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Interference between a finorescent photon and a classical field:
An example of nonclassical interference
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Fluorescent photons emitted from an atom will interfere with a classical 6eld only if the atom is
not in a pure excited state. This is a strictly quantum-mechanical condition, which can be tested, in

principle, by allowing the light emitted from an atom undergoing Rabi oscillations to interfere with

the coherent pumping field. The theory of this process is discussed.

I. IN x fCODUCTION

Whereas any two classical light waves in principle can
give rise to second-order interference effects, and indeed
such effects have been observed even with two separate
and independent sources, ' the same is not true for
quantum fields. The reason is that the phase of a classical
field always exists, whereas that of a quantum field does
not, even if the field is quasimonochromatic. In particu-
lar, because a single photon has no definite phase accord-
ing to quantum electrodynamics, two singleghotons can-
not exhibit second-order interference. ' However,
fourth-order interference effects involving the joint detec-
tion of two photons have been predicted " and ob-
served.

Somewhat similar conclusions apply to the interference
of a photon with a classical Seld. This situation might be
encountered when the fluorescence from a single atom is
mixed with a coherent reference beam, and one looks for
second-order interference effects. The interference effects
are expected to vanish whenever the initial state of the
atom is an eigenstate of the energy, because then the em-
itted photon has no phase. To put it another way, when
one of the two sources used for the interference experi-
ment source is a fully excited atom, then when a photon
is detected in the interference plane, it is possible to
determine from which source the photon must have come
by examining the atom. This rules out any second-order
interference, which is always a manifestation of the in-
trinsic indistinguishability of several possible paths of the
detected photon. On the other hand, interference efFects
between the atomic and the classical source can occur
when the source atom is in a superposition state and only
partially excited. Needless to say, this phenomenon is
nonclassical and does not exist in semiclassical radiation
theory.

In the resonance fluorescence of a two-level atom in
the presence of a coherent exciting field on or near reso-
nance, the expectation of the atomic excitation changes
continuously between lower and upper limits as a result
of the Rabi oscillations that the atom undergoes. If the
Suorescent light emitted by the atom were mixed with
the pumping field, we would have just the situation dis-
cussed above; interference effects should come and go as
the atomic excitation changes. %'e then have a prototype
of the nonclassical kind of second-order interference ex-
periment. This problem is treated quantitively below.

II. THEORY OF THE INTERFERENCE PROCESS

Let us consider the interference of a polarized quantum
field Pq„(r, t) at position r at time t (Hilbert space opera-
tors are labeled by the caret) with a classical field E,i(r, t).
Vixen a photodetector is located at r, the probability
P(r, t) of a detection at time t is given by'

P(r t) g & (g ( —)+E(—) )(g (+)+E(+)) &

where E'+', E' ' are positive and negative frequency
parts of the total field E, and E is a constant characteris-
tic of the detector. In particular, if both P q+'(r, t) and

E,'i+'(r, t) can be treated as single-mode fields with wave
vectors k, and kz, respectively, and with equal frequen-
cies co, we can write

E '+'(r, t) =C8(e
i (k~.r —cot)

E,'(+'(r, t)=Cuze

where 9, is a photon annihilation operator and U2 is a
complex mode amplitude. Then from Eqs. (1) and (2) we
have

P(r, t)=E
I
C

I (&tt(&+
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' ' +c.c. )
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cosf(k) —kz) r+arg((()( —4z)lI (3)
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where &, —:8,8, , and we have written

i/2
u, = /u, [e

(4)

We note that P(r, t) varies periodically with position, but
only if & &, &&0. The visibility u, or the relative modula-
tion amplitude of the interference pattern, is given by

In the special case when the quantum field is derived
from an initially fully excited atom, & 8, & =0 and there is
no interference. On the other hand, for a partly excited
atom in a superposition state we generally have & I, &&0,
and then interference efFects are to be expected.

III. APPI ICATION TO RESONANCE FI UORKSCENCE

%'e now apply these considerations explicitly to the
fiuorescent field produced by a two-level atom in a
coherent driving field on resonance. If the atom of level
spacing Acro and transition dipole moment p is located at
the origin, then the positive frequency part of the field at
r, t far from the atom is given by the usual dipole formu-

15, 16

&b(t) &=e' "'Q f 'dt'&u, (t') &e-t'" (8)

Here Q—:2'~)M, e/h is the atomic Rabi frequency in the
external field, e is a unit polarization vector, P is half the
Einstein A coef6cient, and it has been assumed that the
atom is in the ground state at time t =0. The mean in-

version & Pi(t) & under these conditions has been calculat-
ed, ""and it takes the form

X 1+ e ~'~ cosQ't +,sinQ't
2P2 2Q'

so that & E '+ '(r, t) & is completely determined by & b(t) &.

In order to calculate b(t) at an arbitrary time t follow-
ing the turn-on of the coherent driving field, we shall
make use of the general integral relation between b(t)
and the atomic inversion Pi(t) that was derived in Ref.
16 [Eq. (28)). In the special case in which the exciting
field is in a coherent state on resonance, and the electric
field seen by the atom is given by sco~e 'e'~, with
A, P real, the integral relation leads to the following
equation connecting the expectations of b(t) and P~(t):

2

E „(r,t)= p —
2

b(t r/c)—~+ ~
o (tt, .r)r

4"rTEoc r r

with

Q'=—(Q ——'P )' '

+E,'+,'(r, t) .

&Eq'+'(r, t)&= ', p-
4~coc'r

tp r)r
(b

r

Here b(t) is the atomic lowering operator and E t+,' is the
external or free field. At any point (r, t) where the
coherent excitation field vanishes, the expectation value
of E„'+'(r, t) is then given by

When'Eq. (9) is substituted under the integral in Eq. (8),
we readily find that

—Q/2P
Q /2P +1

1 —e ~'~ cosQ't —,sinQ't
Q-
2Q'P

(7) and with the help of Eq. (7),

2
ct)o

& E '+ '( r, t +r /c) & =
oc'r r

T

—Q/2P i(0—~,i)

Q /2P +1
sin Q't

It is interesting to examine the expectation of
Eq+ (r, t+r/c) predicted by this equation at various
times t. To make the situation as simple as possible we
assume that the atom is subjected to a strong exciting
field, so that Q/P~~ 1, and the natural atomic lifetime is
very long compared with the period for Rabi oscillations.

(a) At time t =0, we always have from Eq. (11)

&X' '+'(r, r/c) & =0 .

(b) At times t =n(n. /Q'), n =1,3, 5, . . . , when the

&E'+'(r, t+rlc) & =—,[p, —(p r)r/r']-
2&coc r 0

i [4—cuof)
Xe (13)

(c) At times t =n2ir/Q', n =0, 1,2, . . . , when the

atomic excitation given by Eq. (9) is close to a maximum,
we find
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atomic excitation given by Eq. (9) is at a minimum, we
find that (E q~+ '(r, t + r /c) ) is close to zero, and numeri-

cally much smaller than the value given by Eq. (13).
(d) At times t =n(m/20'), n =1,3, 5, . . . , when the

atomic excitation is close to 50%, we obtain

&&=~ ~p=~o

Q)
(Eq'+'(r, t+r/c)) =+, [p (Is—r)r/r')e

8&Roc r

02

Because we have taken 0/P&p 1, we see that the ex-
pectation value of the field in case (d) is very much larger
than that in cases (b) or (c) when the atom is either highly
excited or unexcited. At times when (Pi(t) ) = ——,', cor-
responding to an unexcited atom, a zero field is to be ex-
pected. On the other hand, (8q+') is very small in case
(b) even though the emitted light intensity is high, be-
cause in this state the phase of the quantum field is
indefinite. Therefore, any interference elfects are expect-
ed to wash out under conditions (b). In the partly excited
state corresponding to case (d), on the other hand, the
quantum 5eld has a phase and a nonvanishing expecta-
tion. Figure 1 shows graphs of

I
(Eq+'(r, t +r/c) )

I
as

a function of time, for several values of the ratio 0/P.
When 0/P=20, the kind of behavior expected from the
foregoing discussion is indeed observed. For smaller
values of 0/P the competing effects of spontaneous emis-
sion modify the Rabi oscillations and cause increasing
distortions of ( E q+ ' ) .

In order to examine the visibility of the interference
pattern we now substitute Eq. (11) in Eq. (1), and assume
that the classical field has the same amplitude as the
quantum field at time t =m /20', with 0/P ~~ 1, i.e.,

2

E',i+'(r, t)= [p —(p r)r/r ]e
8mxpc r
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FIG. 1. The expected time variation of
I
( E „'+ '( r, t + r /c ) )

I

given by Eq. (11)in arbitrary units for several diFerent values of
0/P.

For the expectation value

(E'„'(r,t+r!c) E'+'(r, t+r/c))

of the fiuorescent field we obtain from Eq. (6)

(E'„'(r,t+r/c). E'+'(r, t+r/c) &

2 '2
COp

4&VpC r2

when we make use of the relation b t(t)b(t)=Pi(t)+ —,',
and with the help of Eq. (9)

(E'„'(r,t+r!c) E'+'(r, t+r/c)) =
2 '2 2

~oo (p r)r 0 /4P
4meoc'r r 0 /2P +1

IJI— 1 —e ~'/ ' cosQ't+, sinQ't3
20'

(16)

When Eqs. (11), (15), and (16) are used in Eq. (1), we readily find for the visibility u of the resulting interference pat-
tern

0/2P
0 /2@2+1

1 Q /4P+4 0'/2P'+1

l —e 'I"" cosn't — - sinn't
Q2 R2

20'P

3
1 —e ~' cosQ't +,sinQ't20'

(17)

Figure 2 shows a plot of visibility versus time t given by
this equation for several di8'erent values of the ratio 0/P.

IV. MSCUSSIGN

Let us examine the curve for 0/P= 20 more closely. It
veil be seen that the visibility ~ of the interference pat-

tern vanishes close to certain times t satisfying

Qt =nm or I3t =nn/20 (n =0, 1,2, . . . ) .

There are just the times given by cases (b) and (c) above,
when the atom is either most highly excited and the mean
fluorescent light intensity is greatest, or it is deexcited
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FIG. 2. Variation of the fringe visibility ~ with time for
several different values of 0/P.

FIG. 3 ~ The time variation of the visibility ~ in the limit
0/P~ oo.

and the intensity is least. The visibility is greatest in be-
tween the zeros, but not half-way between. The reason is
that the mean intensity in the denominator in Eq. (17)
also exerts an inhuence on c., and introduces an asym-

metry, because it peaks at diferent times. Even in the
limit 0/p~ oo, when Eq. (17) reduces to

sinQt

—,—cosQt

this distortion is apparent in the plot given in Fig. 3. The
visibility is greatest when Qt =arc cos—', =0.84 and

reaches the maximum value 2W 5 =0.89.
Although the behavior of this system is easiest to un-

derstand when 0/p~~l, it is evident from Fig. 2 that
there are zeros in the visibility even when 0/p is less
than 10. Their positions are however displaced relative
to those given by (b) and (c) above, for the reasons al-

ready mentioned. %ith this understanding the funda-
mental conclusion that second-order interference effects
between photons and a classical Seld require an indefinite

number of photons is borne out by the calculation.
There remains the question how this phenomenon

might be exhibited experimentally. When the atoms in a
weak atomic beam are exposed to a coherent laser beam
close to an atomic resonance, they undergo Rabi oscilla-
tions and emit photons. Moreover, for atoms traveling
with a certain velocity, position within the laser beam
corresponds to the exposure time t. If a small portion of
the coherent exciting field is diverted with the aid of a
beam splitter and allowed to interfere with the ffuores-
cent photons emitted by the atom, we have just the situa-
tion treated in Sec. III. The visibility of the interference
pattern should vary with the position of the atom within
the pumping beam according to Eq. (17). The nonclassi-
cal interference phenomenon we have been discussing is
therefore not only of interest in principle, but it should be
observable in practice.
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