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Quantum-noise quenching in the correlated spontaneous-emission laser
as a multiplicative noise process. II. Rigorous analysis including amplitude noise
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An analytical steady-state distribution for the phase difference it in a correlated spontaneous-
emission laser (CEL) is derived based on the amplitude and phase equations of a CEL. This distri-
bution is shown to be an excellent approximation to that obtained from a numerical simulation of
the complete set of CEL equations. In particular, the effects of amplitude noise on CEL operation
are considered and it is shown that fluctuations in the relative amplitude are also noise quenched.

I. INTRODUCTION AND OVERVIE%

In paper I of this series' we have shown, via simple
geometrical arguments, that the quantum-noise q~uench-

ing in a correlated (spontaneous) emission laser ' (CEL)
can be understood as a result of a multiplicative noise
process. In particular, we have demonstrated that in
contrast to the (two-mode) phase-locked laser6 (PLL) the
phase difFerence g between the two electric fields in a
CEL obeys the Langevin equation

P=a bsin|f +sin—( P/2) V( t),

where a denotes the detuning of the cavity eigenfrequen-
cies and b is the gain. The Gaussian white noise P of
strength

( 2(t)P(s) ) =2(25)5(t —s)

is assumed to have mean zero,

Moreover, the similarities and differences between CEL
noise quenching and PLL noise quieting have been em-

phasized by an analysis of the corresponding Fokker-
Planck equation,

{[a (b ——,'2) )sing jP—
J

+22) [sin (tb/2)P] .

particular, we include noise in the average phase angle 4'
as well as amplitude fluctuations.

The paper is organized as follows: Starting from the
quantum Langevin equations for the two modes of the
CEL, we derive in Sec II. equations of motion for the
phases and amplitudes of the two electric fields. The
noise-free situation is discussed in Sec. III and special em-
phasis is made on the locking of the two fields to a con-
stant relative phase angle go. In Sec. IV we then proceed
to study the inhuence of the spontaneous emission noise
on fo. We here pursue two strategies. (a) In one ap-
proach we simulate the coupled system of equations for
the phase diFerence 1b, phase sum qt, and the amplitude
difrerence r, on a computer to obtain numerically a
steady-state distribution Po=Po(f). (b) In the second
approach we utilize standard techniques from noise
theory ' to derive an approximate, efFective Fokker-
Planck equation which (up to a small noise-induced
correction to the coupling coefficient b) is identical to Eq.
(1.2) and thus to the one discussed in Ref. 1. Its solution
reproduces the characteristic features of the steady-state
distributions obtained from the numerical simulation for
the range of parameters of interest here; that is, small fre-
quency detunings between the waves,

~

a/b
~

&&1 and
weak noise, 2)/b «1. Therefore, Eq. (1.1) with a very
slightly modi6ed coupling coeacient is an excellent
description of the dynamics of the CEL. This con6rms
the notion of noise quenching as a result of multiplicative
noise put forward in Paper I. Section V is a summary
and discussion. In order to focus on the essentials we
have banished all lengthy calculations to the Appendixes.

II. KQUATIGNS GF MOTION

However, the derivation of Eqs. (1.1) and (1.2) given in
Ref. 1 relies on general, geometrical arguments. The ob-
jective of the present article is therefore to present a
mathematically rigorous derivation of this equation based
on the complete set of equations governing the CEL. In

In this section we derive, starting from the quantum
Langevin equations for the CEL modes, equations of
motion for the relative phase g, for the average phase an-
gle %', and for the difference r and sum R of the electric
field amplitudes.
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In erst-order laser theory ' and at zero-cavity temper-
ature, that is in the absence of blackbody photons, the
evolution of the two 5elds described by the annihilation
operators tlj (j=1,2) is givenz by

e

a( ——[—,'(a —7') —i(Q1 —v) )]8,+ zaft—ze' '"+P((t),
(2.1a}

ffz ——[—,'(a —y) —i(Q2 —vz)]82+ ,'a—tt)e ' '"+pz(t),

(2.1b)

and

1 1 e, , —e,.—(Fze ' F—ze '),
P2 2&

Pl (a Y }Pl + aP2cos( @+81 82 }

iOl ~
—i 81+ ,'(F, e—+F',e ),

pz
———,

' (a —y )pz+ T)ap) cos((p+ 8,—82 )

i&2 ~
—i 82+—,'(Fze +Fze ) .

(2.7b)

(2.8a)

(2.8b)

where for the sake of simplicity we have chosen the gain
coefficients in the two modes, a", to be equal to the
cross-coupling coefFicient a, z and to be real, that is,

a],——a22=0;]2——0;2] =cx. Moreover, the two decay rates

yj are assumed to be equal, y, =yz=y. The symbols Q,.
and v~ denote the empty cavity frequencies and the fre-
quencies of the transitions, respectively. The Gaussian
noise operators P~ have mean zero

/=4+8, —82,
q(= —,'(8, +82),

(2.9a)

(2.9b}

Here we have ignored the operator nature of the noise
operators. For a detailed discussion on this intricate
point we refer to Refs. 8-10. Making use of Eqs. (2.7)
and (2.8), the equations of motion for the new variables

(2.2)
P&

—P2

P].+P2

R =—P].+P

(2.9c)

(2.9d)

where

(2.3)
read

D)) ——D22 ——~a=D

—i4(t)D &z
——D2] ———,o,e

with

4(t) =(v, vz az—o)t ——b, .

(2.4a)

(2.4b)

(2.5)

(2.10a)

(2.10b)

1 1
r' = — b cosset(+ Ftt r + F„,

I

R =—,'(a —y+a cosir/)R + 2) Ftt (t), —

(2.10c)

(2.10d)

11(=a b—sing+ (F rG)——,1+r . 1 i
p2 1 p2 R

(Ii= A +b sinter+ z (G rF), —
1 —T p2 2R

Here coo and 5 are the frequency and the phase of the mi-

crowave which in the present treatment is considered to
be noise free. The Hanle-effect laserz configuration is ob-
tained for coo=0 and 5=0.

The system, Eq. (2.1), can be solved exactly. " Howev-
er, it is extremely dif][cult to extract from these solutions
the relative phase ()((. We therefore utilize an ansatz

itj =pj(t)e (2.6)

to obtain directly equations for the slowly varying phases
8 and amplitudesP .

The ansatz (2.6), however, neglects ' the operator
character of fIJ. The following calculation is thus a semi-
classical treatment as is adequate for a laser above thresh-
old. Substituting the ansatz (2.6) into Eq. (2.1) and taking
real and imaginary parts, we arrive at

aP2.
8, = ( Q, —v, ) —— sin(4+ 8, —82)

2 P

where

and

with

b =a, (2:—Qi —Qz —coO, A —= —,'(Q) —v)+ Qz —vz),

F=91—Vz —C. C.

G =91+Pz —C. C.

F„—:91—Pz+ C. C.

Ft( =9(+92+C. C.

(2.11a)

(2.11b)

(2.11c)

(2.11d)

cy F e(i/2)(2%'+e —4)

P F e(i/2)(2% —((+4&)

(2.11e)

(2.11f)

1 1 I 81 ~
—I 8i

. (F e ' F;e ')—,—
Pi 2l

o. P],
8z ——(Qz —vz)+ ——sin(4+ 8, —8z)

2 P2

(2.7a) III. NOISE-FRKK SOI.UTIONS

The physics of the CEL hidden behind the rather corn-
plex system of Eqs. (2.10) stands out most clearly when
we first discuss the noise-free Eqs. (2.10), that is,
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J +~2/=a b— sing,
p2

4= A +b sing,
1 —r

(3.la) This can be recognized by substituting goi"' into Eq. (3.1a)
and solving for r 0,

a —( —1)"b

a +( —1)"b
r' = b—cos( P)r,
R =—,'(a —y+a cosg)R,

(3.1c)

(3.1d)

r0 ——0.
Substituting Eq. (3.2) into Eq. (3.1a) we arrive at

O=a —b sinPo,

(3.2)

which for
~

a
~

& b allows the two steady-state solutions

Q
t(o =arcsin

b
(3.3)

and then include the spontaneous emission fiuctuations.
In particular we in this section analyze the steady-state
solutions (8/Bt:—0) of Eq. (3.1). We start with Eq. (3.1c)
which has the obvious steady-state solution

%(t)= Po+At . (3.4)

%hile the two electric fields keep a constant relative
phase angle t)'jo they both rotate with a constant rate A in
the complex plane as depicted in Fig. 1.

The amplitudes p of the two fields follow from Eqs.
(2.9c) and (2.9d) as

pi ——
—,
' (1+r)R

Since
~

a
~

& b this condition is equivalent to ro & 0 in ob-
vious contradiction to r0 &0. In conclusion we note that
according to Eq. (3.3) the two electric fields in a CEI.
are locked to the constant relative phase angle
=arcsin(a/b) as shown in Fig. 1.

Substituting Eq. (3.2) into Eq. (3.1b) yields after a trivi-
al integration for the average phase angle 4',

Po=m. +arcsin
b

whereas no steady-state solution is possible for
~

a
~

& b.
It is straightforward to show that f =orac is(na/ )band

ro =0 are stable steady-state solutions whereas tbo is un-

stable. In the remainder of this article we confine our-
selves to detunings

~

a
~

& b such that the stable solution
(3.3) applies.

Note, however, that Eq. (3.1c) also has nonphysical
steady-state solutions

q,'"'=(2n +1)—.
2

'

=p =TiR ( r ) =R 8 ( I /2)(n+ i' —y it
Pl —P2 —I — 0 (3.5)

[(a )2 o 2]1/2

Here we have made use of Eqs. (3.1d) and (3.3). For
++I —y g0 the amplitudes Pl and P2 of the electric
fields grow exponentially as expected from first-order
laser theory.

pz ———,'(1—r)R .

With the help of Eq. (3.2) we thus find that in steady state
the two amplitudes are equal and given by

FIG. 1. Two electric fields in a correlated spontaneous-
emission laser are locked to a constant relative phase angle t(o
while they rotate with a common rate A in the complex plane as
indicated by the averaged phase angle 4I. Their amplitudes are
equal and grow exponentially as predicted by first-order laser
theory.

IV. STEADY-STATE DISTRIBUTION P0( tp)

In Sec. III we have shown that in the absence of spon-
taneous emission noise the two electric fields in a CEL
lock to a constant relative phase angle t)/o. We now study
the influence of the noise sources, Eq. (2.11), on fo as ex-
pressed by the system (2.10). However, we immediately
face a problem: according to Eq. (3.5) the sum of the am-
plitudes R grows to infinity. Since the noise sources I', 6,
I'„, and I'It enter Eq. (2.10) always multiplied by the in-

verse of E., the spontaneous emission noise seems to die
away. However, this is only an artifact of first-order laser
theory. Due to the saturation of the laser, ' however, 8
reaches a steady-state value R0 ——2P0 given by the non-
linear CEL theory. ' This saturation effect can be incor-
porated into the system (2.10) in a well-known fashion '
by assuming a damping constant y such that no growth
in R is possible, that is'

2a cos ( g/2) —y =0 .

Neglecting also the Auctuations 5E. around 8.0
(R =Ro+M -=Re), the equations of motion governing
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g =a —b sinl(+ z (F r—G),1+r . 1 i
1 —r 1 —r 2po

(4.1a)

where the expansion coeScients c„are given by

c„(t)= I dfe '"~P(t, g)=(e '" ') . (4.3)

qi= A +b sing+ (6 —rF), (4.1b)
1 —r' 1-r' 4po

%e now derive a recurrence relation for the coeKcients
c„. Multiplying Eq. (4.1a) by e '"~ and noting that

1 1
b cost)'i+ F„r+ F„,

4Po &uo
"' (4.1c)

l 6f
e '"~g= ——(e '"~),

n dt

we afrive at
where the noise sources I', 6, F„, and I'z are defined by
Eqs. (2.11a)—(2.11f). For a treatment of the nonlinear
theory we refer to Ref. 12.

The inhuence of the spontaneous emission noise on the
phase difference f is best illustrated by a probability dis-
tribution Po for t)~. Such a distribution requires the
knowledge of all moments (f"). However, since Eqs.
(4.1) are highly coupled, and thus have to be solved
simultaneously, it is not straightforward to evaluate these
moments. A more promising approach consists of simu-
lating the Langevin forces F, 6, F„, and Fz by means of
a random-number generator on a computer and integrat-
ing the system Eq. (4.1) numerically to obtain the proba-
bihty distribution Po =Pc(g). The result of such a simu-
lation is shown in Fig. 2 for alb=0. 1 and 2$/b=0. 1

(S= D/po) by the solid "jagged" curve.
Although this numerical simulation is very useful it

makes it dif6cult to gain some insight into the form of the
distribution I'o for various parameter values. For this
reason we derive in this section an approximate expres-
sion valid in the physically relevant limit of small detun-
ings

~

a
~

/b &&I and weak noise 2)/b &&1. Since P is
the relative phase between the two CEL modes, periodic
boundary conditions for P are adequate. We therefore
expand the probability distribution P =P(t, P) into

(4.2)

n 2l 1 —r

+ F —rae (4 4)

Since in the absence of noise we have ro ——0 [Eq. (3.2)], a
nonvanishing contribution to r can only be due to the
noise and is thus at least proportional to 2). In particu-
lar, we show in Appendix A that

2

(» )—=—1 a Xl

8 b b
(4.5)

We therefore neglect the contributions r in Eq. (4.4)
compared to unity„and the recurrence relation Eq. (4.4)
reduces to

i . b b
Cn QCn — . Cn —1+ . Cn+1

+ t
( (Fe —intP) ( 6 —mg) )

&Po
(4.6)

Since according to Eq. (4.1a) the phase P is driven by the
Langevin forces I' and rG, the Fourier component e
contains these noise sources as well. %e therefore expect
the averages (Fe '"e) and (rGe '"e) to be nonvanish-
ing. The detailed calculations of Appendixes 8 and C
yield

30-

(Fe '"e) =pp)( 2nc„+n—c„+&+nc„,) .

These results simplify Eq. (4.6) to the three-term re-
currence relation

b Sc„= n(ia + n 2) )c—„——+—+ n c„—
0 i

0 0.05 020
b 2) 2)+ —+——n —c

4 2 8+1

FIG. 2. Comparison between the steady-state distribution
PO =Pa(g) (P iu rad) obtained from a computer simulation of
Eq. (4.1) (solid "jagged" line) and the approximate one found
from the recurrence relation Eq. (4.8) (dashed line). The param-
eters chosen here are a /b=0. 1, 2$/b=0. 1, and A = 1.

cn Sn cn

where S„ is the scalar continued fraction

(4.&)

In steady state (c„—=0) Eq. (4.7) can be solved by the
iteration
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2(Ea +r)2)}+ b + —rfg) S„+)

(4.9)

and co= 1 and c „=c„'from Eq. (4.3).
Thus the approximate steady-state distribution Po

=Pa()){)) is given by Eqs. (4.2), (4.8), and (4.9) and is
shown in Fig. 2 by the dashed line for alb=0. 1 and
2$/b=0. 1. We emphasize the excellent agreement be-
tween the numerical simulation of the complete CEL
equations and this approximate, analytical treatment.

V. DISCUSSION AND SUMMARY

In Sec. IV we have derived an approximate steady-state
distribution for the phase difference g reproducing the
characteristic features of the numerical simulation. Com-
paring this approximate solution and, in particular, the
recurrence relation Eq. {4.7) to the corresponding one
[Eq. (3.13)] derived in Ref. 1 by geometrical considera-
tions, we recognize that the coupling coefficient b be-
tween the two CEI. modes is replaced by

(5.1)

This small noise-induced correction is due to the coupling
of Eq. (4. la} to Eqs. (4.1b) and (4.1c). However, aside
from this modification, the equations have the same
structure as those of Ref. 1. In particular, according to
Eqs. (4.2) and (4.7) the distribution for P satisfies a
Fokker-Planck type of equation

1( corresponding to Eq. (5.2) is indeed Eq. (1.1), however,
with the modiSed coupling coemcient b. Since in paper I
(Ref. 1) we have already shown that Eq. (1.1) shows noise
quenching, we thus see that the CEI. noise quenching can
be described by Eq. (1.1) and therefore by multiplicative
noise. We conclude by noting that according to Eq. (4.5)
noise quenching also occurs in the difference r of the am-
plitudes.
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APPENDIX A: QUENCHING OF FLUCTUATIONS
IN DIi a j;RENCE OF AMPLITUDES

In this appendix we calculate the average (r ) in the
limit of small detunings,

~

a/b
~

&&1, and weak noise,
S/b «1, and thus show that noise quenching also
occurs in the difference r of the amplitudes of the two
electric Selds.

The solution of Eq. (4.1c) reads

r(t) = f dt'F„{t')exp —f dt "[b cos|()(t")
4po o f

Ftt(t")] . (Al)
4

a
at

=
a@

j [a —(b —T)2) )sinit)]P j

+2& [sin2(|t)/2)P], (52)

For
~
a/b

~
&&1, that is, Pa~a/b and 2)&&b we find

cosg(t" )icos(a /b) ~ 1. When we neglect the noise
source Ftt in the exponent of Eq. (Al}, we thus arrive at

which is identical to Eq. (1.2) [and (3.10) of Ref. 1] when
b is replaced by b. Moreover, the Langevin equation for

I

r(t) f dt'F„(t')e
4po o

Hence

(A2)

(r'(t) )=, f dt' f dt" (F„(t')F„(t"))e
16po2 o o

f d i(D D )(tP—4) D —i(lP —4)+D )
—2b(t —)')

J t 11 21e 12~
4p2

2b)i i)-

where we have made use of Eqs. (2.4). Since sin [P(t'}/2] m(a /2b}, we can perform the integration in the limit t ~ 00

(steady state) to find
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APPENDIX 8: THK AVERAGE ( rGe

In this appendix we calculate the average ( rGe '"~). When we make use of Eqs. (2.11b), (2.11e), and (2.1lfl, we find

( G
—in (t)t( F (i/2)(2++((t —4) —in/) ( F» —(i /2 }(2%' +tlt —4) —in(()t+ ( F (i/2)(2'+ —/+4) —intit)

I e — r &e 2e

i F» —(i/2}(2+ —((+W) —int( )

Averages such as (rF) e'/ " +~ 'e '"~) can be obtained with the help of Eqs. (A2) and (2.11c),which yield

(rF e(i/2)(2%+/ —0&) —in/) f dr~ —b(t —t )(F'(r~)F (r)e(i/2)[2%'(t)+(i(t) —4(t))e —I (ni(t))

4Po o

e
—6(f —f ) FC t F

4Po o

X (exp( —(i/2)I2[ It(r') —It(r)]+((tt(t') —g(r) —4(r')+C(t) J )e '"("t})

f «'e "' ''(F 2(&')F ()r))
4P

X (exp( —(i /2) I2[)It(&')—)It(&)]—y(&') —y(t)+@(&')+@(t)I )e '" ")

zi;c,(,) Po

4Po 4Po
(82)

Here we have made use of Eqs. (2.3) and (2.4) and fol-

lowed the convention

f dr'5(r')=-, ' .

In the last step we have used c' „=c„following from Eq.
(4.3).

Similarly we arrive at

Since

r. » —(i/2}(24+/ —0&) —in/)e

K (i/2)(2++ ltt —4) —i ( —n)f X ee-—

(rF e(i/2)(24 —/+4)e —in(() O~(C C )
Po

which yields

r » —(i/2. }(2+—((+4} in/)—
y pF2e

(85)

we find from Eq. (82)

( F»e —(i/2)(2++ t(t —4)e —

in/�)

g)(C C )»

r (i/2)(24 —t(t+tit) —i. ( —n)t(t)»

Po-2)(c„}—c„) .

Po-2)(c„—c„+)) . (84)
Substituting Eqs. (82), (84), (85), and (86) into Eq. (81)
yields

} /
i/

FIG. 3. Change of order of integration.

APPENDIX C: THE AVERAGE (Fe

In this appendix we calculate the average (Fe '"~)
neglecting terms quadratic in the di8'usion constant.
With the help of Eqs. (2.11a), (2.lie), and (2.11fl we find

(F —int}t) (F e(i/2)(2%+(( —N) —in/)

i z» —( i /2 )(2%'+ tlt —4 ) i n g)—e

—yF2e ei r. (i 2)( /% —2t(+0&) in(})—
+ (t z» —(i/2H2%' —tlt+N) —in&/r 4I 2e e

The averages in Eq. (Cl) can be performed using a
method developed in Ref. 8. Introducing the earlier time
t, —= t —~ where 0 g ~~0, we 6nd
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(F (i /2 }{2gf + f// (P } ig fff ) (
( I /2 )[2+({ ) + IP( t ) 4( 1 ) ] —III P t )

)

+ ~ ~
'

d~ t (i//2)[2%'{ r')+ P r') —N(f')] —in+ r')d
t df

~ ~ ~
~

~

p (() 'yg»t /2)l 2(»t )+'»'i —»I 'll» —i » ') (py~ j @) q» j,
)2

(C2)

In the last step we have made use of the fact that the phases f, and {Ii at the earlier time t, are uncorrelated to the
noise F, at the later time t together with Eq. (2.2). When we neglect the terms r we find from Eqs. (4.1a), (4.1b), and
(2.5),

(2{p—+f 4)—in/—=—[2A +a(1 2n—) (v—( v2—co—o) b—(1—2n)sin1[{]
2 2

+2rb sing+ [6+(1 2n }F——r [F+(1—2n }G]I
2Po

(C3)

After substituting this result back into Eq. (C2) we can perform the average. We start with the contributions in the first
s««squa«brackets of Eq. (C3) consisting of terms independent of the stochastic variables and of phases e —'{({'' which
can be combined with the phase factors already present in Eq. (C2). Due to the integration over t' all phases in Eq. (C2)
are taken at a time prior to the time t of the noise F, and are thus uncorrelated. Since (F, ) =0 [Eq. (2.2)] these times
do not contribute and the terms in the bracket in Eq. (C3) do not contribute at all.

A somewhat similar argument applies to the term rb sing. According to Eq. (A2) r contains the noise sources F, and
I'2 via I', . Thus the average is of the form

(F,(t) f dt' f ds F) (s)) =2D» f dt' f ds 5(t —s)

=2D» (t t, ) f —ds 5(t -s)+ f ds(t s)5(t --s)
0 »

fc
=2D» f '

ds f ' dt'5(t —s)+ f '
ds f 'dt'5(t —s)

Here we have used Eq. (2.3) and changed the order of integration with the new limits of integration apparent from Fig.
3. Since t, & t the first integral is nonvanishing and equal to —, only for t, =t, however, in this case the prefactor van-
ishes. A similar argument holds for the second integral, and therefore

(F, (t) j dt fdt »'(()l»=0.

We now turn to the contributions from the curly brackets in Eq. (C3). Let us first consider the terms proportional to
r. The resulting averages are typically of the form

~
F,(t} dr'F", (t')r(t')e '"»''j D„{r{r)e '"»"=}

According to Eq. (4.1a) the phase 1[) is driven by the noise r. Hence there is a correlation between r and e '"~. There-
fore, the average is nonzero and at least proportional to the difFusion constant D. Thus the averages due to the contri-
butions rF and rG involve terms proportional to (2)lb) «1, which we neglect.

We now turn to the last two terms in Eq. (C3) and Eq. (C2) reads

(F e(i/2)(2%+tP —4)e —tn{)) dt'(F (t)[G(t')+F(t ) —2nF(f )]e(i/2)[2'l(t')+P(') —4(t')] —in t{i())'( — )

4uo
(C4)

When we substitute Eqs. (2.11a) and (2.lib} into the above result and perform the averages with the help of Eq. (2.3)
and the convention (83), we arrive at

(F,e' " +~ 'e '"~) =—$(c„nc„+nc„—, ) .Po
(C5)

From this result we immediately find

(Fe e
—(i /2 }(24'+{(—N ) in P )

0 g—)(c +n]8 (C6)

The average (F2e'/ " ~+ 'e '"~) can be calculated in an analogous way yielding

(F e(i/2)(24' {i+4)e in/—) — f dt»(F (t}[G(t») F(t )2»nF(t»)]e(i/2)[2+(t ) —Pt')+»t(t )je —'in»Pt ))''
4eo
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(F (i/2)(2%' —e+4)e —inc) ~( + )
Po

pC n n n+1

(F2e " " ~+ 'e '"~) = 2)—(c„n—c„+nc„,) .—in

When we substitute Eqs. (C5), (C6), (C7), and (CS) back into (Cl) we arrive at

(Fe '" ) =pp0( —2nc„+nc„+,+nc„)) .
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selves to small detunings

~
a

~

/b &&1, which yields
= [arcsin{a/b+6)

[
—=

~

a/b+i)
~

&&1, where
~

l),
~

&&1 in-
cludes the correction due to the spontaneous-emission noise.
Thus 0=2a cos'{1((/2) —y =2a —y, that is, y =2a.


