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Gaussian pure states of systems with n degrees of freedom and their evolution under quadratic
Hamiltonians are studied. The %igner-Moyal technique together with the symplectic group
Sp(2n, R} is shown to give a convenient framework for handling these problems. By mapping these
states to the set of n && n complex symmetric matrices with a positive-definite real part, it is shown

that their evolution under quadratic Hamiltonians is compactly described by a matrix generaliza-
tion of the Mobius transformation; the connection between this result and the "abed law" of Kogel-
nik in the context of laser beams is brought out. An equivalent Poisson-bracket description over a
special orbit in the Lie algebra of Sp(2n, R} is derived. Transformation properties of a special class
of partially coherent anisotmpic Gaussian Schell-model optical fields under the action of Sp(4, R)
first-order systems are worked out as an example, and a generalization of the "abed law" to the par-
tiaHy coherent case is derived. The relevance of these results to the problem of squeezing in mul-

timode systems is noted.

I. INTRODUCTION

It is a well-known fact in both classical and quantum
mechanics that the dynamics of a system with a Hamil-
tonian quadratic in coordinates and momenta is closely
related to a real symplectic group. Thus for such a sys-
tem with 2n phase-space variables, both the numerical
Hamilton and the operator Heisenberg equations of
motion are linear ordinary differential equations, whose
solution involves a one-parameter group of matrices be-
longing to the defining representation of the group
Sp(2n, E). This solution represents a canonical transfor-
mation in the classical case, and a unitary transformation
in quantum mechanics.

The simple dynamics of such systems leads, in quan-
tum mechanics, to the study of a special class of wave
functions which maintain their general form as they
evolve in time in accordance with the Schrodinger equa-
tion. These wave functions are normalizable complex
Gaussians, which are therefore completely determined by
the means and variances of the coordinate and momen-
tum operators. If one regards these means and variances
as time-dependent parameters characterizing the wave
function, then the Schrodinger equation for the latter
leads in a direct way to an in general nonlinear system of
evolution equations for the former. Such quantum-
mechanical state functions have recently been given the
distinctive name "Gaussons;" ' and for a particular
choice of quadratic Hamiltonian their evolution in time
has been studied in detail. Both ordinary and squeezed
coherent states are examples of "Gaussons. "

It is clear that a corresponding treatment of classical

systems of this type can be given at the level of the
Hamilton- Jacobi equation.

%"e are interested in this paper in quantum-mechanical
pure states with Gaussian wave functions [see Eq. (2.20)
below for a precise definition], and the evolution of these
states under the action of Hamiltonians quadratic in the
canonical variables. Such states have been called, in a
descriptive manner, "Gaussian pure states (GPS)" (or
"Gaussons" ' ).

The fundamental significance of the real symplectic
group Sp(2n, E) in this context arises from the fact that it
is the group of linear automorphisms of the canonical
commutation relations among n pairs of coordinate-
momentum operators. It follows that the Hilbert space
on which these operators act irreducibly carries a unitary
representation of Sp(2n, E). The infinitesimal generators
for this representation are quadratic Hermitian expres-
sions in the canonical variables, and these are possible
Hamiltonians for the class of systems under considera-
tion.

While elements of Sp(2n, E) act on vectors by their
representative unitary transformations, the action on
operators is by conjugation. It has been shown else-
where that this action finds its most natural and direct
expression when operators are described by their
%'igner-Moyal representatives. It fo11ows that this
description is suited also for a discussion of the behavior
of GPS's under Sp(2n, E), since one can set up the pure
state density operator for such a wave function and then
pass to its %igner-Moyal representative.

The purpose of this paper is to provide a complete
analysis of GPS's along these lines. In particular the un-
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itary action of the most general syrnplectic transforma-
tion on a OPS density matrix can be displayed explicitly.
We will see that Gausson states correspond one to one to
points on a special orbit in the Lie algebra sp(2n, E) of
Sp(2n, R) under the adjoint action. And the effect of an
eleinent of Sp(2n, E) on a GPS is exactly representable as
a motion on this orbit. This motion in turn can be inter-
preted as a canonical transformation with respect to a
classical phase-space structure that intrinsically belongs
to the orbit. Thus the quantum-mechanical evolution of
GPS's according to the Schrodinger equation is exactly
equivalent to a classical canonical evolution of the pa-
rameters along this special orbit in sp(2n, E). This state-
ment is true for any choice of Hamiltonian provided only
that it is quadratic.

The material of this paper is organized as follows. In
Sec. II we introduce the symplectic group Sp(2n, E}and
its action on canonical coordinate and momentum opera-
tors, and its associated unitary representation. The
%igner-Moyal description of operators is then recalled,
and its special features with respect to Sp(2n, E)
displayed. %'ith this preparation, the family of GPS s is
defined as a special subset of a more general family of
operators with Gaussian configuration-space kernels.
The problem of the unitary action of Sp(2n, E) transfor-
mations on GPS's is posed. In Sec. III this problem is
converted, with the use of VA'gner-Moyal representatives,
into a matrix-theoretical problem. It is shown that the
problem can be solved by exploiting the properties of the
very special orbit in the Lie algebra sp(2n, E} of
Sp(2n, R). The result is that any element of Sp(2n, R},
via its associated unitary transformation, maps each GPS
into another such state. The changes produced in the pa-
rameters of the state can be displayed in a rather elegant
form. Section IV sets up the classical phase-space struc-
ture on the Lie algebra sp(2n, E) orbit mentioned above,
and shows that quantum-mechanical evolution of a GPS
with a quadratic Hamiltonian operator is mirrored in a
classical canonical evolution of the parameters along this
orbit. A coordinate system for this orbit, which is both
global and canonical, is displayed. Section V describes an
application of the results of Secs. III and IV to a special
class of partially coherent optical fields, and Sec. VI con-
tains some concluding remarks.

II. SYMPI KCTIC GRGUP, SIGNER-MOYAL
REPRESKNTAf IVES, AND CPS's

—ngn0
—I—nXn -n &(n0

%'e consider a quantum-mechanical system based on
2n Her mitian coordinate and momentum operators
q„p„,r =1,2, . . . , n. It is convenient to set up a column
vector Q with 2n Hermitian operator entries as

Q=(qi . q. Pi, . P„)'. (2.1}

Then the canonical commutation relations can be corn-
pactly written as

[Q„Qb ]=i f3,&, a, b = 1,2, . . . , 2n
(2.2)

Eigenvalues of the qs and P's will be denoted by q's and
p's, respectively. A real linear transformation taking the
Q, into Hermitian Q,' according to

Q.' =S.~Qb (2.3)

&q IP, I
0&=—

~9'r

& 01& & = J d "q
I P(q )

I

'

&q I

q'& =5'"'(q —q') .

(2.5)

The linear transformation (2.3) is then unitarily imple-
mentable, that is, there is a unitary operator Q(S ) for
each SESp(2n, E) such that

0 '(S)Q'M(S ) =SQ,
Q(S, )8'(Si) =Q(S,Si) .

(2.6)

An element of Sp(2n, E) close to the identity has the
form

S=l+eJ,
I
e

I
&~1 .

The symplectic condition (2.4) then leads to

()33J) =PJ . (2.8)

Thus the infinitesimal generators of the defining represen-
tation of Sp(2n, E) are in one-to-one correspondence with
real symmetric 2n &(2n matrices: One passes from the
latter to the former by left multiplication by P. For an S
of the form (2.7), %(S) has the expression

N(S) = I i EX(J), —

X(J)=——,'Q PJQ .
(2.9)

The basic properties of the Hermitian generators X(J ) of
the unitary representation Vl(S) of Sp(2n, E) are

—i[Q, X(J)]=JQ,
i [X(J),X(J'—)]=X([J,J']) .

(2.10)

As J goes over the Lie algebra sp(2n, E) of Sp(2n, E),
X(J) goes over all Hermitian quadratic expressions in g,
and p„.

We see from Eq. (2.6) that the action of Sp(2n, E) on
the q and p is by conjugation. This equation is analogous
to the solution of the Heisenberg equations of motion in

quantum mechanics. In contrast, keeping in mind the
Schrodinger picture evolution of a density operator, we

will preserve the commutation relations (2.2) if and only
if the real 2n-dimensional matrix S =(S,b ) obeys

(2.4)

This is the defining representation of the group Sp(2n, R).
%e note that along with S, both S ' and S belong to
Sp(2n, E). We shall be dealing with an irreducible repre-
sentation of the Q„which, for instance, in the
Schrodinger representation using eigenvectors of the q
appears as
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dcflIlc tllc actloll oil sllcll operators f by

f'=e(s)f'e-'(s) . (2.11)

operators familiar from the theory of coherent states.
For any numerical Qo with entries qo„po„we define the
unitary displacement operator

Q=(qi»qn)pi~. ~pn) (2.12)

The Wigner-Moyal representative W(Q) of the operator
f' is defined as the partial Fourier transform of the
coordinate-space kernel I"(q;q') of f':

IV(Q)=(2Ir) "fd "q' I (q —
—,'q';q+ —,'q') exp(iP q'),

It is natural to try to express this operator action in a
classical numerical form. This is achieved by going to
the Wigner-Moyal representative of f', which is a func-
tion of 2n classical real variables q„p„r=1,2, . . . , n.
Similar to the definition of Q in Eq. (2.1},we define a nu-
merical column vector Q as

D(QO) =exp(iQ PQO) =exp(ipoq —iqop ) . (2.15)

The properties with respect to Q and e(S) relevant to
this discussion

(Qo)QD(QO) =Q+Qo

e '(s)D(QO)e(s)=D(s 'Qo) .
(2.16)

These relations correspond to a unitary representation of
the semidirect product of Sp(2n, m) with the group of
translations TI„. Conjugation of a general f' by D(QO)
alters I (q;q'} and W(Q } in the following ways:

f''=D(QO)f'D '(Qo)=I"(q;q')

I (q;q') = (q i

f'
i
q') .

Then we find

(2.13)

= IV(Q —Qo) (2.17)

=I (q —qo, q' —qo}exp[ip o(q —q')] W'(Q)

f'=e(s)f'e-'(s)- Iv'(Q) = Iv(s-'Q) . (2.14)

In addition to the linear homogeneous transformations
(2.3) of Q, we also need to deal with translations in Q by
c-numbers. These are generated by the displacement

I

We shall be interested later in certain Hermitian opera-
tors f' which have unit trace and whose kernels I (q;q')
are Gaussian. The most general f' of this type can be
parametrized by three real n )(n matrices I., M, and E, of
which the first two are symmetric

(q
~

f' ~q')=I (q;q')

=(2IIr)"~ (detL )'~ exp[ qLq —q' —Lq
' ——'(q q') M(q —q')+ ' '(qI—q') I{—'(q+—q')] . (2.18)

A =2L+ —'K (L+M) 'E (2.19)

8 = ,'(L+M )—
C= ,'L T(L+M) '—. —

We see that it is completely characterized by a real sym-
metric (positive-definite) 2n X2n matrix G formed out of
L„M, and E.

With these preliminaries and notations established, we
can define a general GPS. It is parametrized by a column
vector Qo, and two real symmetric n Xn matrices U, V of
which the former is positive definite. We combine g and
V into a complex symmetric matrix Z=V —iU, and
denote the GPS by

~ Pz & ). Its wave function is

We have restricted the expression in the exponent to be
homogeneous quadratic in q and q'. Vfe further require
both I. and I.+M to be positive definite, ensuring, re-
spectively, that the trace is finite and that the integral
occurring in Eq. (2.13) can be carried out. The normali-
zation constants in the definition (2.18) have in fact been
chosen to ensure unit trace. The %igner-Moyal represen-
tatlvC Of f L Ix ls

WLM x(Q)=Ir "[detL/det(L+M)]'~ exp( —Q GQ)

"'4(det V )'"-

Xexp[ ——,
' (q —qo ) ( U+i V )(q —qo )

+iP oq] . (2.20)

This wave function is normalized to unity, and what ap-
pears in the exponent is the most general at most quadra-
tic complex expression in q. It is normalizability that re-
quires that U be positive definite.

From the point of view of classical beam optics, it is
useful to note that Eq. (2.20) is a multidimensional gen-
eralization of coherent Gaussian (laser) beams. We are
speaking here of coherent beams as opposed to partially
coherent beams in classical optics, and this should not be
confused with the quantum-mechanical coherent states
wherein U would be the identity matrix and V the null
matrix. In the beam case with the beam assumed to be
propagating in the xI direction, q=(x„xl) is a two-
dimensional vector in the transverse plane with g(q ) and

~
g(q) ~

giving, respectively, the complex field amplitude
distribution and the intensity distribution in that plane.
If we consider Gaussian beams with general astigmatism,
then U and V are real symmetrix 2&2 matrices wit'h U
positive definite to ensure finiteness of the integrated in-
tensity (normalizability) over the transverse plane. In the
isotropic or rotationally invariant case (absence of astig-
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matism) U is any positive constant times the unit matrix
and V an arbitrary real constant times the unit matrix.
In either case the paraxial propagation equation of classi-
cal wave optics gives the evolution of the beam from one
transverse plane to another transverse plane. It turns out
that the Gaussian form of f(q ) is preserved under this
paraxial propagation, and hence the e8'ect of propagation
about the x3 axis is simply to make the 2)&2 matrices U
and Vevolve as functions of x3. '

Our aim now is to show that these states (2.20) trans-
form in a simple way amongst themselves under action by
Q(S) for any S6$p(2n, m). To this end we first calcu-
late the kernel of the pure-state density operator pz g
determined by i Pz, g & After some simple algebraic

manipulations, it is shown that this kernel is expressible
in terms of I L ~ x(q;q') for special choices of parameters
and arguments

Wz(Q)=n "exp[ —Q G(U, V)Q],

—nxn -ngn0 U 0 I 0—n gn —n)jn —n gn
G(U, V)=

V I 0 U
—]-n Xn n gn — -n Xn

The change of Qo to Qo is completely independent of
Wo(Q) and its changes. In dealing with GPS's we can
therefore restrict ourselves to

i fz & and study their
Sp(25, R ) transformation properties.

The key point now is to see that for any S H S p( 2n, 8),
%(S ) maps

~ Pz & into
~ gz & for a suitable Z', and to

display the transformation law taking Z to Z'. Of
course, one must make sure that Z' is a Inember of the
same family of matrices to which Z belongs. For these
purposes it is most convenient to work with the %igner-
Moyal representative of pz, which is, using Eqs. (2.19)
and (2.22),

Pz, g, = Ifz, g, &&4 zg, I

pz, g (q'q )=I Uno, —v(q qo'q qo) (2.21)

U+VU-'V VU-'

U
—1V U

—] (2.27)

X exp[ip o(q —q') 1

Comparing this with Eq. (2.17) it is clear that the Qo
dependence separates completely from the Z dependence

According to Eq. (2.14), if Q(S) maps pz to p', the
Wigner-Moyal representative W'(Q) of p' is obtained
from Wz(Q) by a linear transformation on the argu-
ments:

P"z,g, =D(Qo)P"zD '(Qo»

pz = f'Un, o, v. -
(2.22)

At the state-vector level this separation brings in an extra
phase factor

P '= +(S)PzQ- '(S):

W'(Q ) = Wz(S 'Q ) =n "exp( —Q rG'Q ),
g'=(S -')'G(u V)S-' .

(2.28)

I fz, g„&=e ' 'D(Qo)
I

ti'z &

W(Q)= Wo(Q —Qo),

Wo(Q ) = Wo(S 'Q ), (2.26)

W'(Q)= W(S 'Q)= Wo(S 'Q —Qo)= Wo(Q —Qo) .

Pz(q)=m "i (detU)'i exp[ ——,'q "(U+iV)q] .

This separation of Z and Qo is maintained under action
by Q(S ) for any S G Sp(2n, R). In fact, on account of Eq.
(2.16) we can see quite generally that if two operators f'o
and f' are related by a displacement operator D(Qo),

I =D(Qo)f'oD '(Qo), (2.24)

then their transforms by Q(S ) are similarly related:

f",=e(S)f',e-'(S),
f'=e(S)f'n-'(S) =D(Q,')f'~-'(Q,'),
Qo=SQo .

In terms of %'igner-Moyal representatives, this means
that if Wo and W, corresponding to f'o and f', respective-
ly, are related by an initial phase-space displacement Qo,
then SC Sp(2n, R ) maps them into Wo and W' which are
related by a transformed displacement Qo.

(One may be tempted to avoid the excessive appearance
of 5 ' in the above expressions and hereafter, by altering
the conventions so far adopted. However, we choose not
to do so, in order to be consistent with established usage
in optics especially in relation to the "abed law" which
we generalize in Sec. V.) Our task is to show that there
are real symmetric n Xn matrices U' and V', the former
being positive definite, such that

G'= G( U', V'), (2.29)

W„(Qi= Wz(Q —Q, i

=m "exp[ —(Q Qo)~G( —U, V)(Q —Qo i] .

42.3O)

Therefore using the Weyl rule for associating a c-number
function of Q with each operator function of Q, we get
the following values for the means and variances of the
q's and P's in a general GPS:

and to exhibit U' and V' in terms of S, U, and V. %e
take up these questions in Sec. III.

To conclude this section we return briefly to the corn-
plete GPS

i gz g &. By Eqs. (2.17), (2.22), and (2.27), the

Vhgner-Moyal representative of the density operator
pz g 18
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&Pz, g, I Q. I &z, g, ) = I "'"Q Q. IVz.g, (Q)=Qo

&4z, g, l Q. Qb I 4z, g, ) = I d'"Q{Q.Qb+ ~"~.b)

XWzg (Q)

~ab +QOa QOb

S T]
From the identification (3.1) in terms of Lie-algebra

elements, we see that as S ranges all over Sp(2n, R) the
passage from 6(U, V) to 6' given in Eq. (2.28) corre-
sponds to conjugation of J( U, V) and so to passing from
J(U, V) to all other elements J' on the orbit of J( U, V)
defined by the adjoint action

+ —,
' [G '(U, V)],b, (2.31) 6'=(S ') 6{U, V)S

(3.3)

III. ACTION OF SYMPI.ECTIC
TRANSFORMATIONS ON GPS's

Each GPS density operator (with Qo
——0 which is here-

after assumed) has been seen to be uniquely characterized
by s real symmetric positive-definite 2n p 2n matrix
6(U, V). We examine the properties of the family of ma-
trices arising in this wsy. On account of the symmetry,
Eq. (2.8) shows that each such matrix is uniquely associ-
ated with an sp(2n, E) matrix J( U, V):

J(U, V)=Pg(U, V)Csp(2n, E) . (3.1)

Thus we have a property at the Lie-algebra level. %'hat
is perhaps surprising and somewhat unusual is that the
matrices 6( U, V) are also elements of Sp(2n, R), i.e., they
belong to the defining representation of this group. This
can be seen directly by checking that, since U snd V are
symmetric, Eq. (2.4) is satisfied by 6( U, V). A more use-
ful wsy of expressing this property is to write

6(U, V)=[S '(U, V)] S '(U, V)ESp(2n, E),

S(U, V)=
-n Qn0 U

—1/2 0—n)&n
ESp( 2n, R )

-n Xn

(3.2)

[Here we recall that if S belongs to Sp(2n, E), so does

that is,

{g g i(Q —Q)(Q —Q) ~g g)
,'iP, b—+—,'[6(U ', —V)],b .

Naturally, these means and variances determine pz &

completely.
%'e conclude this section with the following observa-

tions. GPS's in the context of systems with one and two
degrees of freedom have been studied in great detail in
Ref. 4. But our analysis in the present paper is for a sys-
tem with an arbitrary number of degrees of freedom, n.
Thus, our results in this preparatory section when spe-
cialized to n = 1,2 should be expected to give results con-
sistent with the results of Ref. 4. In particular, compare
our Eq. (2.20) and Eq. (2.31), respectively, with Eq. (3.2.1)
and Eq. (3.3.19b) of Ref. 4. It should be added, however,
that the principal results of this paper are the matrix gen-
eralized "abed law" [Eq. (3.27) below] and the quantum
description through classical Hamiltonian dynamics on a
special orbit in the Lie algebra sp(2n, E) of Sp(2n, R)
presented in Sec. IV, both of which sre new and go well
beyond the results in Ref. 4 even for n =1,2.

J'=PG' J'=SJ(U V)S

At the same time Eq. (3.2) shows that 6(U, V) is the
symmetric transform (or better symplectic transform), via
S( U, V), of the unit matrix

6(U, V)=[S '(U, V)] 6 ' 'S '(U, V),
(0) 6{InXn)0nXn) I2nX2n

(3.4)

Equivalently, J( U, V) arises from J ' '=J( l„x„,0„„„)
=p by adjoint action with S( U, V). Let 8 be the orbit of
P in sp(2n, R),

8=
I SPS '

~

SCSp(2n, E) ) . (3.&)

Then each J( U, V) belongs to 8, and so does J' obtained
from J( U, V) by Eq. (3.3). What must be shown, in order
to clinch the issue, is that each point on 8 is uniquely
characterized by s pair of real symmetric n Xn matrices
(U, V) with U positive definite; or in other words, that
such ( U, V) give a global coordinate system for 8. If this
is so, then Eq. (2.29) and the corresponding J equation
would follow

(S -')'6(U, V)S -'=6(U, V ),
SJ(U, V)S '=J(U', V') .

(3.6)

We now prove our main result concerning the possibili-
ty of using (U, V) as a global coordinate system for 8.
We want to show that for any JE8, 6 = —PJ is G( U, V)
for a unique pair (U, V). Starting with the Williamson
normal form 6 ' '= l2„~2„, we consider the family of 6
matrices

Before doing this, however, we note two interesting
consequences of the already established Eq. (3.4). The
first is that we have here sn explicit snd simple instance
of s fundamental theorem of %illiamson" which states
that any real symmetric positive-definite 2n &(2n matrix
6 can be brought to diagonal form, with positive diago-
nal entries, by a symmetric transformation with a sym-
plectic matrix S G Sp(2n, E). The diagonal matrix con-
cerned is called the normal form of G. In this sense, the
normal form of each G( U, V) is the unit matrix. Inciden-
tally this means that any two such matrices, 6( U, V) and
6( U', V') are related by a suitable symplectic transforma-
tion. The second point is that any GPS

~
1{)z) can be uni-

tarily related via 'M(S ) for a suitable SESp(2n, E) to the
standard GPS

~

ij'j (o)), where U' '=l„x„and V' '

=0„~„,up to a phase factor,

~ gz ) =VE{s(U V))
~ f (0))

(3.7)f (0)(q)=ir " exp( —
—,'q q) .
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8=}(S ') S ' }SCSp(2n,R)} . (3.8) (3.12c)

This set of matrices is just —P times the set of generator
matrices 8: We have passed from the J to the G descrip-
tion. Every G C 8 has the following three properties: B=U ', C=VU (3.13)

Keeping in view the form of G(U, V) in Eq. (2.27), we
write

6 is real symmetric,

6 is positive definite,

GCSp(2n, R) .

(3.9a)

(3.9b)

(3.9c)

thereby defining uniquely a real symmetric positive
definite U and a real V. Then Eqs. (3.12) are, in the same
sequence,

8=IG
~

6 obeys Eqs. (3.9)I . (3.10)

Conversely one can easily check using %illiarnson's
theorem that any G having these properties belongs to 8.
So we have

U -'V'U -'= U -'VU

A =U+ VU -'V,

~U -'V'= VU -'W .

(3.14a)

(3.14b)

(3.14c)

8 =8)0. (3.11)

(The positive definiteness of G implies more than this. )

We now impose the symplectic condition (2.4) on G to get
three independent matrix relations:

C 8=BC,
AB =I„,„+C',

(3.12a)

(3.12b)
I

In this form we can easily show that any 6C8 is

G(U, V) as given in Eq. (2.27), for a unique pair (U, V).
Properties (3.9a) and (3.9b) imply that if G is written as in

Eq. (2.19) with n Xn real submatrices A, 8, and C, then
A and 8 are symmetric positive definite:

We get from Eq. (3.14a) the symmetry of V; then (3.14b)
gives A explicitly in terms of the pair ( U, V) while (3.14c)
is identically satisfied. Thus the G of Eq. (3.11}has been
shown to be G( U, V) for the unique pair (U, V) identified

by Eq. (3.13). At the same time, the positive definiteness
of G( U, V) is obvious from its factored form in Eq. (2.27).

It is thus established that each GE8 (JC8) is

G(U, V) [J(U, V)j for a unique (U„V) and vice versa;
therefore Eqs. (3.6) do hold with (O', V') being deter-
mined as functions of (U, V) and S. We conclude this
section by developing an explicit solution for (O', V').

We use the factorization of G( U, V) in terms of
S(U, V) given in Eq. (3.2) [similarly for G(U', V')] and
exploit the symplectic property (2.4) of these matrices
and of S, to express Eq. (3.6) in this way:

G(O', V )=(S -')'a(O, V)S -'-[&O' V') ']'(Ii..~. -ig)S
—n)&n

=(s ')T[s(U v) '] (j. &p)s '(o—v)S ' —[s —n)(n
( Z„„„—i Z„„„)S '( O', V')

Inxn
=(S ') [S(U, V) ']

nXn
(I„x„—iI~)&~)S '(U, V)S (3.15)

This motivates the definition

In )& rt

g(U, V)=[S(U, V) '] —nxnI U
—1/2

(3.16)

so Eq. (3.17) is

Now

(3.19)

where Z= V iU as befo—re. Therefore Eq. (3.15), which
must yield Z' in terms of Z and S, is

I'= g ( O', V')(( O', V')

( O& )
—I/2[ I +(Z~ )tZI ]( Oi )

—i/2 (3.20)

g(o, v )g'(o, v )=(s -')'g(o, v)g'(U, v)s -'

(3.17)

The strategy is to extract ((O', V') in terms of g'(U, V)
and S. For ease in the ensuing manipulations, let us write
the 2n &&n matrices

X=(S ') f(U, V),

is evidently Hermitian, positive definite, and nonsingular.
From Eq. (3.19) we get

(X 1') =(X X}(X Y') 43.21)

proving that L F is nonsingular. %'e also get from Eq.
(3.19)

FF K=XX F,
Y=((U', V'), (3.18) which allows us to "solve" for Y in terms of X:
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T =LR',
IV=I'I(r'r) -'. (3.23)

Let the Hamiltonian operator H be determined by a
real symmetric 2n &(2n matrix h, and let us use Eq. (2.9)
to write it as one of the generators of Q(S ),

The important property of the n &(n matrix 8'is that it is
unitary, as shown by Eq. (3.21):

H = —,'Q hQ =X(JO),

J()——Ph .
(4.1)

If we write the symplectic matrix 5 and its inverse in
block form as

The unitary time-evolution operator for a finite time t is

e " =e ' ='M(S(t)),
(4.2)

S(t)=e 'ESp(2n, R) .

(3.25)
Here we used the general connection

cy( eJ) e i'(—J) (4.3)
then Eq. (3.23) gives the n &( n matrix equations

Z'( U') ' =(dZ —c ) U '
LV

(U ) '"=-(a bz)U—-("W .
(3.26)

implied by Eqs. (2.7) and (2.9). Therefore if at time t =0
we have a GPS

~ fz(0) ) which evolves to
~ gz(, ) ) at time

The existence of an inverse to (a bZ) is —assured since
we know that U, U', and 8'are all nonsingular. There-
fore, even though 8' containing the "unknown" 7 ap-
pears on the right-hand sides of these two equations, we
can combine them to give us the solution for Z' in terms
of Z and S that we are looking for,

Z'=(dZ —c )(a bZ )— (3.27)

This is the transformation law for Z under Sp(2n, E)
promised earlier. U' and V' can be obtained by separat-
ing Z into its imaginary and real parts, remembering
that a, b, c and d are all real. Thus Eq. (3.27) expresses
the (nonlinear) adjoint action of Sp(2n, lR) on the orbit 8
(equally well 8), telling us how an element S ESp(2n, R)
maps a point (U, V} on 8 to (U', V'). For future refer-
ence, we rewrite Eq. (3.27) in terms of A= —Z ' (the
positive de6niteness of U guarantees that Z is nonsingu-
lar):

A'=(a A+b )(cA+2 ) (3.27')

Going back to the GPS's (with Qo
——0), we can com-

plete Eqs. (2.28) to the statements

Q(S)pzQ '(S)=pz,
IV (S 'Q)=IV (Q),

(3.28)

IV. SCHRODINGER EQUATION FOR GPS's
AS AN EQUIVALENT CLASSICAL SYSTEM

We have seen how a GPS
~ gz ) changes under action

by Vl(S) into another GPS
~

(t(z. ), with S being any ele-
ment of Sp(2n, R). We now specialize to the solution of
the Schrodinger equation for a given quadratic Hamil-
tonian.

which establishes and shows exactly how each such state
is taken into another such state by any element of
Sp(2n, lR). Reinstating the displacement Qo in the GPS's
is a trivial matter because of the semidirect product
structure noted earlier, and need not be spelled out in de-
tail.

I fz(r) & =e "
I fz(o) &

=C(S(t ))
i Pz(o) ) (4.4)

then the matrix G(0) for the initial Wigner-Moyal distri-
bution evolves to G ( t ) by

G(t)=[S '(t)] G(0)S '(t) . (4.5)

=PJ()P 'G(t ) —G(t )J() (4.6)

with prescribed initial conditions. In fact, of course,
G(t ) is determined by Z(t ) = V(t ) i U(t ) as—

G(t)=G(U(t), V(t))

in the notation of Eq. (2.27); and the primitive evolution
equations, of which (4.6) must be viewed as a conse-
quence, are nonlinear ordinary differential equations for
U(t), V(t). The essential point is that the quantum-
mechanical Schrodinger equation for the GPS

~ gz(„)
reduces to these evolution equations for Z(t ) or G(t }. It
now turns out that these latter equations can be put into
a classical canonical form in an intrinsic and natural way,
on account of the geometrical properties of the orbit
6Csp(2n, E). We show this by first exposing the nature
of 8 as a coset space, and then appealing to general
theorems which allow the setting up of a classical phase-
space structure on 6.

From the definition of 8 in Eq. (3.5), it is clear that the
action of Sp(2n, R) on 6 is transitive. This means that 6
is essentially the coset space Sp(2n, E ) /H, where H is the
subgroup of Sp(2n, E) which leaves the representative
point J' '=/3 on 8 fixed. Since the dimensions of
Sp(2n, E) and 8 are n(2n+1) and n(n+1), respectively
[the latter follows from the fact that (U, V) is a coordi-
nate system for 8], H must be an n -dimensional sub-
group. The elements 5 in H must obey the two condi-
tions

This is obviously the solution to the linear differential
equation

dG(t) = —J,G(t) —G(t)J,
dt
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(4.8)

which means 5 =S ' or SESO(2n). Therefore H is
the intersection

H = Sp( 2n, E) A SO(2n ) . (4.9)

By examining the infinitesimal generators of 0, we shall
show that H=U(n }. For JE&, the Lie algebra of H,
the two conditions (4.8) lead to

Y.b —Yb. a b —1 2 2n

(~b) d 8 8bd+~ drab

(4.15)

so that a general real symmetric 2n X2n matrix 6= (G,b )

has the expansion

sp(2n, R) in a convenient way. In the defining represen-
tation, a basis X,„ for sp(2n, E) is obtained by taking a
basis Y,b for real symmetric 2n X2n matrices, and multi-

plying them on the left by P. [This is the convention used
in Eqs. (3.1), (3.3), and (4.1).] We make the choice

(PJ) =PJ,
(4.10)

G= —,'G, b Y,b .

A basis for sp(2n, E) is then

(4.16)

Every JE% is thus a real 2n X2n matrix whose block
form is X,b ——Xbg ——PY,b,

(Xb}d i ~bd+~b8 d

(4.17)

Li =P
(4.11)

The commutation relations among the X,b are calculated
to be

Here A, and p are real n &(n matrices. The infinitesimal
transformation (2.7) acting on a column vector Q pro-
duces the changes

[Xab &Xcd ] PacXbd +~bcXad +PadXcb +I bdXca

These are the basic Lie bracket relations for sp(2n, R).
The generator matrix J=PG has the expansion

(4.12)
Gab +ab (4.19)

These real equations are identical to the single complex
matrix transformation equation

q'+i@'=[1.„x„+e(A+ip)](q+. ip) . (4.13)

Since I,+ip is the most general anti-Hermitian n X n ma-
trix, we have here a general in6nitesimal transformation
of the unitary group U{n ). This establishes that

H =Sp( 2n, E ) Cl SO( 2n ) =U( n ),
O'=Sp(2n, E)/U(n ) .

(4.14)

We now want to give the evolution equations (4.6) a
classical canonical meaning. These equations describe a
particular one-parameter group of motions along the or-
bit 8. According to a general theorem due to Kostant,
Kirillov, and Souriau, ' for any Lie group 6 the coset
spaces 6/H which permit the definition of a 6-invariant
symplectic structure are either orbits in the coadjoint
representation of 6 acting on 0' (the dual to the Lie alge-
bra 0 of 6), or covering spaces of such orbits. For a
semisimple 6, such as Sp(2n, R), we can deal with orbits
in 0 rather than in 0*; and every orbit in 0 does carry a
G-invariant symplectic structure. This is in particular
true for 6=Sp(2n, E) and the orbit 8C sp(2n, R). In
principle the symplectic structure can be defined directly
and intrinsically on 8. However, both for calculational
ease and physical understanding it is better to de6ne a
singular system of generalized Poisson brackets on the
full Lie algebra sp(2n, E), and then restrict them to the
orbit 8. The Sp(2n, E) invariance (better, covariance) of
the procedure wiH be obvious throughout.

%e need to set up the commutation relations for

G,b 6,'b ——(S ')„(5 ')db6, d . (4.21)

The Poisson bracket between any two functions f(6),
g(6) is calculated from the basic brackets (4.20) by using
the derivation property.

At this stage, one can easily see that the (linear) evolu-
tion equations (4.6) can be put into the classical canonical
form, in the sense of the Poisson bracket (4.20), with the
use of a Hamiltonian function linear in the 6's,

dG, b =
I G.b l (PI3}.d G,u] .— (4.22)

However, as already remarked, the primitive evolution
equations, corresponding to the quantum-mechanical
equation of motion for a GPS, are not really Eq. (4.6) but
the nonlinear evolution equations for U(t ) and V(t ) im-
plied by Eq. (4.6). This aspect is closely related to the
question of restricting the Poisson bracket (4.20) to (the
orbit) 8, a procedure which can be consistently carried
out because (4.20) is Sp{2n, IR) covariant. Namely, if
C(6) is any (polynomial) Casimir invariant of sp(2n, R),
the singularity of the brackets (4.20) shows up in the fact
that

to accompany (4.16), so the symmetric coefficients G,b

are to be treated as the independent components of
JE sp(2n, E ). That is, the n (2n + I } independent real
variables G,b

——Gb, are (linear) coordinates for sp(2n, E ).
Among them we define a system of singular generalized
Poisson brackets patterned after Eq. (4.18),

I Gab Gcd I P c Gbd +Pbc Gad + i ad Gcb +Phd Gca

These are manifestly covariant under the action of
Sp(2n, R) on G,b, which is given by
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I G,i„C(G ) I =0 (4.23)

I V„„(U ' )„, I
=5,„5„+5„,5,.„,

[ V. , V„, I
= I(U -')., (U -')„, I =o .

(4.25)

Thus the Vs and U 's can be thought of as q's and p's
intrinsically and globally defined on 8 (or 8). And the
primitive equations of motion for U(t ) and V(t ), describ-
ing the unitary time development of GPS's under the
Hamiltonian operator 8 of Eq. (4.1), are

identically. Therefore we are permitted to assign each
C(G } some numerical value, without in any way
confiicting with the Poisson-bracket definition (4.20).
The independent C(G) are the traces of even powers of
pg, and the restriction of G to 8 is achieved by specify-
ing

Tr[(pG) ']=( —I)'X2n, 1=1,2, . . . , n . (4.24)

Once we know that G E8, we can use the variables
(U, V) as independent coordinates on 8; the brackets
(4.20) then imply definite values for the brackets among
the elements of U and V. In this way we find that (4.20)
leads to the canonical Poisson brackets

Gi (g —1)TGg —i (5.1)

co has for brevity been omitted. ) It is characterized by the
three real 2 X 2 matrices I., M, and E. Apart from the re-
quirements that L and I.+M be positive definite, there
are two additional conditions (involving L,M, and the an-
tisymmetric part of E) which must be satisfied if f'L ~ x.

is to be a positive-semidefinite operator, which is neces-
sary for I I Ix(q;q') to be an acceptable optical two-
point function.

First-order optical systems (FOS's), ' of which free
paraxial propagation is an example, act in an especially
simple way on paraxial fields. Each such system can be
represented as an element S of Sp(4, R). Elsewhere we
have shown that every SC Sp(4, R), including inverse free
propagation, can be synthesized using thin lenses. ' Its
action on the so-called Wolf function IV(Q } [related to
the optical two-point function I'(q;q') by Eq. (2.13)] is
given by Eq. (2.14). It follows that if we have an AGSM
field I I ~x(q;q'), its Wolf function is Gaussian and is
characterized by a 4X4 matrix 6 built up from I,M, E
as in Eq. (2.19); and when this field passes through an
FOS corresponding to SESp(4, R }, we get an altered
AGSM field whose matrix 6' is

dU =
I U, —

—,'(php), b[G(U, V)],b],

(4.26}

Let us now consider all those AGSM fields whose L,
M, and K are such that the Williamson normal form of G
is a multiple of the 4&4 unit matrix

dv =
I v, —

—,'(pz p).,[G(u, v)]„I .

The nonlinear nature of these equations is evident when
one sees how G(U, V) is built up from (U, V) in Eq.
(2.27). However, the solution is already known to us [a
particular case of Eq. (3.27)], and is a canonical transfor-
mation on 8. We conclude this section by noting that
the particular Hamiltonian studied by Birula corre-
sponds to

0 O„x„
-"= o (4.27)

,-n Xn —n Xn,

and in that case Eq. (4.26) above gives his Eq. (2.19).

V. APPLICATION TO GAUSSIAN SCHKLL-MODEL
FIELDS IN OPTICS

The results on the action of Sp(2n, R) on GPS's find an
interesting application, in the case n =2, to a special class
of partially coherent optical fields contained among the
so-called anisotropic Gaussian Schell-model (AGSM)
fields. ' Both isotropic Gaussian Schell-model fields' '
and AGSM fields' have played a key role in recent stud-
ies in radiometry of partially coherent sources. Like oth-
er paraxial optical fields, the two-point correlation func-
tion' of such a field can be specified on a two-
dimensional plane transverse to the beam axis, and it
then evolves along the axis. A general AGSM field has a
two-point function (cross-spectral density) I L ~ x(q;q')
of the form given in Eq. (2.18), except for an overall real
multiplicative constant. (A dependence on the frequency

6 =x'~IX4, 0&+& 1 (5.2)

6=v(S ') S ', SESp(4, R) . (5.3)

It follows that each such 6 is ~ times some element of the
set of matrices 8 defined in Eqs. (3.8) and (3.10) (for
n =2), so there must be a unique pair ( U, V) such that

G=aG(U, V). (5.4)

This collection of matrices can be denoted 8„: The previ-
ous 8 is 8, and corresponds, in the present optical con-
text, to coherent anisotropic Gaussian beams. ' Then,
for each ~, (U, V) forms a global coordinate system for
8„; and 8„ is a realization of the coset space
Sp(4, R)/U(2). We can invert Eqs. (2.19) to get L, M,
and K for an AGSM field whose G matrix is a.G( U, V),

L= —U,
2

2K
(5.5)

As a subset of the set of all AGSM fields, what we have
here is what was called Type I in Ref. 13. An Sp(4, R)-
invariant characterization of the G matrices of such fields

Tr[(PG ) ]= —4a

Tr[(PG) ]=4m. , 0(~(1 .
(5.6)

The limits on ~ arise from the extra conditions mentioned
above that ensure that f'L Mx is positive semidefinite.
Then 6 must be of the form
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We see from Eqs. (3.6) and (5.4) that under action by the
FOS SESp(4, R), the 6 matrix changes thus:

6=KG(U V) 6'=(S ') GS '=KG(U', V') . (5.7)

The rule for calculating ( O', V') from ( U, V) and S is the
same as with GPS's, i.e., the "abed law" remains valid,

K =IC,

Z'= V' i—U'=(dZ —c )(a bZ —}
A'=(aA+b )(cA+d )

(5.8)

VI. t GNCI.UDING REMARKS

%e have presented a complete analysis of the action of
symplectic transformations on Gaussian pure states in
quantum mechanics. By connecting up this problem to
properties of and motions on a special orbit in the Lie
algebra of Sp(2n, E), it has been possible to present this
action in an elegant geometrical form and also in a classi-
cal phase-space framework. It is worth remarking that
the mapping (U, V)~(U', V'), induced by SCSp(2n, E)
and given by Eq. (3.27), is, for any S, a canomcal trans-
formation with respect to the Poisson brackets (4.20)
which, on 8, have the usual canonical form (4.25). In
this context we may point out the special significance of
this "abed law" which has been established here in ma-
trix form. The original "abed law" due to Kogelnik re-
ferred to the action of axially symmetric first-order opti-
cal systems, which correspond to elements of SL(2,E), on
axially symmetric coherent Gaussian beams (i.e., to the
n = 1, K= 1 case).

For a coherent Gaussian beam of wave number k prop-
agating along the z direction, the field distribution in any
transverse plane is of the form

5(x,y;q)=(2/m)' o. 'exp[ik(x +y )/2q],

q '=8 '+2i lkcr .
(6.1)

Clearly R is the radius of curvature (of the phase front)
and o is the spot size (beam width} in that plane. The pa-
rameter q is known as the complex radius of curva-
ture. ' ' Kogelnik's original "abed law" showed that un-
der the action of a FQS

a 6S=
d ESL(2,E}, (6.2)

where a, b, c and d are 2 X 2 blocks making up S. We
also see from Eq. (5.8} that the matrix E, determining the

phase of the two-point function, is symmetric for Type I
AGSM fields, and this symmetry is preserved upon action
by any FOS. It should however be noted that E is not re-

quired to be symmetric for a general AGSM field. '
%hile this application of the geometrical results of

Secs. III and IV to optics involves n =2, we can easily see

that 6 matrices of the form KG(U, V) for general n are
what occur in the Wigner-Moyal descriptions of the
thermal states of an n-dimensional isotropic oscillator,
and all Sp(2n, R) transforms of such states.

plex radius of curvature changes in the following simple
way:

S: P(x,y;q)~g(x, y;q'),
q'=(aq+b )/(cq+d ) .

(6.3}

%e have elsewhere generalized this to cover the action
of such optical systems on partially coherent Gaussian
Schell-model fields of both isotropic' and anisotropic'
types. The results (3.27) and (3.27') can be viewed as a
grand generalization of the "abed law" (6.3) to n dimen-
sions and in matrix form. [In fact, we have a further gen-
eralization to mixed states (for any n ) in Eq. (5.8), since
8, corresponds to pure states if and only if K = l. ] A
particular case of this, corresponding to solving the
Schrodinger equation for GPS s with a specific Hamil-
tonian operator, has been presented earlier by Birula.
For his Hamiltonian,

a(t) b(t}
() d()

cos(Qt ) —Q 'sin(Qt }

@sin(Qt ) cos(Qt )
(6.4)

and by noting that 0 is symmetric and that his iK is the
negative of our Z = V —iU, it is readily seen that our
"abed law" (3.27) indeed gives his Eq. (2.27).

For n =2, the matrix "abed law" applies to the action
of a general anisotropic FOS on an AGSM field. It is

quite remarkable that the "abed law" holds for any
5 ESp(2n, E}.

From the mathematical point of view, the law (3.27) is
quite significant. It is well known that the group SL(2,E)
acts as a group of point transformations —the Mobius
transformations —on a complex half-plane, for instance
the lower half-plane. This action is closely connected
with the existence of the discrete series of unitary irre-
ducible representations of SL(2,E).i3 In contrast, the
group SL(2,C) neither possesses such an action nor such
unitary representations. Since SL(2,E)=Sp(2, E)
=SU(1, 1}, it is a priori not clear in which direction a
generalization might exist. Our result gives a matrix gen-
eralization of the Mobius transformations for the sym-
plectic group Sp(2n, E). The lower half of the complex
plane for one complex variable is replaced here by the
family of complex symmetric matrices Z = V —i U with U
being positive definite. And the easiest way to see that Z'
obtained from Z by Eq. (3.27) is of the same nature seems
to be via our analysis of the special orbit 8 in sp(2n, E)
given in Sec. IV. Further implications of the existence of
such an action will be studied elsewhere.

Finally we note that 6 '( U, V) —=6( U ', —V) is the
matrix of second moments (Auctuations} in the canonical
variables, as can be seen from Eq. (2.31), and from Eq.
(2.28) it follows that the evolution of these fluctuations
under the action of any quadratic Hamiltonian is
governed by

6 —'( U(t ) V(t ) ) =S '(t )6 '( U(0) V(0})$(t} .

the Gaussian nature itself is preserved and only the corn- In fact, this evolution equation is valid for the second
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moments in any state, provided that 6 '(U, V) is re-
placed by the matrix of second moments in that state.
Since it is the dynamics of these fluctuations which is of
concern in the study of squeezed states, it follows that
our results are of relevance to squeezing in rnultimode
systems.

As noted earlier, GPS's for n =1,2 and in particular
squeezed coherent states for single-mode and two-mode
systems have been studied from a difFerent point of view
in Ref. 4. %e further note that the squeeze operators are
a subset of the elements we have studied. Since our
"abed law" in Eq. (3.27) and the equivalent formulation
in Sec. IV of the quantum evolution of OPS's as classical

Hamiltonian evolution on the special orbit in the Lie
algebra of Sp(2n, I) as phase space are valid for arbitrary
n, it will be desirable to have a detailed analysis of
squeezing and the evolution of squeezed states in n-mode
systems from the point of view of these formalisms; we
shall return to it elsewhere.
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