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Generalization to a pth-order space of the independent-pair model,
within the spin-adapted reduced-Hamiltonian theoretical framework
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It is proposed that by evaluating pth-order spin-adapted reduced Hamiltonians and applying a
model of independent groups of p electrons we can approximate the pth-order reduced density ma-

trix Ip-RDM). Subsequently this pth-order matrix is contracted to the corresponding 2-RDM. As a
test example we calculate the total energy of the beryllium-atom isoelectronic sequence using an

independent-trio model. The results, as expected, have a higher accuracy than those obtained with

the independent-pair model.

I. INTRODUCTION

The spin-adapted reduced-Hamiltonian (SRH) theory
allows us to obtain an X-representable Hamiltonian ma-
trix of any order p with p & ¹

' Previously we obtained
the algorithm leading to the second-order spin-adapted
reduced Hamiltonian (2-SRH). This matrix is therefore
represented in a space of two electrons. %e have pro-
posed that the eigenvectors of this matrix can be con-
sidered to describe, in an average way, independent pairs
of electrons. Based on this model we construct an ap-
proximate second-order reduced density matrix (2-RDM)
for our S-electron system. Here we generalize this model
and as an example we calculate the beryllium-atom
isoelectronic series up to the Ar xv ion, with p=3.

In Sec. II we describe this generalized model and point
out the changes that need to be made in the derivation of
the algorithm. In Sec. III we report and discuss the re-
suits of our calculations.

II. MODKI. OF INDEPENDENT GROUPS
OF p KI.ECTRONS

In a similar manner to that described previously for the
evaluation of the 2-SRH matrix one can obtain a pth-
order one {p-SRH) which corresponds to a contraction to
the p-electron space of the full con6guration-interaction
(FCI) Hamiltonian block matrix for a fixed spin symme-
try. If p=2, as previously, this matrix contains all the
relevant information about our N-electron system. How-
ever, as we did not know how to retrieve from this 2-SRH
matrix the information concerning a particular eigenstate
of our X-electron system we had to devise an approxi-
mate method to solve this problem. As the SRH matrices
are obtained by an averaging process, we propose to in-
terpret the eigenvectors of the 2-SRH matrix as describ-

I

ing pairs of electrons which, also in an average way, can
be considered independent. This interpretation leads to a
model in which the 2-RDM is a weighted sum of pair
density matrices. Kith this approximation we have cal-
culated several atomic systems and the results can be
considered very good as well for the total energy as for
the electronic densities. However, if one is interested
in spectra the accuracy of the results should be improved.
Now if one obtains the 3-SRH,4-SRH, . . . ,p-SRH, and
builds the 3-RDM, 4-RDM, . . . ,p-RDM in a similar way
to that in the 2-electron case, we see that the model is ex-
act for p =X. Thus one can approach the problem of
how to increase our accuracy by looking for the p-SRH,
obtaining the p-RDM, and contracting this matrix to the
corresponding 2-RDM and 1-RDM which are the physi-
cally relevant ones. In this paper we will focus our atten-
tion on the case ofp=3 and %=4. %e divide this section
into two subsections. The 6rst subsection concerns the
3-SRH matrix and the second one describes the
independent-trio model (IT).

A. The 3-SRH matrix

In Ref. 3 we introduced the notation that will be used
here with very small changes. The form of the 3-SRH
matrix, which will be called H', is

2~ AQ 3D QA—prt, quu ~ ~ ij, kl ~ ij, kl —prt, qUu

A, Q i j,k, l

where D and D are the 2-RDM and the 3-RDM. These
matrices are of the form

'8,',"it=&A
I &;,k&;t 5,k+t I

&&—

D „, „„=(QIE E E,„ 5„E E 5, E „E— 5 E „E—,„+5„5,„E—„+5 5, E „IA). (3)
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The symbols 0 and E have the following meaning:

H, „, (which was denoted in Ref. 3 as Iik
~
Jl I ) is the

usually called reduced-Hamiltonian matrix ' and the
E's are the replacement operators "" (also referred to
as the unitary group generators" }which have the form

The
~

A) and
~

0) states are N-electron configurations,
eigenfunctions on 5 and 5, for a given spin symmetry.
By generalizing our notation we can write (l) as

(4)

E,, —:gb; bi where

~

~

lk, J/
=@&A~(E;„Ej, 5J E—;, )(E E E,„5„E—E 5, E„—E 5E—„E,„+5„5,„E„+5 5, E„)~A) . (5)

Q, l'U, EQ

The next step is to express the value of (5) as a function
of (IiI, S,K,p, r, t, q, U, u ), where S is the total spin quantum
number and I% is the number of space orbitals. Previous-
ly we reported the general algorithm for the case of the
2-SRH. A similar procedure can be applied also in this
case. Alternatively one can apply the formalism based on
the spectral distribution method as it was developed by
Nomura. '

3D Il
I

(6)

ing eigenvectors of this matrix can be considered to de-
scribe in an average sense independent trios of electrons.
Therefore, we may extend the method used in the IP
model to the construction of the 3-RDM using these trios
states. We then write

B. The independent-trio model

The 3-SRH matrix once obtained is diagonalized. In
line with the independent-pair (IP) model the correspond-

I

where D are full density matrices of three electrons in
the eigenstate

~

I ) of the 3-SRH. The occupation num-

bers nI can be approximated in a similar way as previous-

ly by making

.,=&AiE„E„E„5,„E„E„„—5„E„E„„5,„E„„E„~A-&,

where
~
A) is the dominant configuration in the N-

electron state
~

C ) in which we are interested and (prt) is
the trio dominant in

~

I ).
Once the D for a particular

~

C ) is constructed it can
be contracted to the corresponding 2-ROM by applying
the following formula:

Once we have D we can calculate with the usual pro-
cedure the energy, the 1-ROM, and the test for the hy-
pervirial theorem fulNlment. ' ' A further approxima-
tion, the HPH', can be evaluated for the 3-SRH in a simi-
lar manner as in the case of 2-SRH. This approximation
consists of a projection on both sides of the initial matrix
H appearing in (l) by the 2-RDM obtained with (8}. This
new H enters then into (4) and everything proceeds again
in a similar manner. In Sec. III we report the results ob-
tained for the isoelectronic series of the beryllium atom
using the double zeta basis. '

I
I I

IT

IP
HPH - IT
HPH - IT

I l l I I l I I I I
I I f I l ) I l I I

III. RESULTS

In Table I we report the values of the total energy for
the three lowest states of the beryllium ('S) isoelectronic

Be 8 C N 0 F Ne Na MQA~ Si P 5 Ct Ar

FIG. 1. Percent error of the ground-state total energy calcu-
lated with our approximation with respect to the FCI value.
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TABI.E I. Energies obtained using difkrent methods (in a.u.).

Ion

48e I

6C III

9F YI

&owe

) )Na VIII

)3Al X

)4S1 XI

)5P XII

State ('5) FCI

—14.5872
—14.3014
—13.9851

—24.2484
—23.3397
—22.S253

—36.4149
—34.8018
—33.3162

—51.0858
—48.5165
—46.1177

—68.2S20
—64.5337
—61.0227

—87.9479
—75.2689
—62.5764

-110.1248
—94.2570
—78.4042

—134.8022
1 15 SABA.

—96.3372

—161.9798
—138.6710
—115.4321

—191.6576
—163,5S92
—135.5338

—223.8356
—190.8604
—157.9752

—258.5138
—219.6957
—)80.9653

—14.6099
—14.3348
—13.9696

—24.2783
—23.3621
—22.5096

—36.4448
—34.8213
—33.3045

—51.1142
—48.5323
—46.1097

—68.2825
—64.5463
—61.0169

—87,9845
—75, 1537
—62.6357

—110.1621
—94.1300
—78.4613

—134.8408
—115.4080
—96.3907

—162.0185
—138.5211
—115.4861

—191.6953
—163.3913
—135.5912

—223.8733
—190.6786
—158.0328

—258.5505
—219.4947
—181.0272

IP

—14.6697
—14.3805
—13.9505

—24.3586
—23.4105
—22.4675

—36,5257
—34.8668
—33.2642

—51.1958
—48.5760
—46.0708

—68.3641
—64.5893
—60.9784

—88.0466
—75.2906
—62.5841

—110.2229
—94.2783
—78.4104

—134.9003
—1 I S.5655
—96.3424

—162.0771
—138.6918
—115.4365

—191.7531
—163.5793
—135.5375

—223.9302
—190.8801
—157.9782

—258.6069
—219.7150
—180.9682

—14.5916
—14.3277
—13.9784

—24.2555
—23 ~ 3423
—22.5177

—36.4220
—34.8167
—33.3095

—51.0909
—48.5280
—46.1120

—68.2590
—64.5426
—61.0175

—87.9533
—78.1811
—62.5797

—110.1302
—94.161S
—78.4066

—134.8078
—115.4429
—96.3388

—161.9853
—138.5605
—115.4334

—191,6626
—163.4364
—135.5352

—223.8405
—190.7282
—157.9763

—258.5182
—219.5504
—180.9668

HpH'-Ip

—14.6081
—14.3472
—13.9776

—24.2775
—23.3632
—22.5067

—36.4441
—34.8131
—33,2974

—S1.1130
—48.5167
—46.0991

—68.2809
—64.5265
—61.0039

—87.9577
—75.1803
—62.5505

—110.1342
—94.1680
—78.3766

—134.8118
—115.4473
—96.3099

—161.9888
—138.5805
—115.4019

—191.6650
—163.5104
—135.4941

—223.8422
—190.8334
—157.9285

—258.5191
—219.9563
—180.8478

»CI XIY

tgAr XY

—295.6922
—252.3861
—209.2285

—335.3705
—28S.1763
—235.1187

—377.5489
—320.3636
—263.3168

—295.7313
—252. 1844
—209.2832

—335.4080
—284.9523
—235.1783

—377.5858
—320.1217
—263.3792

—295.7875
—252.4062
—209.2313

—33S.4636
—285. 1956
—235.1209

—377.6410
—320.3826
—263.3190

—295.6975
—252.2408
—209.2289

—335.3751
—285.0157
—235.1195

—377.5533
—320.1908
—263.3178

—295.7000
—252.3362
—209.1806

—335.3761
—285.3502
—234.9620

—377.5536
—321.1531
—255.5566

sequence up to Ar Xv. The values of the first, third, and
6fth column have already been reported. It can be seen
that for the ground state the IT model brings a clear im-

provement. This improvement is most easily perceived in

Fig. 1, where the percent error with respect to the full

configuration interaction calculation is represented for

each of the approximations considered. For the second
states, which have a dominant open-shell configuration,
the independent-pair model appears to be more suitable
than the independent-trio one. This result is perhaps due
to the fact that the choice of the suitable trio states and
their occupation number is not so clear cut as in the
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TABLE II. First-order reduced-density matrix for the

ground state of the Be atom.
TABLE III. Some elements of the matrix (I' „)for the hyper-

virial test (Refs. 14 and 15) (beryllium-atom ground state).

t4& Method /3) [4) Method

0.996
0.996
0.996
0.996
0.996

0.015
0.014
0.018
0.014
0.016

0.823
0.854
0.863
0.849
0.854

—0.028
—0.028
—0.032
—0.030
—0.032

0.375
0.346
0.323
0.355
0.348

0.176
0.146
0.137
0.150
0.145

0.045
0.047
0.049
0.048
0.050

—0.036
—0.037
—0,037
—0.038
—0.039

—0.018
—0.017
—0.016
—0.018
—0.018

FCI

IP
HPH'-IT
HPH'-IP

0.000
0.001

—0.033
0.006

—0.005

0.000
0.003
0.017

—0.010
—0.007

0.000
—0.018
—0.032
—0.011
—0.016

0.000
0.038
0.101
0.047
0.082

0.000
(0.001
—0.012
—0.006
—0.017

0.000
0.004
0.026

& 0.001
0.006

FCI
IT
IP
HPH'-IT
HPH'-IP

0.004
0.004
0.004
0.004
0.004

ciosed-shell case. Finally, in the third states one has to
consider the IT and the HPH'-IT separately. Indeed,
while the IT is better than IP only up to the 0 v ion, the
HPH'-IT is better than HPH'-IP for the whole series and

extremely close to the FCI result.
In Table II we report a typical result for the 1-ROM

corresponding to the ground state of the beryllium atom.
For simplicity we only give half of this symmetric matrix.
The best results, when compared with the FCI one, corre-
spond to the HPH'-IT and, next, to the IT ones. All the
1-ROM obtained were N-representable in a similar way
as with the IP model. Finally, in Table III we give the

upper half of the antisymrnetric matrix P which measures
the extent to which the 2-RDM fu16lls the hypervirial
theorem, ' ' Although the case reported here corre-
sponds to the ground state of the beryllium atom, this be-

havior has been found to be general. It can be seen that

the hypervirial theorem is satisfactorily fulfilled in all the
cases but particularly so in the HPH'-IT and IT cases.

These results confirm our expectation that to apply the
independent-trio model, within the SRH theory, im-
proves the accuracy when compared with the
independent-pair model. %e expect that the larger the
number p of electrons the better the results will be. To
increase p does not involve any serious formal difhculty
just a technical one. Indeed, the dimension of the ma-
trices to be handled is of E~gK where K is the number
of space orbitals. At present we are working at the op-
timization of all the mathematical steps involved so as to
enlarge as much as possible the range of applicability of
this approach.
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