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The theory of atomic associative ionization (AI) presented here is a many-channel treatment in-

corporating radial Born-Oppenheimer and Coriolis couplings among the reactant channels as well

as analogous couplings among the ionized, 6nal states. Careful attention is paid to characterizing
the basis sets used to represent the pre- and post-collisional states, especially with regard to the
internal and relative angular momenta of the fragments. Particularly noteworthy in this context is
our use of a total angular momentum representation. This representation is excellently adapted to
the derivation of selection rules needed in the analysis of AI experiments involving atoms excited
into oriented hyperfine states by means of polarized lasers. Selection rules previously obtained by
heuristic means are derived more rigorously here. Finally, explicit and compact formulas are con-
structed for the lowest-order (two-state) approximation to the AI scattering amplitude and for the
first-order Born-Gppenheimer corrections as well.

I. INTRVDUCTMN

This paper is devoted to the theory of associative ion-
ization (AI), a collision process in which two atoms react
to produce a free electron and a bound diatomic ion. The
symbol i will be used to denote the composite initial elec-
tronic state of the two atoms; the state of the product dia-
tomic ion will be denoted by the symbol f. The AI event
then can be represented schematically as follows:

A (i)+S(i)~ AS+(f)+e

%e' recently presented heuristic arguments for a num-
ber of selection and suxn rules applicable to AI. One goal
of the present investigation is the development of a
theory in terms of which the formal proofs of these rules
will be manifest. A second goal is the construction of a
theoretical apparatus that will facilitate the calculation of
AI cross sections, including corrections not accounted for
in previous treatments.

The theory presented here is a natural extension of the
projection-operator formalism that originally was adapt-
ed to collisional ionization by O' Malley and subsequent-
ly refined by Bieniek. According to this earlier theory
the atomic reactants approach one another along a single
Born-Oppenheimer (BO) potential energy curve E;(R).
Ionization occurs only after this reactant pair enters a re-
gion of the (E;,R) plane in which the bound initial elec-
tronic state becomes imbedded in the continuum associat-
ed with the 6nal state, AS+(f)+e . While there is no
reason to doubt that this is the dominant mechanism by
which AI takes place, it is an oversimplified picture.
Corrections to the scattering amplitude for AI can result
from a number of other mechanisms. For example,
Coriolis coupling provides a way for the reactant atoms
to jurnp to a second BO state from which ionization then
may occur. %'e shall modify the earlier formalism to al-
low for the systematic incorporation of corrections such

as this, a generalization which amounts to relaxing the
"two-state approximation" common to many projection-
operator formalisms.

Formulas for the scattering amplitudes appropriate to
AI usually are expressed in terms of a basis labeled with
electronic quantum numbers and the quantum numbers
specific to the orbital angular momentum of the nuclei
(However, see Ref. 4.) This choice is very natural but it is
neither the only possibility nor, for some purposes, even
the most convenient. Here the basis kets will be labeled
by electronic quantum numbers and by the quantum
numbers associated with the total orbital angular momen-
tum of the system. Although this choice makes the for-
mal analysis of AI slightly more difficult, it leads to at
least one substantial simplification. Thus, since (to the
neglect of spin-orbit coupling) the total orbital angular
momentum is a constant of the motion, it is to be expect-
ed that the transition operator for AI will be a scalar, di-
agonal in the quantum numbers associated with this
dynamical variable. We shall see that this is, in fact, the
case. Furthermore, by adopting the total orbital angular
momentum representation we are able to derive the pre-
viously mentioned selection rules for AI with far less
diSculty and with considerably greater mathematical au-
thority than previously possible: the use of this basis en-
ables us to mimic formally the physical arguments
presented in Ref. l.

Section II deals with some preliminary considerations,
including the establishment of notation. Then in Sec. III
we construct the basis kets of the total orbital angular
momentum representation. Section IV is devoted to a
projection operator analysis of AI, the results of which
are explicit formulas for the scattering amplitude. In Sec.
V the formalism is used to construct cross-section expres-
sions suitable for numerical calculation and proofs are
given of the previously mentioned selection rules for AI.
Throughout the paper it is assumed that the atomic nu-
clei are distinguishable. The adaptation of the theory. to
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the case of indistinguishable nuclei can be roade using the
format given in Ref. 1.

II. PRELIMINARY CGNSIDKRATIQNS

1j=Xj—X~

with

1
xN —— (Mqxq+Max~) . (2.1)

Here M„, Mz, and m, are the masses of nucleus A, nu-

cleus 8, and an electron, respectively; Mz is the total
mass and M~ is the total nuclear mass. It should be ob-

Since all of the items in this section have been treated
elsewhere, our discussion will be brief: the reader is re-
ferred to the literature for details. %e begin by intro-
ducing laboratory-frame particle coordinates, all of
which are referred to an arbitrary but common origin.
The positions of the two nuclei are denoted by x~ and xa
and that of electron j by xj. It is convenient to de6ne the
alternative set of coordinates,

N

R=x„—xz, x, = M„x„+M~x~+m, g x
T j=l

served that r has its origin at the nuclear, rather than
the total, center of mass.

Associated with the coordinates R and r=(r„. . . , r~)
are the "coordinate eigenkets"

(2.2)

R„~R&=R
( R&, &R

~

R'&=5(R —R'),

r, , ~ r, & =r,
~ r, &, & r, ~

r,
'

& =5(r, —r',. )5,,
(2.3)

(2.4)

Here P& and pj are the momenta conjugate to R and rj,
respectively, and p:—M„Ma/(M„+M+) is the reduced
nuclear mass. The potential energy V is de6ned by

Here, R, and r,„are the coordinate operators corre-
sponding to R and r .. The subscript op will be dropped
when no confusion can arise.

The symbol H is used for the Hamiltonian specific to
the center-of-mass frame. Because we neglect spin-orbit
interactions, this operator is given by the expression

2X S
Pa+ g p,'+V +

23M 2&1~ 1
2M~

«r, R
~

V
~
r, R'&&=gr —r" W(R —R')e

~A Zg

~
(Mii/MN )R—rj ~ ~

( M„ /M~) R+r+

(2.5)

in (2.4) will be neglected. Then, using the identity

1

2
P~=&z+ 1

2p 2pR

with

&R
~
T„~ R'&=5(R —R') — &„(& & )

2p g2

N=RXP~, (2.6)

with Z denoting the charge number of nucleus a. Be-
cause it is of little importance to the processes treated
here, the very small "mass-polarization" energy

2

(1/2MN) g p

of the second and third terms of (2.4). Although all of
the electrons are taken into account herc, the theory
would not be signi6cantly different if H, 1

were replaced
with an effectiv Hamiltonian limited to the valence elec-
trons.

Much of our analysis will be concerned with how wave
functions are transformed by rotations about the nuclear
center of mass. A11 rotations are de6ned in the "passive"
sense, that is, as rotations of coordinate frames rather
than rotations of particles. The rotation operator is
denoted by the symbol (D pay), with a, p, and y the
Euler angles defined by Edmonds; a and p are identical
with the polar spherical angles P and 8, respectively.
These Euler angles are to be regarded as parameters
without dynamical significance.

It is well known that D (apy ) has the explicit represen-
tation

we rewrite the Hamiltonian in the form
ipE

exp exp (2.g)

H =T~+ N +H1.1

2pE
(2.7)

Here H, 1 is the electronic Hamiltonian, equal to the sum
in terms of the laboratory-frame components of the total
orbital angular momentum operator
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(2.9) (2.12)

The single most important property of D(aPy) is that it
commutes with all scalar operators 5, that is, i—fi Dstst (aPy ) =RMDMM (aPy ),x

By
(2.13)

[D(aPy), S]=0 . (2.10)

Associated with D (aPy) are the "rotation coefficients"
DM~ (af3y ) defined according to the prescription

B B 1 B B B2
+cotP „+ + —2 cosP

BP BP sin P Ba By B&By

D~~ (aPy)5« —(ZM—
~
D(&PE)

~

rC'M'& . {2.11) +IC (I{.' + 1) Didst (aPy )=0, (2.14)

These objects satisfy the eigenvalue equations and the normalization condition

f d(cosP) f da f dy Dstg(aPy)D~. g (aPy)=8' (2K+1) '5xtt5stst5tig .
—1 0 0

(2.15)

III. ROTATI{ONAL-ELECTRONIC STATES

In this section we construct kets that later serve as the
bases for the scattering formalism of Sec. IV. These ob-
jects characterize both the electronic motion and the
heavy-particle rotational motion.

A. Bound states

First to be considered are the bound electronic kets
~

AnR& characterizing the initial channels. These are
chosen to be eigenkets of H, i and of the internuclear vec-
tor R

p
with which H, &

commutes The quantum num-
bers n are eigenvalues of a set of operators n that includes
the nuclear spin and the total electron spin. This set also
may incorporate other electronic operators such as pari-
ty. Associated with the electronic kets

~

AnR& are the
product kets,

~
An R &

~
R &—:

~
An R &&, defined by

«A' 'R'i QH„Q i
A R»=E„„(R)5„,,5„,„5{R—R),

k K
~

AaR&& =aA
~
AnR&&,

(3.1)
R.„~ Aa R && =R

~

AnR &&,

n
i
AnR» =n

i
AnR »,

and the orthonormality conditions

«All R
~

A' n'R'
&& =5„.5„„.5(R—R') .

The operator R K appearing here is the component of
total orbital angular momentum (or equivalently the
component of total electronic orbital angular momentum)
in the direction of k= R/R. Q is the projection operator
on a selected set of bound electronic states to be speci5ed
in the next paragraph. The operators QH„Q, R K, R,~,
and (all the members of) n form a mutually commutative
set. Furthermore, with a suitable choice of Q (see below),
the operators QH, iQ, R K, and n all commute with
D {uPy).

The projection Q can be chosen in a variety of ways.
For our purposes, it is convenient to demand that (1) Q

project onto a subspace that includes all bound electronic
states which are signi5cantly populated in the associative
ionization process of interest, and (2) that Q commute
with D(aPy). The first of these conditions implies that
the minimal subspace associated with Q depends on the
relative kinetic energy and initial electronic state of the
colliding atoms. The second condition is not difficult to
satisfy, for once a particular state

~
xR&& has been

chosen for inclusion in the "Q subspace, " the scalar char-
acter of Q is assured by adding to this space all others

~

xR'», obtained from it by rotations.
With x the direction of the laboratory-frame polar

axis and R=(4,8), it then follows that
D '{$,8,0)

~
An, Rz&& is an eigenket obeying (3.1). We

therefore can make the identi6cation

D '($, 8,0)
~

An, Rz&&=—
~
AnR&&, (3.3)

and, in addition, conclude that the energy
Et,„(R)=EA„(R)of the bound electronic state does not
depend on the orientation of the internuclear axis. (3.3)
also leads directly to the condition

((r, R,
~

AnR&& =/„„(r
~

R)5(R —Ro)

={()~„(gi
R z)5(R —Ro) (3.4)

on the electronic wave functions

{(~.(r I
R)={(~.(ri r2

associated with the antisymmetric ket
~

AnR&&. In this
formula g' denotes the set of electronic coordinates ob-
tained when (D$, , 8)0is applied to

~
r, R&&. (3.4) is an

expression of the well-known invariance of the electronic
wave function under an overall rotation. %'e shall call
the set of numbers g' the "molecular frame" (MF) coordi-
nates, for they specify the positions of the electrons in a
reference frame that has R as its polar axis. Indeed, R
and g' may be used in place of R and r as coordinates
specifying the particle positions. Two points must be
made about this coordinate transformation. First, the
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electronic coordinates g are, by definition, invariant un-
der rotations. Second, the coordinate R coupled with g is
the same pair of numbers ($,8) as that associated with r,
but its dynamical signi5cance is di8'erent. In the pair
(r, R), R represents the orientation of the internuclear
axis, and corresponds to an operator that is "conjugate"
to the nuclear angular momentum N. However, in the
pair (f,R), R indicates the orientation of the polar axis
of the diatomic quasimolecule, and corresponds to an
operator that is conjugate to the total orbital angular
momentum K. Subject to this understanding, we can re-
gard the two coordinate kets

~ g, R)) and
~
r, R)) as in-

K, = ira, — (3.5)

terchangeable, provided that r and f are related to one
another by the connection mentioned above.

We now can use the
~

AnR)) as building blocks for a
basis set that includes the heavy-particle rotational
motion. For this purpose it is convenient to have at our
disposal kets which are eigenstates of K and K, as well

as of R.K and n. The two operators j; and K are given

in terms of R= ($,8) and g' by the expressions

K'= fi' f d—g f dR
~

g', R&&
1 cot8 i 2 1 i
, a,+cot8a, —2 . a, —„RI. +a,+, —„RL

sin 8 sin8 siil 8
«g, Ri . (3.6}

Here I,=K—N is the total electronic orbital angular
momentum, B&=(B/B({})as &

and Be=(B/Be)a & &.

From (2.12)-(2.14), (3.1), (3.5), and (3.6} it follows that
the required eigenkets of K2, K„R K and I may be writ-

ten in the form

~KmAnR»=X, f dg f dk ~g, R&&

(3.7)

with D i„st(R):DA~st ($, 8—,0). The factor
Ex=[(2K+1)/ 4m]'~ has been chosen so that these
basis kets satisfy the normalization condition

(&K'M A n'R'
~

KmAnR )&

=R '5(R R')5ttx5—stst4~5"

8. Continuum states

Our next task is to construct analogues of
~

AnR))
and

~

KMAnR )) appropriate to continuum electronic
states. These kets will be used to describe the scattering
channels (cf. Sec. IV) specific to the products of AI. As
in the case of

~
AnR)), we begin with an electronic state

~
AcqR) and the associated product ket

~
AcqR))

=
~
Acq R )

~

R ) . Here c includes quantum numbers n

like those of
~
AnR)), along with others soon to be

specified. q is the "asymptotic wave number" charac-
teristic of the translational motion of the ionized electron
when it is far from the AB+ ion. As implied by the nota-
tion, the ket

~
AcqR)) satisfies the last three of Eqs. (3.1).

One could identify the kets
~
AcqR) with continuum

states of the 1V-electron Hamiltonian operator 0,&, that
is, with solutions of the Schrodinger equation
(H, i E)/=0 speciSc to—one or more unbound electrons.
However, this approach is fraught with diSculties, not
the least of which is the horrendous task of constructing
these X-electron wave functions. The alternative scheme
which we adopt replaces the true continuum with an ap-
proximate continuum, each state of which is represented
by the {antisymmetrized) product of an (N —1}-electron

n(m)
~
AtntRm ))=ni

I
Ai"IRm &&

R,
~
AiniRm )) =R

~
AtntRm )),

and conform to the orthogonality conditions

((AtntRm
~

Atnt'R'm )) =5 „,5,5(R—R') .

(3.9)

(3.10)

The operator L(m) appearing in (3.9) is the total elec-
tronic orbital angular momentum less that of electron m.
The operators H„(m) and n(m) are defined similarly.

It is evident that the rotational transformation proper-
ties of the

~ AiniRm)) are the same as those of the

~
An R )). Consequently, these kets can be written as

~

A n Rm ))= f dg'(m)
i
g'(m)R))P~ „(g'(m)

i
Rz),

(3.1 1)

where f{m)=(g'„.. . , g, ,g +„.. . , giv). The ionic
wave function P„„has the same form regardless of the

I
choice of m. Finally, the coordinate R appearing in

state of the "free" AB+ ion and a continuum orbital
characteristic of an electron interacting with an AB+ ion
in an unperturbed, "electronically frozen" state. (Since
multiply ionized states play no significant role in the AI
processes of concern to us here, they are ignored. ) The
remainder of this Sec. III 8 is devoted to a detailed char-
acterization of this "frozen-core" basis of continuum
electronic states.

We begin by introducing the AB+, ionic analog of
~AnR)). This ket,

~
AtntRm)), is antisymmetric on

the product space of the X —1 numbered and sequentially
ordered electrons 1,2, . . . , m —1,m + 1, . . . , N. The
quantum numbers AI and nr are ionic analogs of A and
n, respectively. The kets

~
AIniRrn )) are required to

satisfy the characteristic equations

«A,' 'nR' m~H„(m)
~
A,n, Rm &&

=Eq „(R)5, 5,„5(R—R'),

R L(m)
~
AiniRm )) =fiAt

~
AtntRm )),
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I
g'(m)R» is conjugate' to the angular rnornentum

K(m) —=K—r Xp
The next step is to combine the (N —1)-electron kets

AInIRm » and the spin kets
I

I~Mam & of electron m

into composites,

IqIRm » —= & &SIMsl 'M,-I SMs &

x
I
A, n, Rm »

I
—,'Mm &,

that are eigenstates of the E-electron spin operators S
and S,. Here Sl and M&I are the quantum numbers cor-
responding to the electron spin of the AB+ ion and to its
projection along the laboratory-frame z axis. M, is the
projection quantum number associated with the spin of
the unbound electron m and S and Ms are the spin quan-
tum numbers of the entire, N-electron system.
&SIMsi —,'M,

I
SMs & is a Clebsch-Gordan coefficient. Fi-

nally, ql is the set of quantum numbers consisting of S,
Mg, and all members of nr except M@1. Therefore,

I AlqIRm » incorporates the spin of electron m and is
an eigenket of the electronic operators 82, S„and
R L(m) as well as of all the operators belonging to the
set n(m), save S,(m).

The basis kets of the frozen-core approximation to the
continuum now may be written in the form

to which the one-electron wave function is required to
conform. Here ao denotes the Bohr radius, P;„an incom-

ing wave, and Fi„(r)k, a spherical harmonic referred to a

coordinate frame with its polar axis along R. Although
the angular momentum of the unbound electron is not a
constant of the motion, its component along R is con-
served. Consequently, the good quantum number p is re-
lated to AI and A by the connection

(3.16)

The orthogonality constraints upon the continuum or-
bitals, together with the normalization conditions (3.10)
and

& qadi (A,q, )Rm
I
q'X'p, '(A, q, )Rm & =5„.5„„.5(q q'), —

(3.17)

imply that

«AcqRIAcq R »=5„5„5(q—q }5(R—R).
(3.18)

These relationships are, in turn, sufficient to ensure that
the objects

C = g f dq f dR
I
AcqR»«AcqR I, p =(Arqr}

A, ,p

I
AcqR»= A[

I
AiqlRm »

I
qkp(Alqi)Rm &]

=X ' g ( —1) +'
I
AlqIRm »

satisfy the conditions

(3.19}

(3.20)

& A;ql~m
I q~„(Alq, )Rm & =0

for m&m '. In other words, the wave functions

Pzi„'' (g I

Rz)=& f Iqkp, (Alql)Rm & (3.14)

are constrained to be orthogonal to all of the molecular
orbitals used in constructing the electronic bound states
of AB and AB+. The physical interpretations of the in-
dices k and p are apparent from the asymptotic condition

( Al q~ )

y,„l"(r. I
R) — ~ '"r. -

P' —+ QG

X I exp[iqr +i (aoq) 'ln(2qr )

+~ v~„)

+P;„(r I
R)I,

X
I q~p(Arql )Rm &, (3.13)

with
I qkp(Alql}Rm & a one-electron ket on the space

associated with the translationa1 degrees of freedom of
electron m. The set of labels e consists of the eigenvalues

qz and the two indices A, and p associated with the un-

bound electron; A =Ai+ p, cf. (3.16) below. We require
the one-electron kets to be orthogonal to the bound and
ionic states, that is,

&A'n'R
I qkp(Alqr)Rm & =0

and

(with 5 =5„,5, ) required of projection operators
AI Al

onto the singly ionized ¹lectron configurations associ-
ated with speci6cally designated states of the AB+ dia-
tomic ion,

The approximation we make is to replace the exact
complement of the bound-state projection operator

Q= QPq,
q

I'& = R AnR AnR, q =—An

with the projection operator

P=gC

(3.21)

onto a set of singly-ionized frozen-core states. To com-
plete the prescription for these states we de6ne the con-
tinuum orbitals of the frozen-core basis to be those which
satisfy the equations

& AlqyR1 I H, /
E(A q;c8 }

I AcqR—& =0, (3.23)

with

E(Acq;R)=E~ „(8)+iraq /2m, .

To aid in the interpretation of this prescription we ob-

(3.22}

C = g f dq f dR
I AcqR»«AcqR I, p=(Alqi)
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serve [from the de6nitions (3.19}and (3.22)] that

PH„P
I
AcqR))

g g C .H, iC -
I AcqR))

[H„c —E ( Acq; R )] I
Acq R )) =0,

that
I
Acq R )) be an eigenket of

HFC (P——H, iP)d ——g CpH, i',

(3.25)

(3.26)

= g I dq'I A'c'q'R))&A'c'q'R
I H„ I

AcqR) .
A'e'

(3.24}

Consequently, (3.23}is equivalent to the requirement,

the frozen-core, diagonal fragment of the operator PH, &P.

This operator HFc is the part of PH„P that is diagonal in
the polarization couplings; in other ~ords, it is the part
of PH, &P to which the ionic wave functions are invariant.

The defining equations (3.23}or (3.25) can be written in
the alternative forms

'|}'„—[ —E„z (8}]+V& (r
I
R} Ps&' (r

I
R)+ I dr'K~ (r, r';R)P i„'' (r'

I
R)= (3.27)

which closely resemble Hartree-Fock equations. Here E E„~ (—R)=i' q /2m, is the kinetic energy of the unbound

electron, and V„=VA ~ and K„=E~~ „are diagonal elements of the Coulombic and exchange operators

V„(r,
I
R)= J dr(1)[P,(r(1)

I
R)]' U, P, (r(1) I R) (3.28)

K«(r„r& I
R)= (N —1—) I dr(1)I [/, (r(1)

I
R)]'H„P;(r(2)

I
R)]5(ri—r', ), (3.29)

=2 IC'i —4'

Zg8

I 4-R&g
I

Zg8

I Ci+R~a I

(3.30)
with 8 ~ R(——Mq /M~ ) and Rii ——R (Ms /M~ ).

The Srst term of (3.27) is descriptive of an unbound
electron interacting with an AB+ ion in the state
P„„(r(1)I

R). The exchange term arises from the indis-

tinguishability of the free electron from those that are
bound. According to (3.27) the wave function of the un-
bound electron will be very small at separations r for
which the effective potential energy is positive and
greater than A q /2m, ; when the orbital angular momen-
tum of this electron is large, the centrifugal barrier
SPA(k+1, )/, 2m, r prevents it from drawing near to the
ion. Indeed, because the other energy operators appear-
ing in (3.27) are short-ranged potentials and exchange in-
teractions, the potential energy of the unbound electron
is dominated for large values of A, b~ the centrifugal and
Coulombic terms. Therefore, P i„'' (r

I
R) will be small

whenever r is less than the critical value r' dekned by

A A(A+1) e A q

2m, r r'
By rearranging this we obtain for r the formula"

respectively. [Recall that dr(l }=dr2dr~ dr&. ] In
these expressions

i=(A, ,q, ),
(r(m)

I
R)=(r(m)

I AlqiRm ),

r =q 'I —(a q) '+[(a q) +A(A, +1)]'~ I . (3.32)

For modest values of the electronic energy, e.g.,
A q /2m, 50.5 eV, r' is greater than molecular dimen-
sions, e.g., 3 A, even for values of A, as small as 3. This
means that the wave function P i„(r I

R) will be large(AI&1)

in the immediate vicinity of the ion only if the value of I,
is very small, namely, 0, 1, and 2. Conclusions that can
be drawn from this observation will be discussed in Sec.
V.

The boundary condition (3.15), the normalization con-
dition (3.17), and the requirement of regularity at the ori-
gin combine with Eqs. (3.27) to fully specify the continu-
um orbitals of the frozen-core model. The "incoming
wave" included in the asymptotic boundary condition
(3.5) is determined in the course of solving the wave equa-
tion (3.27). ' This term will involve a number of spheri-
cal harmonics, I'i„(r)R, because the angular momentum

of an electron subject to the noncentral field of the dia-
tomic ion is not a constant of the motion. A procedure
for generating solutions to equations of the type (3.27)
has been given (in the exchange-free approximation) by
Itikawa, ' and he and his collaborators have performed a
number of calculations using this scheme. ' ' A
Coulomb wave is the solution of the equation obtained
from (3.27) by discarding the exchange operator K~Al q~

and replacing VA with the Coulombic potentialIqi

characteristic of a single point charge. This is the ap-
proximation which has been used in virtually a11 calcula-
tions of the rates of chemi-ionization processes.

Combining the three equations (3.11), (3.12), and (3.13),
we obtain the formula
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I
AcqR)) = f dr

I
r, R)) A [P„(r(m) I

R)P i„'' (r
I
R)]

f dgIg'' R)) A [P~ q
(g(m)

I Rz)gq)„(g I
Rz)]

=& f «. f dern) I4(m»r & IR&6, (4(m) IRz)4,:„'"'(r (3.33)

with

«(m)IR)= y &SrMsr ,'M, —ISMs&
SJ,

&&0~...(«m)
I R»()r2)~, (~m»

(3.34)

and where X„„)~((r ~ ) = ((T~ I —,'M, m ) denotes the spin

wave function of the unbound electron. Here and else-
~here in this paper we suppress the spin coordinates of
bound electrons. In its first appearance in (3.33), R is
"conjugate"' to the nuclear angular momentum, in the
second it is conjugate to K, and in the third it is conju-
gate to K(m).

It is worthy of notice that ionic (N —1)-electron opera-
tors such as L(m), Sr(m), and Sr, (m) can be imbedded in
the space of operators for X equivalent electrons. The
quantum numbers of the frozen-core kets

I AcqR)) then
can be interpreted as pertaining to the bound electrons
but not to any particular set of them such as
1,2, . . . , N —1. Thus, for example, A'Ar can be identified
as the eigenvalue of

I
AcqR)) associated with the N-

electron operator

R Lr ——R g 8(m)L(m)8(m) . (3.35)

This is defined in terms of projectors,

8(m)= g f dq f dR
I
AcqRm ))((AcqRm

I

onto the set of frozen-core continuum states

I
AcqRm » =

I Arqr Rm »
I qadi(Arqr )Rm

(3.36)

=N» f dg f dR
I

g', R))D~~(R)A

&&[yr„, (pm)
I
Rz)y, „„'"(g I Rz)],

(3.38)

which is directly comparable to (3.7).

with electron m unbound.
Our Snal task is to construct the continuum analog of

the bound-state kets
I
EMAnR )). These are related to

the
I AcqR)) by the formula

I KMAcqR))=N» f dRD~sr(R)
I
AcqR)) . (3.37)

With the help of (3.33) this can be rewritten in a form

I
KMAcqR ))

IV. FGRMAI. SCATTERING THEORY

Now that the necessary preliminaries have been estab-
lished we can proceed with the construction of a scatter-
ing theory of associative ionization. This section deals
mainly with formal matters; the construction of detailed,
explicit formulas is deferred to Sec. V.

The fundamental object occurring in the theory of AI
is the transition matrix element (f I

T
I

i ), an explicit
integral representation of which is given by the expres-
sion

&f I
T Ii &=«+ (fq) I PHQ

I
P'(ik) » . (4.1)

(Hpr ET) I
4—(fq))) =0, (Hrr =PHP), (4.3)

respectively. Whenever it results in no confusion the
symbols

I
)Ir)) and

I
4)) will be used in place of

I)p+(ik))) and I4 (fq))). In (4.1)-(4.3) the + ( —)

superscript refers to the conventional outgoing (incom-
ing) boundary condition of scattering theory. The com-
posites i and f refer to the internal quantum numbers of
the initial and Snal states, respectively, while k and q are
the initial and Snal free-particle wave vectors. P = gz C
and Q—:g P are the projection operators introduced in
Sec. III; we recall that

PQ=QP=O, P =P, Q =O„P+Q—:1, (4.4)

and that the sums over p and q are limited to
configurations judged to be of importance to the particu-
lar collisional event under consideration.

The kets
I
)Ir+(ik))) and

I
4 (fq))) soon will be

more fully characterized. Indeed, much of the analysis
will be concerned with how to construct Q I%')) and

I 4)), given the basis sets of Sec. III. The formal theory
consists, in essence, of selecting an appropriate
projection-operator scheme and then solving the associat-
ed equations. The particular scheme that we adopt asso-
ciates an effective Hamiltonian operator with each chan-
nel. Inspection of these operators allows a number of
qualitative predictions to be made without involvement
in detailed numerical calculations.

The basic equations of the projection-operator formal-
ism are obtained by applying Q and P to (4.2). In terms
of the conventional notation, QHQ=H&&, etc., these

This formula can be derived by the same methods used to
obtain Eq. XIX.120 of Ref. 11. The kets

I
4+(ik) )) and

(fq) )) appearing in (4.1) are solutions of the equa-
tions

(H Er) I
0'+(lk—)))=0, [H:(P+Q)H—(P+Q)]

(4.2)

and
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equations are

(Hgg E—T)Q (
(p»= H—gpP (

ql»,

(H„—E,)P
i
e»= —H, Q i e» .

(4.5)

(m, , —E, )
~

y&& =0. (4.17)

with 6+=P;(ET %—,, +is) 'P;. The ket
~

g+(ik)&&
:—

~
g» (note our use of a lower case psi} appearing here

is a solution of the equation

The solution of the second of (4.5) is given by the formula

P
(
ql» =Gp+HpgQ (

q(»,
wherein

(4.6)

Gp+ =(Er Hpp—+is) ', a~0+ . (4.7)

This solution satisfies the asymptotic boundary condition
required of any inelastic channel, namely, that it consist
exclusively of outgoing waves. By inserting the result
(4.6) into the first of (4.5), we obtain the equation

(a~ —E,)Q
~

q && =0,
with

(4.8)

Q i
e»=p,

i
q »+N,

i
q »,

with N, defined by the equation

N, =Q P;, —

(4.10)

(4.11)

we obtain (in an obvious notation} the coupled equations

Hqq+—Hqp Gp+Hpq . (4.9)

(4.8) is the governing equation for the projection of
~

q(&&

onto the Q subspace. The operators contained in f1~
account for coupling between the bound and continuum
electronic states. Because of this coupling the operator

is non-Hermitian and there is an associated,
collision-induced liow of amplitude from Q space to P
space.

To obtain equations describing the motion in a particu-
lar channel the projection-operator method must be ap-
plied again, this time to (4.8). Thus, by introducing the
decomposition

Hff + g g HfpgpqHqf ET CI ~

(I (fq) && =0
u(~f) e(&f)

(4.18)

wltll Hpq CpHCq& HIq Hp{I)qp HD Hp(I)p(I)p and

g =C [NI(Ez. H is)N&—] —'C (4.19)

Equations (4.14) and (4.16) provide the desired formal
prescription for determining the motion in each bound
channel —expressed here in terms of the motion in the
designated initial channel i. Several features of these re-
sults deserve comment. The operator %,, is an effective
Hamiltonian specific to a single, bound electronic state i
that is coupled to a collection of continuum states (those
of P space). The other operators, such as %F, 6+„%„,,
are contributions due to couplings between different
bound states. Some of the strength of these couplings is
attributable exclusively to the bound states but a part
pertains to the continuum, cf. (4.15) and the definition
(4.9). This projection-operator scheme is convenient for
it allows us to handle the (possibly strong) bound-
continuum coupling in a formally exact fashion. It also
produces compact expressions for the presumably small
corrections due to bound-bound transitions.

We now shift our attention to (4.3) and the associated
electronic continuum final state. The procedure parallels
that just used in our analysis of the bound channels, We
denote by p(f) the value of P =(Alql) connected with
the selected final state f. The corresponding projection
operator is C (f) Cf and its orthogonal complement
within the space of continuum states is N& —P —CI. T—he
equation satisfied by C& ~

4 (fq) && can be obtained from
(4.3). It is found to be

(A';; E)P;
~

4&&=—%; N; ((I(&&, —

(%„„E,)N, [(P»—= &„,P, [
q(»—.

From these it follows that

(~(~ —ET+ X 2 ~;m Gmn~. ; )P;
I

q'&& =o
m(~i) n(~i)

P, ~
e&&= y 6,{m„P,

~
e&&, J~

I(~i)

with

(4.12)

(4.14)

The notationp&f is an abbreviation for p&P (f).
The solution of (4.18) is given by the formula

Cf I
@ (fq)»

1 —gI X X HIpgpqHqy 'l0 (fq}»,
p(&f) q(~f)

(4.20)

with gI [ET HII —i E] ' ——denot—ing the final-state
propagator. The frozen-core scattering state

~ P (fq) &&

(note that this is indicated by a lower case symbol) is a
solution of the equation

6+„=P [N; (Er %&&+ie}N, ] 'P—„. (4.15) (HII ET)
~

(I') (fq)&&=—0, (4.21)

The formal solution to (4.13) is

P, I
q+(ik)»

= 1-6 X X ~;,GI); -'Iy (k)&&,
j (~i) l(~i)

which satisfies the usual "collapsing-wave" boundary
condition.

The remaining Projections, Cp ~

4 (fq) && with

p QP (f},are given by the expressions

Cp ~
@ (fq)&&= g g~H ICI ~4 (fq)&& . (422)

q(&f)
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&f I
T I i &=«@ (fq) IPHQ I

P+(ik)»

=yy&(c Ic,Hp, Ie». (4.23)

The two formulas (4.20) and (4.22) relate the dynamics in

P space to that of the single final state
I P (fq) ».

%e now can write detailed expressions for the transi-
tion matrix elements. The results of the previous para-
graphs enable us to express each transition matrix ele-
ment in a form that explicitly illustrates the various path-
ways by which the designated initial and 6nal states are
connected. From (4.1), (3.21), and (3.22) it follows that &f I

T I i &= & &f
I
T.

I

i &

a=1
(4.24)

with

Equations (4.14) and (4.22) now can be used to eliminate
from this expression all components of

I
4)) and

I
@))

except those corresponding to the designated pair of ini-
tial and final channels. The result of these manipulations
can be written in the form

&y I T, I
i & = «e

I cIHP, I
e »,

(f I T2 I
i ) = g g (( i'

I C~H~, G,i &„P, I
+ )),

j(+i) I(~i)

(f I
T'3

I
i)= g g ((4I CIHI g+H„P,

I
+)),

p(&f) q(~f)

&I I T, Ii&= y„y„y. y «c IC,H„g,', H„G...~„P, Ie&&.
j(~i) I(~i) p(@f) q(~f)

(4.25a)

(4.25b)

(4.25c)

(4.25d)

with

&f I
T

I
~'&=&&(t (fq) I

q.I; I
t(+(ik))), (4.26)

These formulas involve only the two kets P; I%')) and

Cg I
4)), which are solutions of (4.13) and (4.18), respec-

tively. It should be noted that (f I Tz Ii ) depends
linearly on the operators &i;, which take explicit account
of Coriolis couplings between the selected initial state
and other bound electronic states. The operators Hfp ap-
pearing in (f I Ti

I
i ) incorporate similar corrections to

the frozen-core approximation.
The final objective of this section is to display the

dependence of the transition matrix on Coriolis (%hi; ) and
final-state (H .) interactions in a systematic, order-by-
order format. To accomplish this we combine (4.16),
(4.20), and (4.24) to obtain the formula

+gi g Hirgr Hrq gq + ' ' '

r(~p, q)

(4.30)

Tfi Hfi

Hgpgp Hp, ,(2,0} +

p(~f)
(1,1)1 f/

—g Hfpgp JVj[
j(&i)

(4.31)

this formally exact expression can be written as an or-
dered sum of terms, vf' ', each with two superscripts, the
first indicating the number of factors of H~q, and the
second indicating the number of %ik. The first few of
these are

fs iqHqfgf f
p(~f) q(~f)

X '1 —G,+ g g ~. G.+yf.
j(&i) l(&i}

(4.27)

I' + ~ fPgP Pl l l'
p(&f) j(&i)

~f~~ ~ fry pfgf Hf XHpqgq H'q

p(&f) q«f)

if' ——Hf[ + g g Hf G j&Ij.
j (~i) l(@i)

+ & & H~.gwHq
p(&f) q«f)

+& &
j(&i)1(~i)p(~f) q{~f)

By using the identities

G I
——6,.iG.+ G+% i Gi+(1 —6,1 )—

+Gl' g ~lkGk+~ki Gi++
, k(~j, i)

(4.28)

(4.29)

Associated with the ~f',"are the transition matrix ele-
ments Tf,"."de6ned by

T',"'=«((t (fq) I

' 'I 1(+( k)» . (4.32)

The objects Tf,"."are straightforward to compute for
small values of the indices r and s. Thus, we have a direct
perturbative procedure for assessing the importance of
polarization and Coriolis couplings. Many steps in the
calculation of these contributions to the transition matrix
can be performed analytically, using the basis sets intro-
duced in Sec. II. It remains, however, to connect

I i)l))
and

I qI )) with those basis sets. This is the first item at-
tended to in Sec. V. The result is then used to produce a
quite simple formula for Tf,. ' ', the "main" contribution
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to the scattering amplitude, as well as somewhat more
complicated formulas for T&!""and T&i 0'.

Finally, it should be noted that the operator ~f,. trans-
forms as a scalar and is diagonal in the total-electronic-
spin quantum numbers S and M& as well as in the total
electronic parity (provided that the last can be considered
a good quantum number). These conclusions follow from
the observation that wf, is an operator constructed from
components, each of which commutes with D(apy), S,
S„and (in homonuclear systems) the electronic parity
operator. These selection rules are equivalent to the
physical requirements that the total orbital angular
momentum, the total electronic spin, and the electronic
parity (if any) be constants of the motion.

V. THE TRANSITION MATRIX

In this section, we obtain explicit formulas for three of
ihe transition matrix contributions T&,"". The 6rst of
these, Tf," ', is the "primary contributor" to which virtu-
ally all previous theories have been devoted. The two
others, T& and T&, are 6rst-order corrections due to
couplings between the prescribed initial and final elec-
tronic states and other bound and continuum states. The
computation of higher-order terms in these couplings be-
comes progressively more complicated but involves noth-
in fundamentally different. The calculation of the

Tf,"'s is simplified by using the total angular momentum
basis sets of Sec. II. Therefore, we begin this section by
establishing the connections between the two objects

~
i'+(ik))) and

~ P (fq))) and the angular momentum
eigenkets of Sec. II.

A. The entrance-channel het,
~
i'+�(i k) &&

This ket is a solution of the equation

(W, ,
—E„)~l(&)=0, W, , =H, , +H,,G„+H„, (5.l)

which satisfies a radiative, (+ ) boundary condition. We
shall obtain an expansion of

~
it()) in terms of kets

~

KMik )), labeled with the wave number k and the quan-
tum numbers K, M, and i = ( A; n; ). Each of these is a su-

perposition,

~
KMik )) = f dR RFx~; ( k, R )

~

KMiR &&

0

=~ f dg f dR ~g, R&&

X((),.(g
~

R"*)], (5 2)

of the previously de6ned kets
~

EMiR )) —=
~

KM A; n; R )),
cf. (3.7), and each satisfies the equation

[&,, —E(k)]
~

EMik &&=0, (5.3)

with E(k)=Pi k /2p. That %;; has an eigenket of this
form is an immediate consequence of the scalar character
of this operator.

The radial amplitude Fx~, (k, R). is required to vanish
at the origin and to have the asymptotic form

Fair;(k, R) —(2/n. )'~ sin(kR +rior; ) . (5.&)

«KMik
~

K'M'i'k', f )) =5xir 5sr~5;;5(k —k'), (5.6)

and this, in turn, imposes the condition

f dR Fg i';(k, R)Fx~, (k', R;f)=5(k —k') (5.7)

on the inner product of Fxsr;(k, R) and the analogously
defined [cf. (5.2)] adjoint amplitude Fxl; (k', R;f ).

By substituting (5.2) into (5.3) one obtains the following
integrodifferential equations for the radial amplitudes:

The phase shift g&~; is complex valued, owing to the
non-Hermiticity of &,, Indeed, eigenkets of this opera-
tor corresponding to different values of k need not even
be orthogonal; one only can assert that

~
KMik )) will be

"bi-orthogonal" to the "adjoint kets"
~

EMik', t )) which
satisfy the equation

[&t —E(k')]
~

EMik', 4)) =0 . (5 5)

Here %;;=H;;+H;pGp Hp signifies the adjoint of the
operator %,, The condition of bi-orthogonality implies
that

fi d iri

i [K(E+I)—A;]—[E(k)—E;(R)]
2p dR 2pR

g2 J2
iR ' iR —(iR

~

a'„( i'R& —2(iR [ a„~ iR&
2p &2g 2 " dR

Fx~;(k, R)

dR'RR'«KMiR
~

F+
~
KMiR')&Fxfg, (k,R'), (5.8)

with

«EMiR
~

F+
~

EMiR' )&

=Nx f dk f dR'D„'iir(R) f dg f dg'P;(g
~

Rz)'«g, ~RF+
)
g', R&)P, (g'

~

R'z) D„iver(k') . (5.9)
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Here ~iR) =
~
A;n, R), E, (R)=EA „(R), Lii=Li

—(R L), and P;(g'~Rz)=&g~iR). The symbol F+
denotes the scalar operator H&G++Hz&. These equa-
tions (5.8) are closely analogous to (but distinctly different
from) the equations obtained by Bieniek, who based his
analysis on the rigid-rotor, nuclear angular momentum
representation instead of the total orbital angular
momentum representation used here.

Because the kinetic energy operator Ps /2p
= —(A /2p)V„maps Q space onto itself (when Q is con-
structed according to the prescription given in Sec. III),
the two Hamiltonians which appear explicitly in
F+ =QHPG~+HQ may be replaced with electronic Ham-
iltonians H,]. The electronic matrix element which con-
tributes to the integral operator & KMiR

~

F+
~

EMiR' &&

then can be written in the more explicit form

f d C I dr&(4 IRz)'«0 R IF'
I

O' R'»0 (f IR'»= X I':;, (R)« AcqR
I G: I

A'c'q'R'»VA', „(R'»
P~ Jp

wherein

VA, , (R)=&AcqR (H„~iR)
(Aqj

=N'i I dg[P„, ,(g(l)
i
Rz)$ „''(g',

i
Rz)]'H„P;(g'„g(1) iRz) .

(5.10)

(5.11)

This electronic matrix element can differ from zero only
if A; =Ai+p, , S;=S, Ms, ——Ms, and (for nuclei of equal
charge) if the electronic parities of the bound and contin-
uum states are the same.

It is virtually impossible to perform an exact evalua-

tion of the Green function

« AcqR
~

Gp+
(
A'c'q'R'))

and even if an explicit, nonlocal approximation were
available the prospect of solving the corresponding set of
integrodifferential equations (5.8) would not be appealing.
Thus, it is usual (but see Ref. 14) to replace this Green
function with the "local approximation, " ' '

im5„A5„5—(q —q')5(R —R')5( ss s(R)) .

Here e =A'2qi/2m, is the kinetic energy of the ejected
electron and s(R):E, (R) E„„—(R) the —vertical ioniza-I
tion energy speci6c to the internuclear separation R. The
right-hand side of (5.8) then reduces to the product of
Fxsr; (k, R ) and an imaginary-valued potential
(i/2)I', , (R) with

1„(R)=27ry I dq
~

V „;(R)~'5(s, —s(R)),

~

y+(ik) )) = y a„~,(k)
~
KMik && . (5.13)

which is proportional to the golden rule formula for the
8-dependent rate of autoionization of the initial electron-
ic state. %'ith this approximation the task of computing
the radial amplitudes Falsi;(k, R) becomes quite manage-
able.

Now that the procedure for generating the kets
~

KMik )) has been estabhshed, we can proceed to the ex-
pansion

B. The Snal-state continuum ket,
~ P (f,q }))

Next, we turn our attention to the frozen-core elec-
tronic scattering states

~ P (f,q) )) of (4.21) and their ex-
pansions in terms of the kets

~
KMAcqR )) of Sec. III.

The first step is to introduce electronic states

~
AcqR —)), which are eigenkets of HFC satisfying col-

lapsing wave, "minus ( —)" boundary conditions. These
are related to the

~
AcqR)) by the well-known expan-

sion

~
AiqiqR —)) = g [Fi',„(q)Re "i ] ~

AcqR)),

and are normalized in the manner

« A,'q,'q'R' —
~
A, q, qR —&)

(5.15)

=5„, 5, 5(R—R')[q 5(q —q')] . (5.16)

In analogy with (3.37) we now form kets

~
KiMiAiqiqR —)) =N~ I dRDg'I (R)

&&
I
A.qiqR

which are eigenstates not only of HFC but of Kl, z-KI,
and R I.z as well. The frozen-core scattering states then
can be dined by any of the equivalent forms,

The coefficients assr(k} are evaluated in the standard
way, ' that is, by requiring that the heavy-particle wave
function «iR

~
f+(ik))) be the sum of the plane wave

exp(ik R) and outgoing, expanding waves. The result of
a short computation is the formula

axiu;(k)=(8n )' k 'ADA si( —k)e " ' . (5.14)



(fq)»= I dR RP» ~ „(R)(KiMIAiqiqR —
&&

dan KA-8 %EDAM R ykp qke PE ACqR
A, ,p

= I dg I dR
~ f,R&&A R 'P» A „(RW» D~'sr (R}P~ q

(g'(m) ~Rz)

x & [1'~„(q)-e '"i'ld, i.„'
' (0

A.i p

(5.18)

The last of these three formulas expresses the scattering state as the antisymmetrized product of two factors, the first of
which can be identified as the wave function of the product diatomic ion (aside from its inclusion [cf. (3.12)] of the N-
electron spin state) and the second of which is the wave function of an unbound electron with momentum fiq Fro. m
(5.16) and (5.17) it follows that

«P (f'q') ~P (fq)&&=5»,» 5M, 5, 5, [q'5(q —q')] I dR P» A „.(R}P«,(R) .

Using the expression (5.18) for
~ P (fq) && and the definition (3.19) for C&

—=C i&i =—C~, we find that

(CgHCg —ET)
~ P (fq)&&= f dR&» DA'si (R)R 'g[Fi',„(q)„-e "'"i ]

A, ,p

Aq
I Ai gl ~@gR & D A q + —ET2'~

1

+ g f dq'
~
A, q, x'I 'q R &s,,,!",, P» „„(R),

gl I
cq cq I Iv

ip

with

(5.19)

(5.20)

fii di A' ~l(1)
D, = — + [Z,(Z, +iI —~,'j+Z'„„(Z)+ IRi IRi) —&SRi ~a'„~~IR»

2p dR 2pR ' ' 2p fiR

—2&IR1( a„(IRi & „„
2

a,",,,",", = —
& q'X'p, '(A, q, )Rl

~

a„'
(

qadi(A,

q, )R 1 &+2 & q'Z'p'(A, q, )Ri
~
a„~

qadi(A,

q, )R 1 &

(5.21)

X &IR~~„~IR&+ (5.22}

and where

&IR1 ~f ~

IR1&=&AliilR1 [f(g(1))
~
AliiIR1& .

(5.23)

The derivation of this result requires a use of the identity
K —L=K(m) —L(m) and of Fq. (3.25), recognizing that

CfH ]Cf is a pari of H„c. Ii also depends critically upon
the defining formulas [(3.11)—(3.13)] and orthonormahty
conditions satis6ed by the frozen-core continuum kets.

If the one-electron continuum orbitals were indepen-
dent of the internuclear separation. R, as they are in the
commonly used single-center Coulomb-wave approxima-

[AIqI )
tion, ' ' the radial Born-Oppenheimer terms 8, q,'
would vanish identically. We see from (5.20) that when
these presumably small terms are totally neglected, the
equation

(CfHCf Er) j p (fq)»=0

is satisfied by (5.18) prouided that the nuclear wave func-
tions P» „(R)are square-integrable solutions of the or-

IAIv

dinary difFerential equation

(5.24)

which vanish at the origin and that the total energy is the
sum, ET——fi q /2m, +EA'„, of the energy of the free

electron and that of the product ion. These conditions, in
combination with (5.20)—(5.22), establish the physical
signi6cance of the frozen-core scattering ket

~ P (fq) &&.

Because of the Hermiticity of the operator DA the ra-
AI qI

dial eigenfunctions can be orthonormalized according to
the prescription [cf. (5.19)]
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j"dR e„*,„,(Ry„, „(R)=|'„.„. (5.25) the expressions (5.18) and use the identities (see Appendix
C of Ref. 11)

Our final objective here is to obtain an expansion of
(fq) )) in terms of kets analogous to the

~

KMik ))
of (5.2). To reach this goal we begin with the second of

l

i,„(q)k——g Fr'.„(q)D„„(R), Fr.„(q):—I r.„(q), -(5.26}

K»
Dqq(R)DA I (R) g (2K+1)( 1) ( 1)

» I p

These manipulations lead directly to the formula

E A, E»
—p —A» g M» —q —M» I +A» &+~rD (R} . (5.27)

(fq))) —f dR RPx A (R)Nx g g [I'~~„(q)e "j ]C(KrMrArkP;KrI}
~
K,Mr+7/, Ai+P, cqR ))

K, gk, ,p

with
~

KMAcqR )) defined by (3.38) and where

(5.28)

C(K,M, A, Ap;Kq) =N '(2K+-1)( —1) '
( —1}

p ~» -~»-V (5.29)

The expression (5.28) can be written in the desired, alternative form

(fq}»= g g I'x„(q)C(KiMrArkp: Krl)
~

K Mr+rl Ar+p Krcq && (5.30}

with
~
K,Mr +r), Ar +p, Krcq )) the analog of

~

KMik )), cf. (5.2), defined by

) K, Mr+dpI, Ar+p, cq)) = f dR RPx A „(R)(Nx e ""i
) K,Mr+rI, Ar+Ir, , cqR )) )

R,R R '
~A 8 N~e "i D~ +„~+„R

& ~ [(t'A q (P~)
I Rx)((t,i,„'

' (4 (5.31)

C. Formula for Tf[", "
According to (4.31) and (4.32) the primary transition matrix element Tf,

' ' is given by the formula

TfI"=«y-(fq) ~PHQ ~y+(il)&&. (5.32)

It has been mentioned previously, in connection with the operator F of (5.9) and (5.10), that the projection Q is so
defined that PHQ =PH„Q. By using this fact and the expansions (5.13) and (5.30), we are led from (5.32) to the expres-
sion

Tf," ' gg ax~——r(k)Frq(q)C(KrMiAiAIr, ;K'rl)((K', Mr+rt, Ar+p, cq
~
H, i ~

KMik )) .
K,M, A, ,p E'q

(5.33)

Because H, ~
is a scalar operator, the matrix elements appearing here are different from zero only if E =K and

M =M»+g.
At this point it is convenient to select a laboratory frame with its z axis coincident with the direction k, in which

case

(8 3}l/2k —iN g ( 1)Ke' ir Mi (5.34)

Then, by using (3.7), (5.31), and the selection rule A, =Ar+p of H, i, we are able to rewrite (5.33) in the more explicit
form

Tf," ' ——(8n )' k ' pe Nrr[( —1) e ' ]C(Kr,Mr, Ar, A, , A; Ar, K, —A; —Mr}—
K, A,

&&[I i., —A. (sqr) e —i ) J dR Px, A, „(R}Ip,q, , (R)Fx A;(k, R), (5.35)
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with VA,q;(R) denoting the electronic matrix element
defined by (5.11).

The expression (5.35) is similar in structure to formulas
for the AI transition matrix element derived by Miller
et al. and Bieniek, but it is different owing to the
choice of basis sets employed here. For example, because
we treat the angular momenta without approximation,
the formula (5.35) is exact —to the prescribed, zero order
in the Coriolis couplings. In contrast to this, the theory
of Ref. 3 "neglects the coupling of the angular momenta
of the bound electronic states with that of the free parti-
cles." Because of this Bieniek found it necessary to re-
strict his analysis to the case of @=A;—AI ——0. This
same problem also was encountered by Hickman and
Morgner. '

The formula (5.35) can be simplified further, for as we
now shall show, the sums over E and A, extend over only
a few terms. This demonstration hinges upon the obser-
vation that when the energy of the ejected electron is less
than 0.5 eV the values of the matrix elements V„,q, (R)
are relatively small for A, in excess of 2 or 3. To see why
this is so, we recall from Sec. III that for A, » 3 the ampli-

tude of the continuum orbital (() i„'' (g' IRz) is very
small for

I g I

& 3 A.. Since this is about the same as the
range of the bound electronic wave function (();(g I Rz),
there will be little overlap between the initial- and final-
state wave functions for A, ~ 3 and so the associated ma-
trix elements will be correspondingly small.

From this observation and the formula (5.29) for
C(EIMiArAp;Eq)), we see that the ranges of E and A. in
(5.35) are limited by the two constraints

and

I
Er —~

I
&E &

I
Es+~ I

(5.36a)

(5.36b)

Furthermore, because
I i) I

=—
I A, +Mi I

& A, [cf. the

spherical harmonic appearing in (5.35)], the second of
these constraints imphes that

I MI I
-

I
A;+3

I
. (5.37)

D. T-matrix and cross-section selection rules

%e turn now to a discussion of several selection rules
associated with AI scattering. First, it is clear that the
initial and final states connected by ~&

' must have iden-
tical total-electronic-spin quantum numbers. Second, the
single-state and interference cross sections'

"2
Pq d T(I o) T~ ~o)+

fi fJPl~
(5.38)

are proportional to 5„A and to 5, with n.; denotingi' j
the total electronic parity of the initial state (when this is
a good quantum number). This statement can be verified

by evaluating the integral over q appearing in (5.38), with
the help of (5.35). The result of the integration is a sum
of terms each proportional to the product of

These conclusions, (5.36) and (5.37), have experimentally
verifiable consequences. First of all, since the relevant
values of

I A; I
are invariably 0, 1, or 2, the projection

quantum number
I
MI I

of the product diatomic ion
rarely will exceed 3 or 4. This number is to be compared
with Ei, which according to (5.36) differs from E by no
more than 3. Finally, since it is expected that the number
of contributing nuclear partial waves will be rather large
(25 or so for thermal Na-Na collisions), the nman values
of E and EI should fall within the range of 15-20. From
these considerations we conclude that when the ejected
electrons are not too energetic the angular momenta of
the product diatomic ions will be very nearly perpendicu-
lar to the incident k axis; this phenomenon has in fact
been observed. experimentally. '

f"«&» ~ .(R)V.,q„(R)F. .„(R) f dR P» „„(R)V„,q J(R)F» „~(R)

f dq I'~. p ~ (q)I'i. , -~ -sq (q)=(ii., i, 4.,~ .

The A; =AJ "selection rule" follows from the second of
these, while the "e rule" can be deduced from the obser-
vation that V~, k(R) is proportional to the Kronecker
delta

5(n.i( —1),n'k ),
with ml the electronic parity of the free ion, ( —1) that
of the unbound electron, and mk that of an X-electron
bound state.

These selection rules have been proved here for the
part&cular T-matnx elements T&;* and T&

' but they
are valid in general. The reason for this is that any of the
quantities TI,"could be written in the form (5.33) but

with H, &
replaced with a different, more complicated

operator. However, in every case this operator would be
a scalar and it would be diagonal in the quantum num-
bers associated with electronic spin and parity. There-
fore, the selection rules may be summarized as follows:

« fql T
I

k& fis, s& (5.39)

and

f dq« fql T Iik»« fql T
I
Jk» "(i~„A (i.„

(5.40)
with S and Mz denoting the total electronic spin quan-
tum numbers. The only restriction upon the validity of
these is our assumption that spin-orbit coupling can be
neglected.

There are two additional and weaker selection rules
which deserve mention. The first of these is a conse-
quence of the selection rule, p=AI —A;, satisfied by the
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electronic-matrix element V~, , (R) and to which the
transition matrix element T&," ' is therefore subject. This
rule dictates that when the initial electronic state and
that of the product ion are both X states, the axial projec-
tion of the free-electron orbital angular momentum must
be equal to zero. Let us now denote by o; the quantum
number (equal to kl) associated with re6ection of the
initial-state electronic wave function in a plane contain-
ing the internuclear axis. err is the analogously de6ned
quantum number of the electronic state of the product di-
atomic ion. Because the projection quantum number JM is
zero for X~X transitions, the refiection quantum num-

ber of the unbound electron equals unity. Then, because
the electronic Hamiltonian is invariant with respect to
this reliection operation, it follows that o, and oz must

equal one another and that consequently T&," 'a:5
From this we conclude that when A; =AJ =A& ——0, the
approximation to the AI cross section given by (5.38) will
differ from zero only if cr; =aj =or. To this approxima-
tion, collisions beginning in quasimolecular X states
cannot produce X+ diatomic ions. The axial symmetry
of the system is broken by the Coriolis forces that are in-
corporated within the contributions to the exact transi-
tion matrix associated with terms TI," with s & 0 and/or
rg l. Therefore, the selection rule just stated is valid
only to the extent that CorioHS corrections to the cross
section are of negligible magnitude.

The second of the two "weaker" selection rules can be
obtained by treating the heavy-particle motion semiclassi-
cally. This is appropriate when the collisions are
sufficiently energetic that the de Broglie wavelength asso-

I

ciated with the relative motion of the two atoms is much
less than atomic dimensions. Considerations of station-
ary phase then lead one to conclude that an ionizing (AI)
transition can occur only if there is one or more internu-
clear separations R ' for which

E;(R )=EA „(R')+iri q /2m, . (5.41)

E. Fpgggglg fog T& '

This contribution to the transition matrix is of first or-
der in the Coriolis couplings. It is given by the formula

T,", "= y «q-(jq) ~H, G,+~„~1(+(ik)&&,
j(~i)

(5.42)

with H/ G+%, =CIHQP (Ez+ —&JJ ) '&J; and

&J, HJ, +PJF——+P;, with F+ =QHPG~+PHQ and
Ez+ Ez +i E. ——As before [see comments immediately fol-
lowing (5.32)], the H operators appearing explicitly in
these two factors may be replaced with electronic energy
operators H„. Then using (3.21) and (3.33) we find that

Here A' q /2m, &0 is the energy of the ejected electron,
E, is that of the electronic initial state, and E~ „ is that

of the product ion. The familiar implication of this
Franck-Condon condition is that autoionization of the
colliding pair of atoms only can occur at internuclear
separations at which the BO energy curve of the (quasi)
bound electronic initial state lies embedded within the
continuum associated with the electronic configuration
AB++e

P~F+P; = R R' jR VA, j 8 AcqR Gz+ A'c'q'R' Vz., &. , E. ' iR' (5.43)

The local approximation [see remarks in connection with (5.12)] to this is given by the formula

P,F.P, = ,' f dR~jR&—&l„(R)&&R~,
with

I;(R)=2m g f dq V~,q ( R) VAq, (R) 5[ q
e—s(R)]=2m'(jR

~
H, ( p (JR) H(

~

iR) .
A, c

The objects e(R ) and p;(R) appearing in these formulas are defined by s(R ) =—,
' [E (R )+E (R )] EA „(R) and-

p;(R)= g f dq
~
Acq, R)5[a —s(R)](Acq, R

~

(5.44)

(5.45)

(5.46)

respectively. It follows from its definition that I'J, (R) can differ from zero only if both of the kets H„~ iR) and
H, & ~ jR) have projections onto the electronic continuum.

When %; and &" are replaced with the corresponding "local approximations" %'; '=H; —(i/2)I;. and.
'=H —(i/2)I ..."the formula (5.42) becomes

f dRQ f dq'((Acq'R
~ P (fq)))'V ~ (R)(E+—&'. ') 9f'~'((iR

~
f+(ik))) . (5.47)

j(&i] A, ,p

Using (5.13), (5.15), and (5.18) we can rewrite this in either of two equivalent forms

f dR[R 'Pg p ~(R)Nx D~'~ (R)]'(Alq~qR (H„~j R)[Ez+ %—,', '] 9f', 'f+(—ik
~

R)
j(~i)

—iE+f/A
dt e f dR[R 'Px „(R)Nx D„'~ (R)]'(AiqlqR —

~ H„~jR)e " [%,'; 'f+(ik
~
R)],

j(~i]
(5.48)
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wherein

y'(ik1a) —= « ia1@+(ik))&

= X "~,(k)[~ 'F-.~;«,~».D,', (R)]

(5.49)

denotes the wave function descriptive of the heavy-
particle motion in the channel associated with the initial
electronic state. The object

''Px ~ .(»NxD~'st «)

Thus, the "wave function" X;(0)=ffii; 'P+(ik1R) is the
product of an electronic i ~j transition operator and the
initial-state "wave function" g+. Each term of (5.47) is
the overlap between a propagated value of this function

X;(t)=exp[ i (—ET gled—j. ')t /A]X; (0)

and the unpropagated final-state wave function

Xf=[~ '&s ~.«)Nit D~'st «)]
)&(ja1H„1A,q,qa —) .

is, of course, the final-state heavy-particle wave function
and (Atqtqa —1H,i1 jR) is the matrix element con-
necting the electronic final state (consisting of a diatomic
ion and an ionized electron with momentum iilq) to the
bound electronic "intermediate" state

1 jR ). The second
of the expressions (5.48) is analogous to the formula de-
rived by Lee and Belier ' for the amplitude of a Raman
scattering event and it can be similarly interpreted.

The propagator consists of a "phase factor"
exp[ i (—Ez —H~, )t/A'] characteristic of the intermediate

j state and a "decay factor" exp[ I t—/2A"]. In the Lee-
Heller theory of Raman scattering the rate of decay of
the initial state is governed by a phenomenological
coefficient, whereas here it is given in terms of the R
dependent rate of autoionization I' "/2R.

To compute the action of%ii; ' we use the formula

Pti I 2

HD~tt(R)X„(g', Rz)=D„it + i [K(K+1)—A ]+ ~ +H, i Xp
2p 2pR 2pR

r

+DA+l, M
K

A, +(KA)
«+X~) +Di i, M

2pR

(KA)
(L X„")

2pR
(5.50)

Here, as in the Introduction, the mass-polarization term
llas been discarded. The quantities X+ are defined by
~y(KA) =[K(K +I)—A(A+I )]' and L + are the
ladder operators associated with the electronic orbital an-
gular momentum referred to the body (E) frame. From
(5.50) it can be shown that

(&JR141ta&+2&JR141ia&4)
t 2IM

LJ2

+ jR 2
——2mHel q, Hel iR

2p,R

+S, — a'„+ [K(K+1) A',]-.
2@ 2pR

&J~'[R 'Fits;(k, R)NxDxi, st(R)]
+E;(R) (5.52a)

&~test (k ~)

wherein

X 4. A +Htt~"'.
m =0,+1

(5.51)

and

(5.52b)
A, ~(KA;)H„'*„"'=—*,' &Ja1L, ', 1ia& .2'

Then choosing the z axis of the laboratory frame to lie in
the direction of k [cf. (5.34)] we find that

''Ix —A

Tf',""=(8~ )' k ' g g NttN» [(—1) e
' ' ]C(Kt,Mt, At, A,,A At;K, —A; Mi—)—

j(~i) K, A,

(5.53)
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There is a striking similarity between this and the for-

mula (5.35) for TI," '. Indeed, except for some (critical)
indicial alterations, the most noticeable distinction be-
tween the two is that the radial integrals of (5.53) are aug-

mented by the intermediate-state propagators
(Ez+ H—z' g'J )

' and the channel-mixing operators Hx( „'1'

Because the summation does not include the initial state
i, the operator Hz' g'' occurring in (5.53) consists only of

the radial BO operator

—(R /2p)( & jR l 8„ l

'R) +2& jR l 8„ l
'R) ~3„)

& JR l
Li/2pR —(l/2)2mH„p, ,H„ l

iR &

The more interesting Coriolis couplings are associated
with the terms Hx z J'.

F. The transition matrix contribution T&;

The computation of this quantity,

T/,'"= g « y-(Iq)
l HI, g+H„

l
y+(il ) )),

p(~f)
(5.54)

involves manipulations closely resembling those just de-
scribed in connection with T/,

"' Con.sequently, we sim-

ply report the result of our calculation, namely,

Because the same spherical harmonic with argument q
a pears in both (5.35) and (5.53), the integral

~

~

~

~

~

~

dq( TI," '+ T/,"')(T~~" '+ T/1" ')' is proportional to

5& ~ . A similar argument applies to the parities of the
f «J

two states
l
iR) and

l
jR). These specific observations

are examples of our general conclusion (5.40).

T(2„0) ( g~3)1/2k —i
f]

X g QNxNx [(—1) e ' ]C(KI,MI, AI, A, , A, AI', K, ——A, —Mi)(Yi ~ M (q)e ' 'i )'
I&r(&~I&a)

X g 5„„5,fdq'f dR
«p «p

$2q 2

E~—8, , —
2m,

m =0,%1

XFg ~, (k,R) . (5.55)

Here DA is the operator defined by (5.21) and the H'"'s are defined as follows:

(0) ~ ~ I 2
Li(1)

Hz', „, 5i.i5(q——'
q) —— (&I'Rl

l
8

l
IR1)+2&I'Rl

l 8„ l
IRl)B„)+ I'Rl IRl

2p 2pA

[2&IR1
l a„ l

IR1)&q'Xl.(A,q,')Rl
l a„ l

qzm(A, q, )Ri &]
2p

+ f dpi f dkkqi'. ,' (Ci I Rx)K„q, q
(Ci 421 Rx)Aqua. „'"(4 I

R"*) (s.s6a)

and

(+1) l

I

numerically and has no bearing on the T-matrix or
cross-section selection rules.

kg(KI Al )
&I'Rl

l
I.g(1)

l
IRI )

2pR

(5.56b)

Our previous conclusions about the cross-section (A and
parity) selection rules associated with the ap~proximate T
matrix T'!' '+T(!'" apply to T(!' '+T'!''+T(. ' ' asfi fi fi fi fi
well. The only approximation we used in progressing
from (5.54) to (5.55) was to neglect (in the propagator) the
same continuum-orbital 80 couplings as we did previous-
ly in obtaining (5.24). This should be of little significance

VI. CONCLUDING REMARKS

Associative ionization takes place in large measure
through the collision-induced interaction of bound and
continuum electronic con6gurations. Previous theories
of AI have concentrated solely on this contribution and
there is little reason to doubt the validity of numerical
computations based on these formalisms. However, the
issues that concern us are best treated by an alternative
approach. In particular, the discussion of selection rules
and the treatment of corrections to the "main" mecha-
nism of AI are both facilitated by introducing a
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"symmetric-top" basis in place of the more conventional
ngid rotor basis.

Our original motivation for modifying the existing
theories of AI was a desire to fully understand and, if
possible, to physically interpret the sum and selection
rules presented in Sec. V. These rules play a central role
in the analysis of polarization-dependent AI collision pro-
cesses and had only been demonstrated approximately
(and somewhat artificially) using a Bieniek-like theory.
The observation' that at least one of these rules depends
critically on the conservation of total orbital angular
momentum is sufficient to motivate the current approach.
However, other (initially unanticipated} advantages are
evident. The relative ease with which the above-
mentioned rules can be derived and the relative simplicity
of the final scattering amplitude formulas [cf. (5.35),
(5.53), and (5.55)] both have their origin in the use of a
symmetric top basis set (labeled by total angular momen-

tum quantum numbers), in combination with the physical
requirement that the transition operator be a scalar.

Insofar as the derivation of scattering amplitude for-
mulas is concerned, our goal has been to derive simple ex-
pressions for both the main contribution to AI and for
corrections to that contribution due to alternative mecha-
nisms for ionization. Here, the use of a projection-
operator formalism allows all of the wave functions ap-

pearing in our final results to be interpreted as eigenfunc-
tions of efFective, single-channel Hamiltonians. This per-
mits one to adopt the same physical intuition in interpret-
ing complex systems as has been used to understand
"two-state" (one bound plus continuum) systems. The
projection-operator formalism can be used to construct
simple expressions for AI scattering amplitudes, includ-

ing corrections due to Born-Oppenheimer and "Snal-
state" couplings. The corrections are only slightly more
difficul to evaluate numerically than the main (Bieniek-
like) contribution and this, in turn, is given by a rigorous
expression no more complicated than the approximations
previously reported. Two examples of these corrections
(T""and T' ' '} have been given in Sec. V. These are
the fLrst-order modi6cations to the AI scattering ampli-
tude due to Born-Oppenheimer and final-state couplings,
respectively. Thus, it is a straightforward matter, once
T"o' is known, to evaluate corrections due to Born-
Oppenheimer couplings and perhaps, more importantly,
due to the frozen-core approximation used to make the
free-electron wave function calculationally tractable.
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