brownian motion:

X = —yx —V'(x)+e(t), (2.1)

V(x)= —,'b x

with b &0. For a &0, the potential V(x) represents a
monostable quartic potential which we agree to term
Duffing oscillator (DO) potential. For a &0, the poten-
tial V(x) is bistable with minima located at x+ —+v'a /b
and potential barrier height b V=a /4b. The charac-
teristic frequencies of this choice of the function V(x) are
given by the square root of its curvature about the well
bottom V"(x+)=2a and the barrier top

~

V"(0)
~

=a.
This is the weB-known quartic double-well (QDW} poten-
tial.

Our noise generator produces a random signal which
is Gaussian to a good approximation and correlated in
time (i.e., colored). The actual correlation functions for
the generated noise are

(2.4)

e(t) is exponentially time correlated with correlation time

The non-Markovian SDE (2.1) and (2.4) is equivalent
to tllc three-dlmcnslonal Markovlall systclll (Doob s
theorem' )

where V(x) is a nonlinear potential and e(t) an external
Gaussian noise. In the white™noise limit the following
correlation functions provide a complete description of
the noise statistics:

(e(t) ) =0, C,(t) = (e(t)e(0) ) =2ykT'5(t) . (2.2)

The fluctuation-dissipation relationship here is under-
stood.

The anharmonic potential simulated has the symmetric
form

x =u, u = —yu —V'(x)+e,

e= —e/r+Ii(t)/r,
(2.5)

III. SPATIAL RELAXATION IN A BISTABLK
POTENTIAL

Let us start our investigation with the more complicat-
ed case of the QDW potential. In the limit of low tem-
perature or, equivalently, high-potential barrier, it is pos-
sible to distinguish between two important mechanisms: '

the relaxation towards a quasistationary state inside a
single potential well and the escape process of the
Brownian particle over the potential barrier. The latter is
by far the slowest process taking place in a bistable po-
tential at low temperature. In the present section we
shall concentrate on some general properties of the spa-
tial relaxation in a bistable potential driven by colored
noise.

The operating conditions of our analog simulator have
been chosen as follows.

(a) High potential barriers Our results ref.er to barrier
height hV to thermal kT ratios ranging between 1 and 3.

where I)(t) is a Gaussian external noise with correlation
functions given by Eq. (2.2). We refer to this system of
equations as to the systeln of S13E's simulated by our
analog circuit (see the Appendix).

Our system is characterized by three time scales: the
noise time correlation v., the damping relaxation time

y ', and the librational period Tp vp of the Brownian
particle with coordinate x (t) about the potential minima.
The frequency v depends on the potential and noise pa-
rameters. It has been proved (see, e.g., Ref. 20) that for
vanishingly small damping constant y the spatial ffuctua-
tion increases greatly. As a consequence, the eft'ect of
nonlinearity on the resonance frequency v is important.
Unfortunately, vz cannot be determined analytically, and
therefore the damping condition of the system can only
be determined empirically. The spatial spectral density
shows no resonance peak in the overdamped limit

y »alz (with ruz =2Irvz ). With decreasing y a resonance
peak shows up at about a certain frequency v . The un-

derdamped limit corresponds to the requirement y greco .
The noise correlation time simulated in our experiment

is short compared to Tp, i.e., co v 5 1, and negligible com-
pared to y '. One would expect that our results might
be interpreted in terms of a suitable ~ expansion of the
type introduced in Ref. 16. In fact, at v =0 both the DO
and the QDW potential have been investigated in some
detail. In particular, in Refs. 15-17 the escape rate in an
underdamped bistable potential driven by white noise was
determined analytically at low temperature (kT «b, V).
The spatial spectral densities for the DO potential, too,
have been obtained at low temperature or, equivalently,
for weak nonlinearity. ' ' Of course, it would be desir-
able to incorporate explicitly the colored-noise efFects in
the analytical approaches of Refs. 16 and 18. This is
matter for ongoing work. In the following sections we
limit ourselves to presenting some experimental results
which are expected to help to tie down future theoretical
predictions.
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In most cases the potential parameters are fixed:
a =0.38&&10 s and b =0.96)&10 s (x is given in di-
mensionless units). The coefficient of the linear term a
has been changed to a =0.27&& 10 s in some measure-
ments reported in Fig. 6.

(b) I.ow Uiscosity. The damping constant y can be
tuned within the interval (0.04/0. 01)[V"(x+)]',where
the underdamped limit p'roperties of Brownian motion
are clearly distinguishable. ' ' In particular, we have
checked that in such a regime the rate of escape (see Sec.
IV) depends linearly on y.

(c) Small (-to intermediate )n-oise correiation time.
With our processing system (see the Appendix) accurate
measurements of the long-time features of the spatial au-
tocorrelation function (ACF), e.g, the rate of escape,
have been obtained for values of ~ up to about the
characteristic librational period inside a potential we11

co r51. Moreover, due to the low-viscosity condition
(b), the noise correlation time ~ is much shorter than the
reciprocal of the damping constant, i.e., y~ g~ 1.

The steady-state relaxation dynamics of a bistable sys-
tem can be characterized by means of the normalized
equilibrium ACF

C(r)=&x(r)x(0))/(x') .

In our experiment C(t) is measured by taking the ACF
over a sample of 512 points of the discretized output sig-
nal x (r) and then averaging over up to 10 samples. Such
a procedure turned out to be fast and very accurate.

C ( t ) has been determined for several circuital
configurations. A few examples are reported in Fig. 1.
C(t) decays exponentially for finite values of r and y. A
superimposed damped oscillation shows up to r and/or y

tending to zero. Unfortunately, the performances of our
apparatus did not permit us to explore the limit when y
and ~ vanish. An analytical study of such a limit is
presented in Ref. 16.

The nonoscillating decay of C(t) allows us to deter-
mine uniquely the smallest decay rate A,(r) for the spatial
relaxation. A,(r) is measured by taking the natural loga-
rithm of the exponential decay tail of C(t). Our results
for A(r) are given with an estimated error of less than
10% (Sec. IV).

A quantitative analysis of the spatial ACF can be car-
ried out by introducing the power spectrum of the output
signal

S(co)=n (x(co)
i

(3.2)

The constant n is chosen in order to normalize S(co) to
unit

I S(co)des= 1 .
0

(3.3)

In view of the Wigner-Khintchine theorem, S(co) coin-
cides with the cosine-Fourier transform of C(i)

Our results for S(co) are reported in Figs. 2 —4 for
different values of hV/kT, r, and y. In Fig. 2 we have
simulated the potential parameters adopted by
Voigtlaender and Risken in Fig. 9 of Ref. 16:
AV/kT =1, y=0. 1&a, and co is expressed in units of
&a. We see that with decreasing r the experimental
curves approach the corresponding numerical predictions
of Ref. 16 for the white-noise limit. The accuracy of our
simulation looks rather good.

e (ms)

0.15

O.75—

0.5

0.09

0.25—

0.1
0

t (ms)

0.03
0.5

FIG. l. C(t) for the QDW potential at different values of ~.
Relevant parameter values: AV/kT =2, y =0.06&2a. a and b
are given in Sec. II.

FIG. 2. $(co) for the QDW potential. The curve for v=O is
the numerical prediction of Ref. 16. The curves with finite ~ are
the result of analog simulation. Relevant parameter values:
5V/kT =2, y=0.07&2a. co is given in units of &a.
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0.5

FIG. 3. S(ro) for the QDW potential at different values of r.
Relevant parameter values: hV/kT =2, y=0.06&2a. co is
given in units of &a .

b, V/kT =2—S(co) exhibits two peaks at about co= &2a
and &a/2, respectively. As explained in Ref. 16 the
maximum at half the characteristic frequency
[V"(x+)]'~2 stems from those particles that have been
activated to energies larger than AV and thus oscillate
from the left to the right potential well and vice versa (ac-
tivation peak). The maximum at co=[V"(x+)]'~ stems
from those particles that have energy less than AV and,
therefore, oscillate inside a single well (libration peak).
Note that at higher temperature the former peak is
enhanced with respect to the latter one. That is con-
sistent with the above explanation. '

(iii) The peak structure of S(a&) is enhanced with de-
creasing y and ~—compare Figs. 3 and 4. Most notably,
the activation peak Battens out compared to the libra-
tional peak for long-noise correlation time. It is conceiv-
able that such a behavior affects the escape mechanism in
the presence of colored noise to an extent which is to be
determined yet.

The frequency separation between the region of
power-law decay and the activation-libration peak struc-
ture is clear cut at low temperature (Figs. 3 and 4). This
corresponds to the separation between the escape mecha-
nism and the relaxation process inside the potential wells
we assumed in the first place.

IV. ESCAPE RATE DRIVEN BV COLORED NOISE

The general features of S(co) may be summarized as
follows.

(i) At small frequencies S(co) seems to decay with the
power law S(co)=co . In fact, our data for S(ro) are
better fitted by a Lorentzian line (see Sec. IV).

(ii) For high-potential barriers —in Figs. 3 and 4,

0.4—

i
x(cu)

i

A, +co
(4.1)

where k is the smallest nonvanishing eigenvalue of the
Fokker-Planck equation associated with the problem (2.5)
and must be related to the rate of the escape process out
of the potential barrier. '

3 is smaller than the expectation value (x ) and ap-
proaches (x ) at low temperatures, ' i.e.,
A = (a /b)(1 kT/4b, V) T—o a first . approximation
(kT ((b V)

Let us focus now on the low-frequency behavior of
S(ru). A closer inspection of the experimental results
shows that at low frequencies the power spectrum of x (t)
can be approximated by the Lorentzian curve [see Eq.
(3.2)]

S(0)=1/A, (r) . (4.2)

0.5 1.5

FIG. 4. As in Fig. 3 but for y =0.04&2a.

In Fig. 5 the behavior of S(r0) at small frequencies is
displayed for the circuital con6guration of Fig. 3. For
large values of r the maximum of S(co) in co=0 is
enhanced. This implies that the smallest eigenvalue A, (r)
decreases with increasing r. An co fall off of S(co) is
clearly distinguishable at frequencies much larger than
[V"(x+ )]' and, therefore, more apparent for large
values of ~. Such a behavior was detected first by the au-
thors of Ref. 22.

Our notation for A,(r) is purposely ambiguous. In Sec.
III A,(r) denotes the smallest decay rate of C(r). Here,
instead, A, (r) is the smallest eigenvalue of the Fokker-
Planck equation related to the system of SDE's under
study. Finally, we often refer to A.(r) as to the escape rate
in the relevant bistable potential. As a matter of fact, the
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FIG. 5. S(co) vs co at low frequencies for the same circuit

configuration as in Fig. 3.

smallest Fokker-Planck eigenvalue and the smallest C(t}
decay rate do coincide by de6nition, ' The usual
definition of rate of escape may look inadequate for the
three-dimensional problem (2.5). ' However, also in view
of the properties of C(t) illustrated in Sec. III, the close
correspondence between A,(r) and the rate of escape can
be assessed at low temperature. ' Anyway, throughout
the present work A, (r) has been measured as the smallest
decay rate of C(t).

In order to verify the prediction (4.2), we measured
A, (r) for a wide range of parameter values. The main
properties of A,(r) thus detected can be summarized as
follows (Fig. 6).

(i} A,(r) decreases exponentially with increasing r ac-
cording to the heuristic law

A, (r) =A,(0)e "0 (4 3)

Such a behavior has been checked down to the smallest
value of A(r) detectable by our data processing system,
i.e., A,(r) =1 Hz.

(ii) A,(0) may be obtained by fitting Eq. (4.3) with the
experimental data. Our determination of A, (0) compares
fairly closely with the theoretical predictions of Refs.
15-17derived in the limit of vanishingly small y and ~:

)„(0) —hv/kT (4.4)
3

The discrepancy with those predictions (some 10—30%%uo)

is attributable to 6nite temperature corrections and in-
crease with kT/hV. ' A detailed analysis of the correc-
tions in y and kT to A,(0) of Eq. (4.4) (Refs. 15 and 16)
would require analog simulation at a much lower temper-
ature than feasible with the actual setup of our apparatus.

(iii) ao is proportional to 6V/kT Such a dependence .is
clearly shown in Fig. 6. This means that no more A,(r) is
proportional to the Arrhenius factor e " " (Refs.
15—17) or, equivalently, that the Arrhenius factor itself is

1
0 1 2 3

s' ()as s')

FIG. 6. Plot of ) (r) vs r in two underdamped configurations
y=0.06&2a (open dots) and @=0.08&2a (closed dots) and
different values of the temperature 6V /k T = 1 (triangles),
hV/kT =2 (squares and rhombi), and 5V /kT =3 (circles). All
measurements have been carried out with a =0.38& 10' s ' but
for the set of rhombi a =0.27)&10 s . The best exponential fit

for each set of dot is also displayed.

where ~„ is expressible analytically in terms of the poten-
tial and noise parameters. " This problem has been inves-
tigated in Ref. 10 on employing the continued fraction al-
gorithm of Ref. 2.

A theoretical justification of results (i)—(v) will be given
in Sec. VI. Here, we conclude with a final remark. On
comparing Figs. 5 and 6 we can easily verify the equality
in Eq. (4.2): the smallest Fokker-Planck eigenvalue and
the smallest decay rate of C(t} do coincide as expected.

V. SPATIAL RELAXATION IN A MONOSTABLK
POTENTIAL

In Sec. III we showed that the relaxation process in the
QDW potential can be separated into two distinct mecha-
nisms: the escape over the potential barrier and the re-

to be modi6ed accordingly.
(iv) ao does not depend on y. This statement has been

veri6ed by varying y in the regime of interest y &&1.
(v) For a given value of the ratio hV/kT, ao is propor-

tional to the potential parameter a. One example of such
a dependence is reported in Fig. 6.

The results discussed so far suftice for supporting the
claim that colored noise affects the escape process in the
underdamped limit through a completely different mech-
anism than in the overdamped limit. %e remember that
the r dependence of A,(r) in the overdamped limit is
closely reproduced by the exponential law

A, (r) =A,(0)e
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and v~(r) are a function of r . This new behavior is pos-
sibly a general feature of the underdamped Brownian
motion in the presence of colored noise.

VI. DISCUSSION AND CQNCI. USIQNS

cos ——2a (1 —3kT/8 hV+ )

(Ref. 7). On applying the harmonic analysis expounded
in Ref. 24, the cosine-Fourier transform of the spatial
ACF of the linearized potential Cz (co;r) can be derived
immediately:

,(co)(; )=-
(co —cott ) +y co

(6.1)

with C,(cv)=ykT/(1+co r ). After inverse transform-

ing, one arrives at

Cz (t;r)= f CL(t —s;0)C,(s}ds . (6.2}

In the limit y~0, CL (cv;0) is sharply peaked (see Ref. 19
and Sec. V) about cv=cos, so that Ct (co;r) can be safely

approximated to O'L (co;0)/(1+ co& r ). On comparing
with Eq. (6.1) we immediately see that such an approxi-
mation corresponds to rescaling the equilibrium thermal
energy kT of the white-noise source as follows:

In the absence of an exhaustive theory for Brownian
motion in underdamped potentials driven by colored
noise, we limit ourselves to testing the plausibility of our
analog-simulation findings and deriving an approximated
prediction for A.(r) and v~(r).

Following Kramers's argument' for deriving the rate
of escape in bistable potentials, we propose to account for
the effect of colored noise by renormalizing the ratio
b, V/kT which appears in Eq. (4.4} for A,(0}. In the limit
of low temperature kT &~b, V, the simulation of C(t) for
the QDW potential shows that a clear-cut time-scale sep-
aration occurs between the spatial relaxation inside the
potential wells and the hopping process over the barrier.
In the same limit the thermal energy of a bistable oscilla-
tor driven by colored noise can be approximated by tak-
ing the harmonic expansion of the potential about one of
its minima,

V(x) =(co+/2)(x+x+ )~,

with

v~ (0)
v (r)=

( 1+~2 P )1/2
(6.6)

The estimate of v (r) in Eq. (6.6) has been reproduced in

Fig. 9 for the sake of comparison. The agreement with
the results of analog simulation is quite good.

From the discussion of the r dependence of A,(r) and

v~(r) one might conclude that the perturbation correc-
tions due to noise time correlation to the statistical quan-
tities which describe Brownian motion in underdamped
potentials are proportional to even powers of r. Such a
guess could be confirmed only by a systematic theory of
non-Markovian processes.

Finally, we compare our results for S(co) in Secs. III
and V with the statement of a general theorem proved by
Sigeti and Horsthemke. According to such a theorem
the spatial density S(co) of the system (2.5) should exhibit
an co decay for co &g y, ~ ', and m decay for

y &geog&~ ', and an co decay for cagey, ~ '. We
were able to verify the above predictions only in the over-

All of properties (i) —(v) of Sec. IV are well reproduced by
Eq. (6.5). The quantitative comparison with the experi-
mental results is illustrated in Fig. 10 for one choice of y.
As expected, the best agreement has been obtained for
the highest values of 6V/kT simulated.

An estimate of v~(r) in Sec. V may be obtained as fol-

lows. The harmonic approximation introduced above ap-
plies to the DO potential, too, with

cvs ——(a/2)II+[1+12(b/a )kT]'

provided that kT ~~a /b. ' Under such circumstances
the equipartition relation cos (x ) =kT with cps =co~(0)
holds good at r=0. The rescaling (6.3}of the thermal en-

ergy in the presence of colored noise may be read as a re-
scaling of the resonance frequency v~, i.e.,

kT~ kT
1+cogv

Operating transformation (6.3) in Eq. (4.4) yields

(6.3)

10

A(r)=A(0)( 1+ever )exp[ —(ever) hV/kT] . (6.4)

We recall that our prediction (6.4) is supposedly valid
only in the limit y~0 and kT ~& 6 V. For high potential
barriers the correction to the prefactor of A, (0) is negligi-
ble compared to the Arrhenius factor, co& tends to 2a,
and therefore, Eq. (6.4) reduces to the experimental law
(4.3) with

2

r' (&0's')

~, =2a hV/kT . (6.5)
FIG. 10. Comparison of the theoretical prediction C6.4) (solid

line) with the experimental data taken from Fig. 6.
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FIG. 11. Block scheme of the analog circuit for the QDW potential.

damped limit y ~~~ . In the underdamped limit, in-

stead, we found that S(co) falls off faster than any power
of co ', provided that y and/or w

' are taken small
enough.

This is no surprise. First of all, we know that in the
limit v~0, y —+0, and kT ~0, S(ro) for the DO potential
is approximated by

expansion and that in the underdamped ease the
coefBcients c„may increase further than any power of
n —for a review see, e.g., Ref. 27. This implies that the
theorem of Ref. 2S is of scarce use in the discussion of
our results and, in general, does not provide a hint at a
correct modeling of stochastic phenomena.
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S(co)= g z„
n=O

(6.8)

vanish for n & no In the .case of system (2.5) no ——3. It is
well known, however, that series (6.8) is an asymptotic

with +coo=a and a= —,'(b/a)(kT/coo). The analytical
expression (6.7) cannot be expanded in a Taylor's series of
powers of co '. The same argument can be extended to
the case of the QDW potential.

Second, in Ref. 2S it is only proved that the coeScients
c„ofthe ansatz expansion

The block diagram of the analog circuits used for simu-
lating the QDW and DO potential is displayed in Figs. 11
and 12, respectively. The layout of these electronic cir-
cuits is similar to the "minimun-component" scheme of
Ref. 12. Blocks 1 and 2 represent two integrators, 3 and
4 are four-quadrant multipliers, and S is an inverter
amplifier. The operational amplifiers used in 1, 2, and S
are Op Amp p741, the two multipliers 3 and 4 are Ana-
log device ADS34, the transfer function of which is

(x, —xp)(r, —rp)/v„+Z2 .

In our case V„=10 V. The Vo tension determines the

Ry

e I I

Cq

Rp

I

Cp

Il

i

Y„Y
X)

R3

—X2
Z2 -Xp

Z2

FIG. 12. Block scheme of the analog circuit for the DO potential.
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TABLE I ~ Electronic circuit parameters.

QDW

V.„,{t)
1/R (Cl

—V, /RRzC, C, V„

1/RRzCl Cz V,
V„(t)/R, R zC i Cz

V „,(t)
1/R i Cl

R 3/R3RgR zCl Cz
1/RR, C, C, V,z

V„{t}/R„RzClCz

QDW potential shape and was kept constant during the
experiment Vo =4 V. Note that in circuit of Fig. 11 may
be used for simulating the DO potential, too, by simply
inverting the sign of Vo. The configuration of Fig. 12,
however, is preferred because it allows us to reproduce a
wider range of values of the ratio a/b

The equation simulated by our analog circuits reads

x+yx+ax +bx =e(t),
where x (t), e(t), and the parameters y, a, and b are suit-
able expressions of the electronic circuit parameters (see
Table I).

The setup of our circuit permits us to modify the pa-
rameter y or b/a independently, by varying the resistor
R

&
or the tension Vo (i.e., the resistor R z ) and leaving the

other parameters unchanged.
To compensate for possible asymmetries in the shape

of the simulated potential due to o8'set eftects in the mul-
tipliers, we applied a very small correction tension Vk

( —10 mV) to the input Zt of the second multiplier. The
Vk value was obtained by inspection from the distribu-
tion function of the output signal V,„, and kept constant
during the experiment.

The noise signal V„ is obtained by integrating a dicho-
tomic random signal by means of a low-pass 61ter. The
dichotomic signal is produced by feedback on a chain of
shift registers with mean-time width of 1.8 ps. The ran-
dom signal obtained by integration is Gaussian when the
time integration constant RC is much larger than the
correlation time of the dichotomic signal. In such a case
the noise spectral width is given by the reciprocal of the
integration constant.

The x(t)-signal analysis was performed by means of
the Data 6000 waveform analyzer of Analog Data-
Precision Division. This instrument acquires, digitizes,
and stores analog signals, which are then processed in
real time to compute the common statistical quantities
like averages, fast Fourier transform (FFT), autocorrela-
tion functions and distributions. As a consequence,
high-statistics measurements are obtainable in a relatively
short time.
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