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Squeezing and frequency jump of a harmonic oscillator
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The theoretical basis of a mechanism for squeezing through a frequency jump of a harmonic os-
cillator is examined. It is found that a related squeezing transformation exists, but its interpretation
in terms of a frequency change is not possible. A reinterpretation of the results in terms of a scaling
transformation in coordinate or momentum variables is given. Moreover, a sudden jump is not
essential, and squeezing can evolve continuously. The equations of motion for such a process are
obtained and the interaction responsible for squeezing is obtained.

I. INTRODUCTION

Squeezed states of harmonic oscillators and photons
have received considerable attention in recent years. ' A
new approach for calculating the normally ordered form
of squeeze operators was presented in an earlier paper.
[This approach is based on the IWOP (integration within
an ordered product of operators} technique. 3 e] A clear
interpretation of the squeezing as a sealing transforma-
tion in coordinate or momentum variables is a very in-
teresting result of this approach. In this paper we investi-
gate the related question of the existence of a squeezing
transition caused by a frequency jump in a harmonic os-
cillator. Using the I%OP technique we investigate a
squeezing transformation which, at first sight, appears to
be related to the frequency jump ~~co' of a harmonic os-
cillator. However, a deeper examination reveals that ~'
cannot be interpreted as the new frequency. Then we go
a step further to show that a sudden frequency jump is
not essential, and the squeezing transitioa can continu-
ously evolve if cu'=co'(t), provided co'(t) is related to the
squeezing interaction in a certain manner. The interac-
tion Hamiltonian and the equations of motion for the
squeezing process are derived. It is pointed out that the
squeezing transition can be properly interpreted as a re-
scaling in coordinate or momentum variables if co

remains unchanged
In Sec. II the squeezing transformation is introduced

and its norma11y ordered form is derived using the I%OP
technique. It is also shown that the same results can be
derived in coordinate, momentum, or the canonical
coherent state representations. The time evolution of
the system is considered in Sec. III and ihe results are
discussed in Sec. IV. It is pointed out that a previous sug-
gestion of a squeezing mechanism through the frequency
change of a harmonic oscillator is based on an incorrect
interpretation of the squeezing transformation. Possible

sources of such a misinterpretation are also discussed in
Sec. IV.

II. SQUEEZING TRANSFORMATION

Consider a harmonic oscillator with a unit mass and
frequency co (fi= 1)

H = ,'P + ,'c—o Q =—co(a a + ,')„[a—,at ]=1,
I

~

n & =co(n+ —,') (
n &„, a ~0&„=0,

' 1/2

Q= (a +a+), P=i — (a+ —a ),1 CO

2co
'I

a„= — v coQ+ P
2 co

The subscript cu is to emphasize the ~ dependence of the
operators and the state vectors. However, from here on,
we set a =a. The basis vector in coordinate representa-
tion 1s

'
], /4

~ q & = — exp — q+ &2coqa—,'a ~

0&——

(4)

q q „q =1, q „=q q

Consider a state vector
1/4

~ q &„= exp — q'+&2co'qa t ——,'a t'
~
0&„

(5)

obtained from (4) by replacing co with co', but leaving a
and ~0&„unchanged. We now evaluate the following
operator, constructed with the help of (4) and (5);

1/4 2

&=—I dq
~ q & „(q ~

= I dq:exp — (co+co')+&2q(v'co'at+v'coa) ——,'(a2+a ') aat
oo 7T 00 2

1/2

(coco'):exp, a +, —1 a a+t2
2(co'+co) co'+co 2(co+co')
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N +N
2i co co

N —N

2v co co
L

because we can now de6ne real parameters r and p such
that

N+N . N —N
coshr =, sinhr =

2 col co 2 co co

1/2

tanhr = N —N „N@=8
N+N N

As a result, (6}reduces to the following form:

t2
S =exp — tanhr exp[(a a+ —')lnsechr]

2 2

ag exp tanhr (10}

Here we used the identity

exp(Kata)=:exp[(e —1)a a]: .

Equation (10) is the normally ordered form of the squeeze
operator2' with a squeezing parameter p. This result
shows that the transformation

I q & ~
I q &„maps a

squeeze operator in Hilbert space so that

s
I q &.=f dq'

I
q'&. .&q'

I q &.= I q &. .

Interchanging co and co' in (6), one obtains

S = q q „„q =S ', S '
q „= q „,

~here:: denotes a normal ordering. Here, a standard
Gaussian integral was used to perform the integration
over q, using the I%OP technique, and the following
iden. tity was also employed:

I
0&„„&0I

=:exp( —a a ): .

It is encouraging to note that

having the same frequency co but rescaled Q and P.
Another interpretation of the squeezing process follows
from the coordinate basis vector

I q &„', which can be gen-
erated from the ground state

I
0&' of the squeezed oscil-

lator,
' 1/4

fr
exp ——

q +&2coqa' ——,'(a')2
I
0&'

&g=[„'&0I(g—&g&)'I0&']' '=
pv 2'

' 1/2

hP =[' &0
I
(P —

& P &
)'

I

0&„']'"=p

(21)

which yield the standard result Eg LLP =
Using the I%OP technique, it is straightforward to

confirm that the same results are obtained in the momen-
tum or canonical coherent state representations. Con-
sider the operators

si= f" 4 ls &..&} I
(23)

' 1/2
N+N
2i coco

dP oo

(18)

Using (14}, (15), (18), and (12), we obtain an interesting
result,

I q &.'=S
I q &.= I q &.

Q'lq&'=q lq&.
'

(20)

Thus
I q & ~ also represents the coordinate basis vector of

the squeezed oscillator. Using (17), one can also calculate
the quadrature variances, which exhibit the squeezing
property very clearly,

(13) where

which shows that S is a unitary operator.
In order to clarify the physical meaning of

I q & ., con-
sider the following transformation:

a'=SaS '=a coshr+a tsinhr

1/4
1

exp

' 1/
p . 2+i
2N N

a
Pa + lo&

2

N l N

=~2. g'
2

' 1/2
lp, q &„=exp ——coq +—P

1 2 1

N

v'cog'+ P'
V2 VQj

+ &coq+ 'P at lo&v2 V Qj
(26)

H„'
I

n &„'=co(n+ —,')
I

n &',
I

n &' =S
I

n &

H„'=SH S '=co(a' a'+ —,')= —,'(P' +co Q' ), (16)

Q'=SQS '=pg, P'=SPS '=P jp .

The scaling q~q'=pq and p~p'=p/p resulting from
(17) implies squeezing, as shown in Ref. 2. According to
(16},the squeezed harmonic oscillator can be pictured as

and
I P & ~ (

I P, q &„.) are the same as in (25) [(26)], except
N~N'. %e also have

(27)

The notation is the same as in Ref. 2, and the evaluation
of integrals is also similar. For example, we obtain
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' 1/2
OP+ N

2v coco f ","„f'"dq:-p— p 1 1
(CO+CO ) — +

4 N CO
+ —(v co a ' +v coa )

2

/P Q Q

v2 vco v co
—Q Q

2v co co

N +6)

1/2
co —co t2 2v coco t co —co:exp, Q + , —1 QQ+ Q

2(CO+CO ) CO+CO 2(CO+CO )

ls &.=IJ &.
' ~IJ &. =uJ lp&. . (29)

As an application, consid. er the wave function of the
squeezed state,

I
n )„', which can be calculated very sim-

ply as follows:.&q ln&'=. &q I f dq Iq&. .&q In)„
=i .&i q I

n &. . (30)

uI. TIME KVOI.VTION

Let co'=co'(t) with co'(0) =co. We seek the interaction
Hamiltonian which can generate the continuous squeez-

ing transformation
I q ) ~

I q )„(„.For this purpose we

first rewrite (10) in the following form:

f2
S ( t, O) =exp — tanh[r ( t) ]2

Thus S2 ——S. Similarly one fiinds that S, =S. Hence the

squeezing property can be demonstrated in each of the
three representations. As before, we can also show that

H' P(t)S(t, O) =i BS(t,O)/c)t, (34)

H"(t)=. '[V(t). ""a-"+V'{t)e'"'a']e ' "
(36)

where the superscript Ip stands for "interaction picture. "
As a result, there exists a set of state vectors Iq, t)'„
which gives the solution of the following equation of
motion:

H' (t)
I q, t)' =i

I q,—t)', I q, O)'„=
I q) (37)

where
I q ) is the basis vector in the Schrodinger pic-

ture. Now (34}and (37) imply that

$(t,O)= f dq
I q, t ) 'P 'P& q, o

I

= f '"
dq

I q t &.".&q I
.

Therefore S(t,O) satisfies all the required properties of a
time evolution operator, and we can put (33) in the stan-
dard form for the equation of motion in an interaction
picture,

Xexp((a ta + —,
' }ln sech[r (t }]I

Q
2

Xexp tanh[r (t) ]2

(31)

Comparing (31) and (38), one obtains

(39)

Since co'(0) =co, from (19) and (39) it follows that squeez-
ing evolves continuously under the influence of the in-
teraction given by (35) and (33).

S(0,0)=1, tanh[r(t)]=
CO'(0) CO'(t)—

i $(t, O) = V(—t)(a a)S(t,O), —
Bt

i dco'(t)V(t)= (33)

S(t, t, )S(t„O)=$(t,O), S (t,O)=$(0, t} .

Differentiating (31) with respect to t and using the opera-
tor identities

VQ
fz

e ' a =(a —2va )e"'

„ t2
e ' a =(a +4v a —4va'a —2v)e"'

we obtain the following equation of motion for S:

IV. DISCUSSION

%'e have shown that a harmonic oscillator can be
squeezed through a continuous time-dependent transfor-
mation, Eq. (31), which obeys the equation of motion
(33). Sudden frequency jump is not necessary. However,
co'(t) cannot be identified with the time-dependent oscilla-
tor frequency, except that co'(0)=co. The squeezing can
be understood in terms of the rescaled variables q'=pq
and p'=p!p if the frequency co remains unchanged [see
Eq. (17) and the discussion following it]. In Ref. 6,
co~m' was interpreted as the frequency change. Howev-
er, the theoretical basis of this interpretation was not in-
vestigated and the suggestion of squeezing was based
solely on the existence of identity (8). A possible source
of such a misinterpretation can be seen through the fol-
lowing transformation:
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a"=S 'aS =a eoshr —a tsinhr

&co'Q + —I'
v'2 v'~'

It is tempting to identify a =a„. with the annihilation
operator of the squeezed harmonic oscillator which has a
frequency ~'. However, this is incorrect since

H" =S 'H„S=co(a„a„+—,')

p2 i&2

0 —Q «~ Hfd & CO
Q2

p p
(42)

~& t& + P'(r)& —i2ut& f2+ ye(r)ei2mt& 2 (43)

and it is not simply an oscillator with a time-dependent
frequency. Moreover, from (33) we obtain the following
expression:

where m"=m /m'=p u. Again ca" is not the frequency
of the squeezed oscillator since H' &H„.

According to (33)—(36), the system that undergoes the
squeezing process has the following Hamiltonian:

=p H~

p2 &2
2 + QZ (41)

T

co'(r)=coexp i4 I—dt'V(t')
0

(44)

That is, H„"&H„.and, therefore, the squeezing transfor-
mation (40) does not lead to a new oscillator with fre-
quency ru'.

A similar interpretation emerges if one uses the trans-
formation (14) of this paper. Then (14) and (16) give

Equations (43) and (44) clearly exhibit the origin of
squeezing characterized by (8).
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