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Relaxation of spins due to field inhomogeneities in gaseous samples
at low magnetic fields and low pressures
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%'e have developed a theory for the efkct of magnetic-field inhomogeneities on the spin relaxa-
tion of gases in cells with negligible relaxation at the walls. There is a characteristic pressure p* at
which the time ~z required for an atom to diffuse across the cell is equal to the time ~I required for
the spin to precess by one radian in the mean magnetic field. For "high pressures, "

p gyp*, the lon-

gitudinal spin-relaxation time Ti is inversely proportional to the pressure. This is the classic pres-
sure dependence discussed in the literature. The new results reported in this paper are that at "low

pressures, "
p ~~@,the pressure dependence changes and the longitudinal relaxation time becomes

directly proportional to the pressure; that is, motional narrowing occurs. %'e show that the trans-
verse relaxation time T2 will ordinarily be proportional to the pressure at both low and high pres-
sures, but with dilerent coeScients. There is also a small, pressure-dependent shift of the Larmor
frequency associated with the field inhomogeneity.

I. INTRODUCTION

For many years it has been known that inhomogeneous
magnetic Selds can contribute to the transverse and lon-
gitudinal relaxation rates of spin-polarized atoms in a
gas. This has been a particularly important phenomenon
for spin-polarized He gas, and in two early papers by
groups working on He the following remarkably simple
and widely quoted formula for the longitudinal spin-
relaxation rate was derived '

which contains the gas. In the case of a spherical ce11, R
would be the cell radius. As indicated in (2), we can also
think of the parameter QoR /D as the "relative pres-
sure, " that is, the ratio of the gas pressure p to the
characteristic pressure, p' =DoQO 'R for which the
parameter is unity. Here Do is the difrusion constant at
unit pressure, usually one atmosphere.

Equation (1) is a correct limiting expression for the
spin-relaxation rate when the gas pressure and magnetic
field are suSciently large that

Here D, the diffusion constant for the polarized spins, is
inversely proportional to the gas pressure. The mean
magnetic 6eld is assumed to lie along the z axis of a coor-
dinate system and have a magnitude Bo. The com-
ponents of the magnetic field along the x and y axes of
the coordinate system are 8, and 8», and their spatial
gradients

~
VB„~ and

~
VB» (

are assumed to be indepen-
dent of position in the cell. %e have omitted from the
right side of (1) a factor (1+Qzod) ' given in the original
papers' to account for the rotation of the spins at the
Larmor frequency Qo about 80 during the time interval

~, between gas kinetic collisions. This factor will be
essentially unity for the experimental conditions of in-
terest in this paper.

We shall show that the validity of (1) depends on the
magnitude of the parameter

which can be thought of as the ratio of a characteristic
diffusion time vd ——R /D, required for the spins to disuse
across the cell, to a characteristic precession time
~I ——Qo '. Here Qo ss the Larmor frequency of the spins
in a Beld Bo, and 8 is a characteristic length of the ce11

QoR

p' (3)

that is, when the precession time is short compared to the
diffusion time.

The criterion (3) is not satisfied, and (1) is not valid for
experiments at low pressures and low magnetic fields. In
fact, one often finds that the experiments are carried out
under conditions such that

(4)

For example, in recent experiments with nuclear-spin-
polarized isotopes of Xe carried out in our laboratory,
we had (in the rotating coordinate system) D =6 cm s
R =0.3 cm, Qo=3 s ', so that p/p =0.05. Experi-
ments at low pressure (4) have been reported by several
other groups. '

In this paper we obtain expressions for the relaxation
due to 6eld inhomogeneities which are valid for a large
range of the relative pressure, including both high pres-
sures (3) and low pressures (4). The basic results of this
work are summarized in Fig. 1.

We note that at high pressures (3) the longitudinal re-
laxation rate scales as
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FIG. 1. The longitudinal relaxation rate 1/T&, the transverse
relaxation rate 1/T2, and the frequency shift 500 due to
magnetic-field inhomogeneities. These are plotted as a function
of the relative pressure p/p of (2). The rates and the frequency
shift are computed from (57), (60), and (56) in units of the
characteristic rate yo ——( ( VQ„~ +

~
VQ, » ~

)8 /Qo, and we
have assumed an axially symmetric field inhomogeneity
VQ, =[2xz—xx —yy]Qi/R. The classic formula Eq. (1) is also
sketched and is seen to be a good approximation at high pres-
sures.

Q~ p+

T) Qo p
(5)

and at low pressures (4) the longitudinal relaxation rate
scales as

Qq

T) Qo p'
Here Q~ is an rms Larmor frequency associated with the
transverse inhomogeneous 6eld.

The expression for relaxation rates and frequency shifts
developed in this paper are based on perturbation theory,
which sets an upper limit on the relative pressure p/p'
for which the results are valid, and the use of the
difFusion equation, which sets a lower limit of the relative
pressure p/p' The limi. ts are found to be

8QO p Qo

v p Qy

One can understand the scaling of the relaxation rates
in the two regimes (5) and (6} from the following plausi-
bility arguments, which we will justify in the body of the
paper. Consider a longitudinal spin which is subject to a
fluctuating, transverse magnetic field with a Larmor fre-
quency ~ an.d a correlation time v. In a correlation time
~ the spin will precess in a random direction by an angle
58=m~~~1. On the average, a net precession angle of
one radian will accumulate after the spin has completed a
random walk in angle space with 58 steps. Since each
step takes a time v, the relaxation time will be on the or-

der of T, =r58 =co r ', so we expect the longitudi-
nal relaxation rate to scale in the mell-known way

1
COT.

T]
(8)

We consider a gas of atoms with intrinsic spin K,
confined to a sample cell. The ce11 is in a static magnetic
field B(r), which we shall assume has a slight dependence
on the position r of the spin within the cell. The spin
Hamiltonian of the atoms is

H =g,l,z.B(r)=a"'+a'" . (9)

To define an unperturbed part of the Hami1tonian H' '

and a perturbation H" ', we introduce a mean field

Bo=—IB(r)d V,1
0 y

At high pressures (3) the spins diiFuse so slowly
through the gas and they precess so rapidly that their
"natural" quantization axis is along the local direction of
the inhomogeneous magnetic field. In moving at a veloci-
ty v from one location to another between gas kinetic col-
lisions, the spins will perceive the field to be rotating at a
rate co=uQi/RQO. This rotation rate will act like the
Larmor frequency co of the randomly Auctuating pertur-
bation assumed in (8), and the correlation time will be the
time between gas kinetic collisions v. =A, /v. Substituting
these estimates of co and r into (8} we obtain the high-
pressure scaling law (5), since D =uk. /3.

At low pressures (4), the spins difFuse so rapidly
through the gas and they precess so slowly that their
"natural" quantization direction is the direction of the
mean magnetic field. The correlation time is therefore on
the order of the difFusion time ~=~& ——R /D and the
fluctuating Larmor frequency is co=Qi. Substituting
these estimates of co and r into (8) we obtain the low-
pressure scaling law (6).

Of course, the pressure dependence of the relaxation
rate due to field inhomogeneities is related to other line-
narrowing phenomena involving frequency-modulated os-
cillators. Examples are spin-exchange narrowing in
paramagnetic resonance, Dicke narrowing of Doppler-
broadened linewidths, or Mossbauer narrowing of y-ray
spectra. The phenomenon discussed here is perhaps most
closely related to the classical motional narrowing of nu-
clear magnetic resonance spectra in viscous liquids, and
our Fig. 1 is qualitatively the same as Fig. 4.2 of
Bloembergen's thesis. However, in classical motional
narrowing, the magnetic-field inhomogeneities are caused
by the nuclei of molecules separated by at most a few
molecular diameters from the spin of interest. The
magnetic-field inhomogeneities discussed here extend
through the entire macroscopic volume of the cell, and
the low-pressure re1axation rates depend exp1icitly on the
cell volume and geometrical shape. The motional nar-
rowing is an important practical reason to use 1ow pres-
sures and low magnetic fields in experiments designed to
exploit the long relaxation times of spin-polarized noble
gas nuclei.

II. THEORY
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H"'=XQ, K, (12)

where the unperturbed Larmor frequency is
Qo ——gx p&BO/fi. The Bohr magneton is ps and the g fac-
tor of the spin is gx. The eigenvectors

~
m } of the un-

perturbed Hamiltonian are given by

H' '
(

m }=AQom
(

m }, (13)

where Qo is the spatially-independent magnitude of Qo,
and m is the azimuthal quantum number, i.e.,

which is averaged over the volume V of the container.
We also introduce an inhomogeneous field

8) ——B(r)—Bo .

The mean value of the inhomogeneous field is zero. We
let Bo——xBO define a unit vector z along the z axis of our
coordinate system, and we define the unperturbed Hamil-
tonian H,' "=TrP, [H". ', P ]. . (21)

In the case considered here where the eigenpolarizations
are given by (19) one can readily show that

HLst t st =5L I A'Qt'(LM
~
L

~

LM) (22)

that is, the perturbation operator (15) assumes the form
H' "=iriQ, L in polarization space and the angular
momentum operator L has the conventional efFect on the
basis states

~
LM ) of (19), that is,

L~ ~
LM)=i/(L VM)(LCM+1)

~
L,M+1)

Then (17) becomes

[H' ', Tq~]=fiMQOTLst,

and thus A;=AL~ ——MQo. We may define matrix ele-
ments of the perturbation (15) between eigenpolarizations
by

K, im}=m im}.
The perturbation is

0'"=So, K,

(14)

(15)
p(r, t)= QP f, (r)e (23)

and L,
~

LM)=M
~
LM). We seek an exponentially de-

caying solution for p, i.e.,

where the Perturbed I.armor frequency Q, =gxP&B&/irt,
depends on the position r within the cell and has a mean
value of zero.

The evolution of the density matrix of the noble gas
atoms in the volume of the cell is given by

p 1
[H,p]+DV p, (16)

TrP; P =(i
~

j)=5;.
where Tr denotes a trace. For this problem it will be con-
venient to choose the eigenpolarizations to be irreducible
basis tensors~ wh1ch wc dc6ne 1n terms of thc c1gcnvcc-
tors of (14) by

~

LM):Ttst—
' 1/2

2L +1
2E+1 g ~

m +M }(m
~
C(KLK;m, M),

(19)

where C ( KLK; m, M ) is a Clebsch-Gordan coeIFicient. "

where D is the difFusion coeScient, and the square brack-
ets denote a commutator. We neglect collisional relaxa-
tion in the gas phase. The evolution equation (16) is valid
if conditions are such that one can neglect the rotation of
the spin during a mean free path of a difFusing atom, that
is, if QOA, /U « 1, and if the mean free path is much small-
er than the size R of the container, )L. «R.

We can always express the density matrix as a superpo-
sition of the eigenpolarizations P;:—~i) of the unper-
turbed Hamiltonian which are defined by

[H"',P, ]=X~,P, .

The eigenpolarizations can be chosen to be orthonormal,
that is

Substituting (23) into (16) and equating the coeificients of
the eigenpolarizations P; to zero, we find the set of equa-
tions

(DV +y iA;)f;—+ . gH, ',."fj=o,
tA

(24)

for all values of the polarization index i =I.M.
To find unique solutions of (24) it is necessary to speci-

fy boundary conditions at the surface of the cell. Since
we are considering cells with nearly nonrelaxing walls, we
will set the normal derivative of the density matrix equal
to zero at the cell surface

df;

Bn

where 8/Bn =n V and n is a unit vector, normal to the
cell wall and pointing out of the gas. Physically, (25)
amounts to neglecting any loss of atoms or of spin polar-
ization due to collisions with the cell walls.

We note that one can carry out analogous calculations
of the effects of magnetic field inhomogeneities for cells in
which the walls do cause spin relaxation. Then the
boundary condition (25) must be replaced by
Bf;/Bn = —g p; f , where p;, is th. e normal gradient
matrix of the wall. ' For walls with large, coherent
quadrupole interactions, ' the uncoupled operators

~

m }( n
~

are the appropriate basis polarizations rather
than the irreducible tensors (19).

Since we have assumed that the magnetic field is nearly
uniform, we mill regard the inhomogeneity as a small per-
turbation of a perfectly homogeneous magnetic 6eld
equal to Bo. Following the standard procedures of per-
turbation theory, we introduce an expansion parameter q
which we will eventually set equal to 1, and write 0, as
qQi.

We expand y and f; as a power series of i),
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x=x"'+~r'"+~'~"'+ . .

f f(0)+i}f( )) +i)2f(2)+

Substituting (26) and (27) into (24) and equating the
coefficients of g'(I =0, 1,2, . . . ), we get

(DV' —{A,+) {"}f,("=0,
(Dq2 1A +~(0))f(1)+~(1)f(0) j)(x)=

2x J)+)r2(x)

where the spherical Bessel junction jI is related to the
conventional cybndrical Bessel function J&+,&2 of half-
integer order by

T

(D+2 iA +y(0))f (2)+y())f{I)+ {2)f(0)

+In
ln (38)

and YI„ is a spherical harmonic. In order to satisfy the
boundary condition (25}, the spatial frequencies k)„must
be given by

We may regard (28), (29), etc., as inhomogeneous wave
equations, which, together with the boundary condition
(25), determine the mode amplitudes of various orders in
terms of mode amplitudes of lower orders.

We may write the zeroth-order diff'usion equation (28)

(f2+ k 2)f(0) () (31)

Given the boundary condition (25), Eq. (31) has solutions

only for certain real, nonnegative eigenvalues k, which

we denote by k with (2=0, 1,2, . . . , and with the mag-

nitude of k2 increasing with {z. We denote a solution of
(31) corresponding to eigenvalue k by P, i.e.,

(V +k )P =0, (33)

I d V' (t)'(}))i)——5 p, (34)

where the integral extends over elements d V' of the cell
volume V. %e will be particularly interested in the uni-
form mode, which is

Equations (31}and (25} ensure that the diffusion modes
{t) =f ' can be chosen to be orthonormal, i.e.,

where the positive dimensionless numbers x&„,
n =1,2, . . . define„ in order of increasing magnitude, the
zeros of the normal derivative [see (A7} of the Appendix,
where more details about the diffusion modes of a spheri-
cal cell are discussed]. The normalization coefficients N{„
are given by (AS}of the Appendix.

Thus for a spherical cell in a perfectly homogeneous
magnetic field, there is a solution to (23) of the form

(0)f;;.s =0 I'i,s (39)

for every combination of a diffusion index a, which
represents the spatial quantum numbers Ipn of the mode
(37), and a polarization index g which represents the mul-

tipole quantum numbers LM of the irreducible basis ten-
sors (19). The corresponding decay rates are given by
(32) as

(41)

(40)

The uniform mode (35) is an exceptional case of (37)
which corresponds to the vanishing spatial frequency
(36}.

Let us consider the higher-order corrections to the
zeroth-order solution (39). Substituting (39) and (40) into
(29) we find

1
0

This mode has zero spatial frequency

(35) %e may write the nth-order corrections to the polariza-
tion amplitudes as a superposition of the zeroth-order
diffusion modes, which form a complete set of functions

A:o ——0. (36)

The polarization of interest to us in cells with "good"
walls will be very nearly described by the uniform mode,
since the polarized atoms can diffuse freely throughout
the cell with little relaxation on the walls, and they will
therefore tend to 511 the cell uniformly. Masnou-Seeuws
and Bouchiat refer to this situation as that of "Orienta-
tion non confinee" (unconffned orientation).

For de6niteness we will pause to discuss the explicit
form of the dilusion modes for the simple case of a
spherical cell of radius R. The normalized solutions to
(33) are

(~) (n)

P
(42}

Substituting (42) into (41) and equating coefficients of P&
to zero we And

(43}

where the matrix element of the inhomogeneity (22} is

&P~a,,' ~
&=f dV y, H,,"y. . (44)
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If we set P=a and i =g in (43) we find the first-order
correction to the relaxation rate to be

(45)

since the mean value of the inhomogeneity in the cell is
zero.

Equation (43) determines the mixing coefficient for
nondegenerate states, i.e., states with yp(;)+Y(o). We find

&P IH(,))
I
a&

a Pj t~g (0) (0) ~

)&[rp; Y.—g l
(47)

For degenerate states (43) implies that

&P I a,(," I
a & =0 if yp(',

) =y('s) and (Pi )+(ag) . (48)

Degeneracies such as those envisaged in (48) naturally
occur for states with the same diffusion mode P=a, the
same azimuthal quantum number M for the polarization
index, but difFerent multipolarity indices I.. The irreduc-
ible basis terms (19) were chosen as the appropriate
zeroth-order polarizations to ensure the validity of (48).

We now consider the second-order corrections. Substi-
tuting (39) and (42) into (30) we find

For the important special case of uniform zeroth-order
polarization (45} implies that

xkl y
X+1—+ —,Xo—Z .v'2 (53}

To calculate the second-order damping (50) we need the
matrix elements which couple the uniform mode to excit-
ed diffusional modes. Using (22), (37), and (44) we find
that the only nonzero matrix elements are

& IVY I HLsi', LM I
0&

J)(x). )
))iR(x VQ) I ))r )

~1n

X v'L (L +1)C(L 1L;M,M' —M), (54)

where C denotes a Glebsch-Gordan coeScient. We have
made use of (Al 1) and (A12) in evaluating the matrix ele-
ment (54). Since the zeroth-order damping rates of the
coupled modes are Y',„'„.LM Dx,„R—— +i QoM' and

Yo.Lsr iQ——oM, we may substitute (54) into (50) and use
(A9) and (A20) to find the real part of the damping to be

8M'R'I V'Q„
I

'
175D+YO, Lhf

(2)

VQ)„+ VQ)
+D[L (L +1)—M2]

02

where the spherical unit vectors are de6ned in terms of
the Gartesian unit vectors x, y, and z in the conventional
way by

X
[x —2][1+D x Q R ]

(55)(0) (0)g (2) (1) (1)[ Yag Ypi ]upi; g+aYagupi; ga

+ y &PI~~(~))
I

& (~) + ( )8 g 0
1

a,j.
Syo(2L)~ =MSQo

MR (Iv'Q )I +IRAQ)yI )
0

Setting )())=a=0 and i =g in (49), and noting from (46)
that Yo(g

——0, we find the second-order damping of the
uniform mode to be

(49} The imaginary part of the damping (a frequency shift) is

, &0Ia")
I p&&pIH, ',"Io&

g2r (0) (O)i
p.j lVpj Fog j

where the prime means that terms with y' '=y& ' are to
be excluded from the sum.

Since the inhomogeneity is assumed to be small and
has zero mean value we will consider only a linear varia-
tion of 0,

(50}

01——r.VQ, , (51)

4m.r=r
3 g ( —1)"x „I')„(8$),

where V'01 is a constant, traceless, symmetric tensor. We
may regard (51) as the first term, a P wave, in a partial
wave expansion of 01, or as the first term in a power
series expansion in r. The subsequent steps can be readily
generalized to take into account higher partial waves, in
case the lowest-order terin (51) vanishes because of sym-
metry. For example, the magnetic-field inhomogeneity
near the center of Helmholtz coils is described by a 6
wave (l =4).

We note that

1
X

2 [
2 2][1+D2 4 Q

—2R —4]

(56)

The polarization with quantum numbers L„M =1,0 is the
longitudinal spin polarization, which is of great impor-
tance in magnetic resonance experiments. We may use
(55) to write the longitudinal spin relaxation rate as

(2)
3 0, 10

1

I ~Q). I

'+
I ~Q), I

'

00
1

„[x')„—2][1+D'x',„Q() 'R ]
(57}

For high pressures, where (3) is valid, we may use (A18)
to write

+ I~Q)y I=D
T1 00

The relaxation rate is proportional to the difFusion con-
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stant D or is inversely proportional to the gas pressure in
the cell. This is the same as the classic formula (1), but
we see that it applies only at high pressures.

At low pressure, where (4) is vahd, we find that (57) be-
comes

+Iv
1

(59)

=+1 o, il
(2)

2

I vQi. I

'+
I vQi, I

'
175D Q2

X
[x —2][1+D x Q 8 ]

(60)

That is, the relaxation rate is inversely proportional to
the diffusion constant D or directly proportional to the
gas pressure in the cell. Motional narrowing occurs be-
cause the spins difFuse rapidly through the inhomogene-
ous Seld.

The polarization with quantum numbers L,M = l, kl
is the transverse spin polarization, which is so important
in determining the linewidth or free precession signal of a
magnetic resonance experiment. From (55) we find that
the transverse damping rate is

ceases to be valid at pressures so high that it predicts
damping rates comparable to 01,. The corresponding
limit on the pressure turns out to be the same as the
upper limit on the relative pressure Qo/Qi mentioned in
(7).

At low pressures (4) we use (A20) with (60) to show
that the transverse relaxation rate is

+
I VQiy I

+2
I
VQi

At low pressures (4), the regime of motional narrowing,
the transverse relaxation rate (62), like the longitudinal
relaxation rate, is proportional to the gas pressure.

At high pressures (3) the frequency shift 5Qo is in-

dependent of the pressure and is given by (56) and (A19)
as

+ IvQ (63)

It is interesting to note that the frequency shift (63) is
equal, to order

I
VQ„ I, to the difFerence in the volume-

averaged magnitude of the local Larmor frequency,
(

I
Q

I
) = (

I Qo+Q, I ), and the magnitude Qo of the
mean Larmor frequency.

At low pressures (4) we may use (A21) together with
(56) to write

At high pressures (3) we find that (60) approaches the
limiting value

83QoR
5Qo= ( I VQi

I ~ I
VQ

15 750D
(64)

1 8R
I
VQ„ I

T2 175D
(61)

In contrast to the longitudinal relaxation rate (58) which,
at high gas pressures, decreases inversely with the pres-
sure (increases directly with D), the transverse relaxation
rate (61) is directly proportional to the gas pres-
sure (decreases inversely with D), provided that VQ„&0.
Should the inhomogeneity be purely transverse, VQi, ——0,
one would have T2 ——2T, for all pressures. From physi-
cal considerations, we know that the transverse relaxa-
tion rate cannot exceed, in order of magnitude, the max-
imum field inhomogeneity Q„. This implies that (61)

At low pressures, the frequency shift is proportional toD, that is, the shift is proportional to the square of the
pressure.

III. DISCUSSION

Some insight into the physics of the situation can be
gained by considering the polarization g; P;f;(r) associ-
ated with the exponentially decaying solutions (23). To
first order in the field inhomogeneity we may use (27),
(39), (42), and (47) to write the state which evolves from
the polarization state

I
LM) of the spatially uniform

mode as

g Pifi(r) = + g I LM')fLm;o, Lm
I
LM) (1I

J i(~ &n )&i

1 i g I
LM—')(LM'

I
g— R

n +1n ++1n
+ iQo(M' —M)

R

-me. i. I
™)
v'V

I
LM)

1

(65)
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From (65) we see that the efFect of the field inhomogenei-
ty is to introduce an infinitesimal rotation of the polariza-
tion

~
LM} by a spatially-dependent angle 54 which we

will write as the sum of three components

54 =5@,+5@2+5@3.

The transverse rotation angles are

R Qo 2 +1nr

x i„[xi„—2]ji(xi„)z

QOR
54, = 54 2 « 542,

so the transverse rotation angle at low pressures is almost
completely dominated by 5+2, which is perpendicular to
54, . Then we may use (68), (A17), and (69) to write

3R —r54=5@2+5@3= Q, .
10D

At low pressures the rotation angle is proportional to the
gas pressure (inversely proportional to D). The rotation
of the spin polarization at a given spatial location in the
cell is far less than the rotation of the magnetic field at
the same location, and the spins are rotated at right an-
gles to the direction of rotation of the magnetic field. A
qualitative sketch of the spatial variation of the spin po-
larization at low pressures is shown in Fig. 3.

The rotation angles (69) and (71) satisfy the boundary
condition (25), which implies no llux of polarization into
the walls or (8/Br)54(R, 8,$)=0 This .boundary condi-
tion is not satisfied by the high-pressure approximation

QOR Qo
1+ D2~4

(68)

The longitudinal rotation angle is

(69)

In writing out (69) we made use of (A17).
At high pressures (3) one can show that, over most of

the cell volume,

D54~=
~ 5@i &&5@i,
Oo

so that the transverse rotation angle at high pressures is
almost completely determined by 5@i. One can also
show that

QOR
'

54)= 54, »5@i

so that the longitudinal rotation angle greatly exceeds the
transverse rotation angle at high pressures. Thus, at high
pressures (3), we may use (A13) to show that (66) becomes

64 =54)+5@3

(70)

The geometric significance of the high-pressure rotation
angle (70) is illustrated in Fig. 2. As one might surmise
from Fig. 2, there are some advantages to choosing irre-
ducible basis tensors which are quantized along the local
direction of the magnetic field when one is interested in
high pressures. %e have carried through the analysis of
the problem with these spatially-dependent basis tensors,
and of course the same results for the damping rates and
frequency shift were found. However, the spatially-
independent basis tensors (19) are more convenient.

At low pressures we find that

FIG. 2. The slowest spin-relaxation modes in a spherical cell
with an inhomogeneous magnetic field B(r) at high gas pres-
sure. The transverse rotation 5@,=Qo~ QI/Qo brings the spin
polarization very nearly into alignment with the local direction
of the magnetic field. The longitudinal rotation 543 causes the
transverse spin polarization at the bottom of the cell, where the
field is stronger, to be advanced with respect to the transverse
spin polarization at the top of the cell, where the magnetic field
is weaker. For the high pressures depicted here, the classical
expression {1)for TI is valid.
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Several identities involving the spherical Bessel func-
tions j,(x) were needed to evaluate expressions in the
body of this paper. Since there seems to be no convenient
reference for these identities, we will sketch their deriva-
tion here. %e will make use of several standard formulas
from the convenient reference work Handbook of
Mathematical Functions, ' which we shall refer to as AS
(Abramowitz and Stegun). From 10.1.21 of AS we find

l+l. dJl(x)+ Jl(x) Jl —l(x)x dx

From 10.1.22 of AS we find

l .
JI (x) —ji(x—)=jr+i(x) .

x dx

From 10.1.23 of AS with m =1 and n =I +1 we find

d x'+ JI+,(x)=x'+'JI(x) .

(A 1)

(A2)

(A3)

FIG. 3, The slowest spin-relaxation modes in a spherical cell
with an inhomogeneous magnetic field 8(r) at low gas pressure.
At low pressures the spin polarization remains very nearly
aligned along the mean magnetic field. The rotation
Qo)&O&/00 of the magnetic field is large compared to the spin
rotation 54, which is too small to show here. This is the regime
(4) of motional narrowing.

By use of (Al) and (A2) one can readily show that

xx'jI'(x)= [jI'(x)—jI,(x)j,+,(x)] . (A4)

hT~I„g, 2 xi r
r drJI (A5)

The normalization constant Nl„of (37) is determined by

(70). In writing down the high-pressure approximation
5@,=z X Q i /Qo, we assumed that we could neglect
D x,„QO R compared to one for all values of n and
thereby replace the sum on n in (67) with (A13). This is
clearly wrong for n &~ 'D ' 00 E„and it amounts to
keeping terms with unphysically high-spatial frequencies
which could be supported in the cell only if D were
rigorously zero, which is possible only at infinite pres-
sure. The suppression of these high-spatial-frequency
terms in (67) ensures that the radial dependence of 54', is
"rounded off" within a distance O' Qo

' of the walls.
This is a negligibly thin skin compared to 8 for
suSciently high pressures.

The perturbation theory developed. above will be a
good approximation provided that the mixing coef6cients
(47) are always much less than unity. From (54) we see
that the numerator of (47) is on the order of Q„and from
(40) we see that the denominator of (47) cannot be small-
er, in order of magnitude, than D/R . Thus, the theory
will be valid if 0& g~ D /8, or equivalently, if
p/p' ~~00/Qt. At low pressures the theory will be valid
as long as it is possible to use the di8'usion equation, that
is, as long as A, &~8, or equivalently, as long as
p/Ji'~~RQO/U. These are the limits on the relative
pressure given by Eq. (7).

Here the numbers xI„are the zeros of the derivatives of
the spherical Bessel functions

d
(x,„)=0 for n =1,2, 3. . . .

dx

For future reference we note that

x „=2.081 575 978,

x )2
——5.940 369 991,

x )3
——9.205 840 143,

x )4 ——12.404 445 02,

x, s
——15.579 236 41

x)~ n7T for n +) 1

(A6)

(A7)

2x In

JI (x&„)[x&„1(l+1)]— (A9)

For the lowest-order perturbation theory discussed in this

Making use of (A4) in evaluating (A5) we readily find that

2 2

JI (xI~ ) JI i(xln )JI + i(—xl~ )—

Substituting (A 1) and (A2) into (A8) we find
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paper, we are concerned only with I'-wave di8'usion

modes, so we limit our discussion to I =1 from now on.
In the simple derivations which follow, we will always
use (Al) and (A2) to reduce expressions involving j,(x,„)
wltll l ) I to expressiotls iiivolviiig J i (x in )' The llllc
tions ji (x i„r/R ) form a complete set onto which we may
expand functions of r on the interval 0& r & R. In partic-
ular, we may write

r @fr J1
o R

(A15)

The integral (A15) can be evaluated by using (A3) to in-

tegrate by parts. The expansion coeScient is found to be

b„= (3x,„—10x,„)j,(x,„) . (A16)
+1n

N]„X1„rr=Xan gnJiR
(A10)

Substituting (A16) back into (A14) and making use of
(A13) we find

where the expansion coefficients a„are determined by 3R r r— 20
R „x,„[x,„—2]j,(x,„)z

+1n

R
R 3 +1n

Q~= r dr
3 2J1

o R
(Al 1) In the special case of r =R we find from (A13)

(A17)

We may readily evaluate (Al 1) with the aid of (A3) and
(A2) to find

I 1

x1~ —2
(A18)

In the special case of r =R we find from (A17)
(A12)

1nan=
2 Ji(Xin)

&1n 1

10
1

x ~i„[x',„—2]
(A19)

We multiply both sides of (A17) by f o r dr and use (Al 1)

and (A12) to find
2

[x,„—2]j,(x,„)J1 (A13)
1

n xin[xin —2]
(A20)

In like manner we expand r as
Finally, we multiply both sides of (A17) by jo r dr and

we use (A15), (A16), and (A19) to find&1nr
r = gbn ig2JiR

(A14)
1 83

n [xi„2] 15 750
(A21)

where the expansion coef6cient b„ is given by

Substituting (A12) back into (A10) and making use of
(A9) we find
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