
PHYSICAL REVIE% A VOLUME 37, NUMBER 8 APRIL 15, 1988

Model for laser action in vibronic systems
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The theory of laser action in solid-state systems is reconsidered with emphasis on the role of the
interaction between lasing impurity states and lattice vibrations. The inhuence of a strong
electron-phonon coupling on threshold conditions and Seld dynamics is presented, taking into ac-
count the vibronic-level structure, and compared with the usual four-level scheme.

I. INTROOUCTION

Laser action from impurities embedded in a host crys-
tal is mainly understood as originating from stimulated
emission between states which correspond to sharp elec-
tronic transitions in the fluorescence spectrum of the im-

purity, However, as was pointed out by Mccumber in
1964,' the electron-phonon interaction may influence in a
crucial way the lasing characteristics of a solid-state
laser. This is the case when the fluorescence spectrum of
the lasing impurity shows sidebands due to phonon-
assisted photon emission. These sidebands have a rather
broad Auorescence spectrum and their gain characteristic
may be more favorable for laser action than that of the
purely electronic zero-phonon line. This behavior, which
is reminiscent of that found in dye lasers, indicates that
these broad fluorescence bands may be exploited in order
to obtain tunable laser emission. Recently, several exam-
ples of such vibronic laser devices have been considered
using both dilerent color centers and transition-metal
ions as lasing impurities. As a result, a number of
tunable solid-state lasers in the near and middle infrared
have been studied experimentally. Furthermore, evi-
dence for the relevance of the electron-phonon interac-
tion to the description of coherent emission processes
from impurities in solids was given by experiments on
many-color superNuoresceni emission in KCl:02

These facts imply that it may be useful to reconsider
the theory of laser action in vibronic systems from a more
fundamental point of view. In fact, the influence of the
lattice or molecular vibrations on lasing impurities in a
solid-state laser is in general understood as being respon-
sible for level broadening only. According to this inter-
pretation a solid-state laser is well described by a four- or
three-level scheme in which phonons arc only responsible
for the nonradiative transitions from the pumping to the
excited level of the laser transition or from the lower lev-
el to the ground state of the impurity. In these standard
models the lasing transition happens between two elec-
tronic states. In the following we will call these models
two-level models, concentrating on the relevant optical
trans1tlon rather than on thc undcrlylng thfcc- or four-
level pump and depletion plus optical-transition scheme.

It is clear that the usual two-level laser models can-
not account for emission from vibronic states, because
this emission is not described through transitions between
electronic levels. Furthermore, as we will show in Sec. II,
two electronic levels strongly coupled with optical pho-
nons or vibrations give rise to a complicated level scheme
which can hardly be reduced to two levels only. There-
fore, systems which show laser emission in the phonon or
vibration-assisted part of the fluorescence spectrum re-
quire an extension of the usual description which will ac-
count for the vibronic-level structure relevant to the
emission. Eventually this new model will reduce to the
known one when the direct in8uence of the lattice or
molecular vibrations on the emission becomes irrelevant.
We expect that such a theory will differ in several
respects from the usual theories. The electron-phonon
coupling should influence the relevant laser parameters
such as the threshold inversion or the gain and saturation
terms. Furthermore, difrercnt selection rules for transi-
tions between vibronic levels will appear.

Some of these efFects have already been discussed by
the authors. ' In this paper we generalize the results of
Rcf. 10 in several respects. In particular, we give gain
curves which explic'itly show the dependence of the
threshold on the electron-phonon coupling and in which
characteristic selection rules appear. The overall gain of
the vibronic transition will be higher than that of an "iso-
lated" vibronic line. This effect shows the importance of
considering the inliuence of the overlap integrals between
phonon wave functions on the emission properties. It
also shows how tuning is possible in such a system as a
consequence of the fact that several transitions have
simultaneously a high gain and their behavior is mutually
influenced. Furthermore, in lowest order we discuss
dynamical Acid CS'ccts like saturation and node-mode
coupling, which again show a diferent behavior with
respect to that known from the two-level model descrip-
tion. In particular, above threshold, diferent transitions
are in resonance with di8'erent cavity modes and are mu-
tually coupled. This C8ect is responsible for an intensity
redistribution in the laser emission.

The theory is developed along the lines of the wcll-
kno~n theory of Lamb" for the pure electronic laser and
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it OH'ers a starting point for a better understanding of vib-
ronic lasers. Although our analysis is quite general it
should be possible to specialize it for realistic systems,
without major efforts. A perturbative approach is used
here for the sake of simplicity. However, a more com-
plete analysis can be done, with some greater algebraic
eff'oxt, starting from our equation, as we will point out in
OUr discuss1on.

The paper is organized as follows. In Sec. II we brie6y
discuss the laser model and derive the field and matter
equations in the mean-field approximation. The thresh-
old condition and gain profiles are presented in Sec. III,
whereas in Sec. IV the saturation em'ects at lowest order
and the mode coupling are discussed.

H. VIBRQNIC LASER MODEL

A. The model

Laser operation in a vibronic system is described
through a generalization of the familiar two-level model
which accounts for the effect of the interaction between
impurity states and the host crystal lattice. Only two
electronic levels of the impurity are considered in order
to avoid e8'ects such as absorption from other electronic
states which would be fatal to laser action. Therefore, no
other levels of the impurity except for those which origi-
nate the vibronic 6uorescence in the emission spectrun1
have to be considered. This assumption is common to
most models which describe emission from vibronic
states in crystals.

The electronic levels are coupled to the lattice and to
the electromagnetic 6eld in the laser cavity. In the usual
dipole approximation the coupling to the electromagnetic
field modes is given by

~, pho, =&y~koko/, +y yg/„(ok/7/++o/, oj ), (2.»)
k j k

where the index j refers to the positions of the impurities,
k denotes the field modes in the cavity, and gkj and co/,

are the dipole coupling constants and the mode frequen-
cies, respectively. The phonon part of the interaction has
the form

H, h,„fig 0 b tb +—tie g o,~ +g A,,o, ( b/t+ b/ ),
J J

(2.1b)

where ~J are optical phonon frequencies, k characterize
the electron-phonon coupling, and c. is the electronic-
level spacing. The electronic states are described by the
UsUal pseudospln operators O'J, o ~j w1th

[o,+,o/ ]=5J/a, /, [o,*,o/*]=0, (2.2)

whexeas ak, ak, b, and b obey Bose commutation rela-
tions. %'e notice that the electronic states are coupled to
localized optical phonons or vibrations, as is inferred
from the index j which appears in the b operators as well
as in the optical phonon frequencies Aj. This picture
seen1s to be well suited to describing the vibronic struc-
ture of KC1:02

+g g k,,(B,t+B, )(b,t+b, ), (2.3)
j

where Bq,8t are the amplitudes of the acoustical phonon
modes with wave vectors q and frequencies pq and kq are
the coupling constants. As a result the laser Hamiltonian
reads

+e-phot++e-phon+Hphon-phon++phot-res ' (2.4)

The vibronic-level structure implied by (2.1b) is displayed
in Fig. 1, where the diferent possible transitions between
vibronic levels are also shown.

B. Transition operators

As we have already shown in an earlier paper, ' the
Hamiltonian (2.4) can be rewritten in a form which exhib-
its the transitions between vibronic states explicitly. It is
obtained by the exponential transform

l
»E)Q))

+I& +
Tpo ))Top

l)n)
((s)

((] )s l) Tsl

FIG. l. Approximate vibronic-level structure. E is the ener-

gy and g =(1/v'2Q)(b +b ) is a phonon configuration coordi-
nate.

The usual way to handle the losses of a laser system
consists in coupling its degrees of freedom to reservoirs.
%e do it in the standard way for the field losses. How-
ever, a more natural way of describing the losses for the
excited impurities and phonons which dissipate energy
into the crystal consists of coupling the optica1 phonons
or quasimolecular vibrations to the acoustical phonons.
The latter are responsible for nonradiative energy dissipa-
tion into the surrounding crystal and therefore act as
reservoirs for the optical modes. %e describe the dissipa-
tion mechanism through

&ph- p) -=-& g WqB, Bq



3020 P. SCH%'ENDIMANN, E. SIGMUND, AND K. ZEII.E 37

U =exp —g (b, b—j )o„
j j

(2.5)

+e-pkot ~ g k~k~k
k

+g ggk, akexP g (b, b )—
j k j

which diagonalizes 8, h,„and leads to the transformed
Harniltonian

(a) The reservoirs have been eliminated by standard
methods. Their influence appears through the damp-
ing terms in the equations of motion for the laser vari-
ables. (b) We consider statistical mean values of the
different variables. (c) We assume that the electric dipole
matrix elements gJk as well as the optical-phonon fre-
quencies arid coupling constants do not depend on the
position index j. Therefore, we define collective transi-
tion operators S~n g& (S~n )j T~n gz( T~n )j and
omit the index j in the following. (d) Expectation values
of products of operators have been factorized according
to the rule

)C o'~+ +H. C. (2.6)
& g(S+„)'(T„) )=& „)'&S+„)'&T,)". (2.12)

which is best interpreted by projecting the interaction on
the product spaces I

1' )
I

n ), I
$8

I
m ) and obtaining

He-phot ~ g ~kukuk
k

+gg X gkj [f .(S;, ),ak
k j m, n

From (b) and (c) it follows that no difFusion effects will
be described at this level of approximation. Therefore
our description will be equivalent to the semiclassical
description which is well established for the two-level
models. " For the expectation values of the transition
operators we get the following equations:

+f. (S. ),&k] (2.7) d=- +=- S+ 2 S+
mn ~mn mn + Vm —1n —1 m —1n —1

Here
I

1 ), I
l ) are the eigenstates of o, . m, n are

phonon-state labels and +2y +,„+,S++,„+,+i[a—Q(n rn)]S+„—

f „=(m exp X Ib, —b )n =f„.
j j

(2.g) —' ggkuk(fin Tmi fmI T~„) .—
k, l

(2.13)

are the Frank-Condon overlap integrals. ' We have al-
ready left out a term,

itQjl l

which only redefines the frequency c.. Moreover, we have
introduced the new transition operators

(s+„),=Imt)jj&n&I, (s„-.), =In&)jj&1'mI,
(2.9)

which are responsible for transitions between the
difFerent potential sheets in Fig. 1 and whose commuta-
tion rules are

The equation for S„ is obtained by taking the com-
plex conjugate of (2.13) and interchanging the order of
the indices in the summands. For the inversion
Imn = Tmm Tnn W

—,I = — I 2 IT T
mn Xmm mn+ ~m —1 n —1 m —1 n —1at

T T
+rmm ~+mn +2Vm+ 1 n+1 m+1 n+1

+i ggkl[(fr S.I+f.isl )&k
k, l

—(ftnsntI+f Ist+„)ak], (2.14)

[(S*.), (ski)j]=o

[(S+„),,(S, ), ]=5j [(T+,)j& „—(T .)j& I]
where

(2.10)

where && „=(T+ —T„„) is the pump-source term.
The nondiagonal quantities T „obey
d—T+„=—[y~+„+iQ(n —m)]T+„

(T+„)j=Iml), , & t~ I, (T „),= I~1&,, &1&
I

. ~2~+ T+ ~ ) + 7 ++ r m —1 n —1 m —1 n —1+ Km+1 n+1 m+in+1

(2.11)

The operators T—„describe transitions inside the upper-
and lower-potential sheet, respectively.

—' Qgk(f Is~i~k fi St &k)—
k, l

d
d

T „=—[y „+iQ(n —m)]T „dt

(2.15)

C. Equations of motion

The equations of motion for the variables of the laser
system have already been derived and brieAy discussed
else~here. ' For later use we quote here their simplified
expressions which entail the following approximations.

+ r m —1 n —1 m —1 n —1+1~m+1n+1Tm+1 n+1+2m

+i Xgk(f,.St+~k f„,S.,~kt) . ——
k, l
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Finally, the field is described by

r..=-,'[(y i+y2}(m+n}+2y i], (2.17)

where y &
and y2 are the reservoir-induced transition rates

corresponding to the processes
~

m t )~
~

n l ),
~

n $ )~
~

m 1 ), respectively.
The quantities y",y*„have a similar form. The

quantity I describes the field losses. Remember that all
variables are e-number quantities. However, in order not
to overcomplicate notations we use for them the same
symbols that we have introduced for the operators.
These equations are the starting point for our discussion
of laser action in vibronic systems.

D. Perturbative solution

The system of equations, (2.13)-(2.16), as it stands is
quite complicated, as it involves a large number of vari-
ables and indices. It is easy to realize that already in the
stationary regime and considering only a small number of

dt~k= «k '~»a» —' g g gkf~m~nm
k m, n

Qk = —«k+l&»O»+i g g gkf
d

k m, n

The quantities y*„,y „,and y are damping constants
for the transitions between levels belonging to the same
potential sheet and di8'erent sheets, respectively. %e give
the explicit form for

transitions an analytical solution of (2.13}—(2.16) becomes
quite involved. Instead of doing cumbersome algebraic
calculation or relying on numerical results only, we have
chosen to discuss (2.13)—(2.16) in a perturbative approach
which is of current use in the two-level laser theory. "
%e develop the relevant material variables around their
stationary values near threshold assuming that the (un-
saturated) inversion is at equilibrium with the pump and
that the field amplitude and therefore also the expecta-
tion values of S*„,T „,and ak are zero. These assump-
tions are correct, when the system is just below threshold
and imply

(T.*„)"'=O, m~n

(S „)"'=SN.„,
(s.*„)'"=o .

(2.18)

III. THRKSHOI. D CONDITION

In order to discuss the threshold condition for a vib-
ronic laser we need only to retain the first-order terms
(S+„)'"[cf. (A4)] in (2.16}. Using (Al) as the ansatz and
defining Ak ——

~
Ak

~
expi pk, we get in terms of amphtude

and phase

The explicit calculations of the perturbation expansion of
S „are carried out in the Appendix up to third order in
gkak. %e will make use of them in Secs. IV and V when
discussing threshold and mode-coupling e8'ects.

„hN „y
I ~» I

= —I
I ~» I g» I ~»—I &

m, n rtnn + [a (n m}Q (~» +V k }l

bN „[e (n —m)Q ——(cok+pk)
~k =~»+%» —g» X fmn

y „+[s—(n —m}Q—(cok+q&k)]

(3.1a)

(3.1b)

In writing (3.1) we have eliminated oscillating terms of
the type (co»+co». }t This hap. pens because they oscillate
at a frequency higher than ~k and do not contribute
around threshold. Their contributions become important
when phase locking is present. This is the case well
above threshold that is at field intensities for which the
perturbative approach fails.

We notice that Eqs. (3.1} coincide with the equations
already presented by the authors in a previous paper'
which are derived by neglecting the "phonon-term" con-
tributions in (2.13). The equivalence is not surprising be-
cause the phonon terms do not contribute to the first-
order equations. The equation for fk [Eq. (3.1b)] is a
quite complicated equation which is solved by assuming
that the corrections due to the presence of the medium
are small, which is a fairly good approximation around
threshold. " As a result we get in the stationary case

bN „[s (n —m)Q —(cok—+qua» )]
Vk+ k=gk Zf.. 2

y „+[a—(n m)Q (cok+yk—)]—
(3.2)

2 g f2 mn Vmn

"y „+[a(n—m)Q —, —cok]
(3.3}

As already pointed out by the authors, ' the differences
from the two-level model are evident. In fact, neglecting
all nonresonant terms in (3.3}for a given mode frequency
cok ——e —(n —m)Q, one obtains

(3.4)

which has to be compared with the one-mode two-level
model result I =(gkbN)/y. The diff'erence comes from
the Frank-Condon integral f „which is smaller than 1

and may vanish as function of ,m(nA, A/)Q. The physi-
cal implications of (3.3), however, can only be appreeiat-

which shows the characteristic pulling term, and we can
assume yk ——0 in (3.1).

The laser threshold follows from (3.1a} in the station-
ary regime by imposing the condition that field losses and
gain be equal. This means that
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ed when discussing the contribution of all terms which
appear in the sum. For simplicity we assume that only
one vibronic upper state is excited, i.e., m =0. Moreover,
in order to remain as general as possible we do not speci-
fy the de'erent parameters according to one of the known
lasing materials.

Expression (3.3) then gives the gain profile of the laser
in the whole emission region. %e choose for the damping
constants the value y „/Q=0.02 which ensures that the
lines corresponding to each of the possible transitionS
from the excited state will be resolved, provided that we
normalize all quantities with the frequency difference Q
between vibronic levels. The normalized-gain spectra for
the initial upper states m =0 and 1 are presented in Figs.
2 and 3, where the spectra are norinalized with the factor
gkX. The height of each peak is proportional to the gain
of the corresponding line. Notice that in Figs. 2 and 3
the 0-phonon line corresponding to the transition be-
tween the two pure electronic states is on the extreme
right. From these spectra some features of the vibronic
laser are deduced.

Both spectra consist of a sequence of lines of different
height, which is determined by the Frank-Condon factors
f „. For m = 1 (Fig. 3) the distribution of the maxima is
different with respect to that found for m =0 and one
line is missing. This shows how selection rules are intro-
duced by the overlap integrals.

Furthermore, depending on the field damping I',
several lines may be above threshold at the same time.
This is clearly shown in Fig. 2 where the two adjacent
lines corresponding to the three- and four-phonon lines,
respectively, have the same height and therefore lead to
the same laser threshold. %'hen several upper states are
occupied and equilibrium with the pump is established,
which we may simulate by a thermal-occupation distribu-
tion starting from the state rn =0, the gain curve has the
form shown in Fig. 4. From these curves and from the
threshold condition (3.3), we infer that the simultaneous
laser emission from several transitions which is the condi-
tion for having a tunable laser can be achieved in the vib-

14 ~

10
{fl

C 8.
J3
a

6-

(3

I ii iL iL JWC ii iL ILAIL iL

8 10 12 14 16 18 20 22 24 26
F

FIG. 3. Same as Fig. 2 with m = 1.

ronic systems. When higher values of y „/Q are chosen,
the overlapping between the difFerent lines in Figs. 2—4
becomes important. As a result a higher gain is obtained.
This is shown in Fig. 5 for several values of y „/Q. The
curves are normalized to the peak values of Fig. 2 where
the overlapping is negligible and the one-transition
threshold condition (3.4) holds. As is shown in Fig. 5 for
values of y „/Q, an appreciable growth in the overall-
gain profile is obtained. This result indicates that a vib-
ronic system may have higher gain than that which
would be found when concentrating on a transition be-
tween a pair of vibronic levels only, i.e., with an e8'ective
two-level model. This indicates how the complicated lev-
el structure originating from the strong electron-phonon
interaction influences the laser action in a solid-state
laser. In order to appreciate this point, we recall that an
electronic transition which is located not far from the
vibronic band may have a smaller gain and therefore not
be laser active, although its gain is comparable with that
of a vibronic transition when the latter is considered in-

dependently from the other transitions in the vibronic
spectrum.
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o ~ i 1 ii i~aL iLJLJULJ 6 iL i)
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F

FIG. 2. Gain pro51e for the excited level m =O. Here the pa-
rameters are fixed as follows: E/0=20, y „/0=0.02. The
curve is normahzed with gI, N and F=uk /O.

FIG. 4. Same as Fig. 2 where the initial inversion results
from a thermal admixture of upper states. Here AQ/kT = 1.1.
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expression for the population inversion T+ —T„„(popu-
lation terms) and that coming from the phonon terms.
As in the case of the threshold calculations we will start
with the situation analogous to that which is currently
considered in the two-level model, i.e., the single-mode
approximation.

A. The one-mode case

%'e assume that only one cavity mode is resonant with
a vibronic transition and neglect nonresonant terms. The
result is

FIG. 5. Gain pro6les for E/0=20, and m =0 as a function
of F=~k/0, y „/0=0.02 (solid curve), y „/0=0.2 (dashed
curve), y „/0=2 (dotted curve).

f2

Finally, we notice that the gain curves corresponding
to large values of gain have a form which is qualitatively
similar to that scen in the experiments. The tuning at
this level is understood as follows: different vibronic tran-
sitions have a high gain. This gain is enhanced by the
cooperation of the different summands in (3.3). There-
fore, a threshold condition is found for a set of transitions
leading to a situation similar to that which is found in
dye lasers. Since several cavity modes are contained in
the broad emission line, resonance is achieved for
difFerent transitions simultaneously and tunable laser ac-
tion is possible.

IV. NONLINEAR EFFECTS

In order to account for dynamical e8'ects in the light
field above threshold, the third-order terms in the field
expansion have to be considered. In our model these
terms have the property of showing explicitly the
influence of the transitions between levels inside the same
potential sheet in Fig. 1, i.e., of the phonon terms on laser
action. Since these terms are absent in the two-level
models we expect them to be responsible for effects which
are peculiar to vibronic lasers. Notice that the name
phonon terms has its origin in the expression of the pho-
non creation (or annihilation) operator b, b in terms of

I

mal],

)( j, tn
I

projectors as

+I .f f.. 1 1

+ +
~~n mn

(4.2)

I ~k I'~kf'. ~& .
3 mn7mm

+Imnf nnf mm

2

mn

fmm

In the following we will neglect the terms in (4.2) which
contain frequency difFerences between the vibronic states
and originate from the phonon terms. They merely
redeflne the coefficients and do not influence the dynam-
ics in a speci6c way.

The contributions to thc one-mode resonant terms
come from the population inversion only. In this sense
the one-mode theory is only a slight modi6cation of the
usual two-level result where the dipole-matrix element is
replaced by its product times the Frank-Condon in-

teg rais.
For the field mode we then obtain the equations

2

nf n

b =g &m ( T+„+T „)5„ (4.1)
8gk'

I "« I EN„f„,
V mn Vmm

(4.3a)

Therefore, T*„which are introduced via the commuta-
tion rules (2.10) can be directly related to the creation or
annihilation of phonons.

The complicated form of these third-order terms [(A7)
and (AS)] which contain a lot of summation indices re-
quires some simpli6cation. %'e will consider only reso-
nant terms, i.e., terms in which the frequency-dependent
denominators reduce to y „,y*„. However, we will dis-
cuss also ihe contributions coming from the nonresonant
terms, although we shall not write them out explicitly.

Furthermore, we will distinguish between the contribu-
tions to the third order coming from thc expansion of the

d gkfmnf'k 48k I ~k I fmn Pk

d, 4k —(~k+v k) ——
Xmn+%k )'mmYmn(Ymn+0k)

(4.3b)

The amplitude equation (4.3a) contains a saturation term
whose magnitude is determined by the quantities f „.
The equation for the phase shows a 5eld-dependent reso-
nant shift. This shift depends on f „and will, in general,
be small.

This term introduces a slight modification with respect
to the two-level results where the field-dependent shift is
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nonresonant. Apart from this modNcation the dynamics
of the one-mode case will be the same as that of the two-
level model. This result is not astonishing because by
considering only one resonant mode we have restricted
ourselves to an e8ective two-level system.

B. Many-mode case

d
l

—
I Ak I

= —l
I A» I—

1

2 2
gk, f .

~& . I A» I

ggk, f'.
hN „IA»

Vmn Vmm

2gk )g»2f mn

fmI~&mI I Ak, I

'
I Ak~ I

Ymn Vml Vmm
(4.5)

(~m )phon Igk, gki I A»2 I Ak~~+ml

f If
X T exp( i a» t), —

1
Vmn Vml Vmm

(~mI )ph'on= Igk, gk—, I Ak, I
'Ak, ~&m

(4 4)

fl'f .
X T exp( iak t), —

2
Vmn Vml Vmm

and the analOgOuS termS fOr (Sm„)ph'o„.
These terms are completely new and couple the two

modes "resonantly. " This means that they are more
effective than their nonresonant counterparts. %e stress
the fact that this resonant mode-mode coupling is a
feature of the vibronic model, because the corresponding
terms originate in the phonon terms, i.e., in the transi-
tions between vibronic states belonging to the saxne po-
tential sheet. Furthermore, their contribution cannot be
neglected in a "zeroth-order approximation, " because
both transitions and both modes occur above threshold
simultaneously. From this viewpoint the vibronic laser
appears to be intrinsically a many-mode device. The dy-
namics of the two coupled modes when all nonresonant
terms are neglected is described by

As we have already pointed out in Sec. III, many tran-
sitions can coexist above threshold. This means that the
one-mode case just discussed corresponds to a strongly
idealized situation. In order to investigate the behavior
of a realistic vibronic-laser system we need to consider
the case in which more than one transition is excited and
is resonant with its own cavity mode. For simplicity let
us consider the case in which only two transitions are
above threshold and each of them is resonant with a cavi-
ty mode. This is the case for a system having a gain
profile such as that shown in Fig. 3, where two adjacent
lines have the same gain. Each transition will give rise to
saturation terms such as that found in the one-mode case.
Furthermore, there wi11 be a nonresonant mode coupling
which is due to the presence of the nonresonant mode-
coupling terms in the inversion part of the third-order ex-
pansion. Besides these terms which are also expected
from the two-level results, new contributions arise from
the phonon terms. Besides nonresonant terms which we
do not write here explicitly and which are of the same
form of that originating from the expansion of
T+ —T„„,we find the resonant terms

d
di 2

g»2f ml
bN (I Ak

V. CGNCLUSIQNS

%e summarize our results as follows. %e have
presented an analysis of the vibronic laser action which is
based on the whole vibronic level scheme as it is deter-
mined by the electron-phonon interaction. The resulting
description, which may have some formal analogy with
that of a many-level laser, allows us to give a detailed pic-
ture of laser action in these systems. %e have presented
gain pro6les which are characteristic for vibronic systems
because the interplay between the diFerent possible tran-

gg kf'I
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~mn~mm

2 2 3
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These equations show explicitly that the saturation terms
belong to one transition only (only f „quantities appear
in the coefficients), whereas the mode-coupling terms im-

ply a transition to different vibronic states because they
contain the f If „products. This means that the
mode-coupling terms describe a redistribution of the em-
itted intensity between the two modes which is demon-
strated by (4.5). We want to stress the fact that the mode
coupling which thus appears is rather a "transitions cou-
pling" in the sense that diFerent modes are coupled by
diFerent transitions. This point makes clear that the dy-
namics of a vibronic laser is quite complicated and should
be discussed on the basis of a numerical solution of (4.5).
However, already in the framework of our very simpli6ed
analysis some of its relevant features can be extracted.

We conclude this section with one more remark. The
coupling between transitions which is represented by (4.5)
indicates how the many color superfluorescence experi-
ments can be interpreted in the framework of our model.
In fact, diFerent resonant transitions are always coupled
together with coupling strengths which depend on the
Frank-Condon overlap integrals. Transitions whose tran-
sition frequencies are not quite diFerent and with not too
diFerent strengths will interact. Therefore, a redistribu-
tion of the emission between these transitions will follow
which can lead to superAuorescent emission between
diFerent states at the same time. For a simpli6ed model
consisting of an upper- and two lower-vibronic levels the
model used in Ref. 14 is found.
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sitions results in a higher-gain profile than what is expect-
ed for a single transition. Furthermore, we are able to
give selection rules and line strengths for the different
transitions involved as a function of the electron-phonon
coupling as expressed through the Frank-Condon in-
tegrals. Finally, an insight into the dynamics of laser ac-
tion in a vibronic system showing interesting effects of
transition-mode coupling and intensity redistribution be-
tween modes has been given. Furthermore, we have
given a general scheme in which optical effects in vibron-
ic systems and their dynamics can be studied. Applica-
tion of these ideas to realistic systems is the goal of future
work.

APPENDIX

%e collect here all algebraic details concerning the
perturbation calculation which leads from (2.13)-(2.15)
to the first- and third-order terms [(A4), (A7), and (A8)]
needed in Secs. III and IV. Before going over calcula-
tions we make the following ansatz for the field ampli-
tude:

IS+„=—l gg exp( —[y „+is
k I

—i (n —m)Q](t —t')
J

X [ Ak*f)„T+lexp( i a—kt')

—Akf lT)„exp(iakt')]dt .

I+
(S+„)'"= i g—gk Ak . exp( ia„—t),

k &nm

I „(S„}"'=iggk Ak exp(iakt),
k &nm «k

(A4)

where we have introduced, in order to simplify the nota-
tion,

Then introduce the zeroth-order approximations (2.18)
and perform the integrals over t in the limit t » 1 ly
obtaining

(T+„)'"=0—, m&n

(I )() ) ()

~k A»exp[t (»+0 k }t] (Al)

T+„= ig g—I exp[ —[y+„+i(n m)Q](t ——t')I
k I

X [ A„f„lSm,exP(i a„t')

—Ak fl S)„exp( —iakt')

+& „y „&„laI)I,]«', (A2)

where )pk is an unknown phase which describes the fre-
quency shift induced in the Seld modes by the lasing ma-
terial. In general, yk will depend on the field intensity as
is determined from the theory.

First of all rewrite (2.13) and (2.15) in integral form

s„=y „+i[e—Q(n —m)],

Imn =fmn ~+mn

Imn =fnm~&mn .

The terms y +, „+, S+z] „+& have not been considered.
Their effect consists merely in a rede6nition of the
coeScient of the field amplitude in (A3) and (A4) by a
faCtOr ym~) n~)/(S —(n —m)Q —ak) WhiCh iS alWayS

much smaller than one on the time scale of the field vari-
ation, which is the relevant time scale in this context. In
fact, the denominators which appear in it are always non-
resonant and contain a frequency difference which grows
with n, m. These terms could play a role in describing.
transient effects which we do not consider in this paper.

The second-order contributions are obtained by follow-
ing the same procedure and give for the population inver-
sion terms

(T+ )' '= —g kg» gk Ak Ak f,I+lexp[i(a„—al )t]
klk2 I (ei +la», }[y' —l(a», —ak, }]

exp[i(ak —ak )tl
+ Ak, Ak, fl Il

(ei' —l ak, )[y' l «k, ——ak, }]
(A5)

and for the phonon terms

exp[i (ak2 ak }t]
( T+ )(2) I+

ml) ~ ~ gk)gk2 k~ k) l) l~ ml~
(

.
) + .

( )]~I ~+~k l.~I ~ —«k —&k

exp[i(a„—ak }t]
+A», A» fl, I(, l,' ' (~l l

—lak )[~i m l(ak ak }]
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The y-+(„+) terms in (A5) and (A6) have been left out using the same argument which has been introduced for the

y +, „+, in the first-order terms. An analogous argument allows us to disregard the contributions of the y ~, „+, in

the expression for the population inversion. Thus, also in this case the inhuence of these terms may be disregarded on
the time scale which is relevant for our consideration. As has been shown in Ref. 14, their contribution becomes essen-
tial when transient e8ects like superAuorescence are discussed.
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