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Behavior of ortho-positronium in low-temperature nitrogen
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Ortho-positronium {o-Ps) annihilation rates have been measured in Nz at temperatures in the
range 100-170 K. Deviations from the annihilation rates expected for free o-Ps are observed, and
are analyzed by current models where applicable. A density-functional calculation using an optical
potential indicates that the large deviations at higher densities are attributable to the formation of

0
o-Ps-induced bubbles, and the o-Ps-N& scattering length is about 0.8 A. Analysis by the density-
6uctuation model suggests, on the other hand, that the relatively small deviations observed at lower
densities are due to the existing density fluctuations. A semiclassical approach is also attempted to
apply to problems of the density of states and the annihilation rates of ortho-positronium in gases.

I. INTRODUCTION

At suSciently low densities the annihilation rate of
ortho-positronium (o-Ps) in nonpolar gases is known to
increase linearly with density. However, deviation of the
annihilation rate from such linear dependence is observed
in some regions of density and temperature. The devia-
tion usually appears at high density and comparably low
temperature to the critical temperature of the gas, and
the deviation is downward from the linear dependence.

One idea to interpret this behavior is an 0-Ps-induced
bubble. ' Due to the dominant repulsive interaction be-
tween o-Ps and a gas atom (molecule), o-Ps creates a bub-
ble around itself and then becomes trapped in the bubble.
This truly occurs when the binding energy of o-Ps in the
bubble exceeds the work necessary to create the bubble.
An 0-Ps-induced bubble is quite analogous to an
electron-induced bubble, ~ which contains the electron
and gives rise to a decrease of magnitude in the electron's
mobility. In a theoretical approach, the 0-Ps bubble is re-
garded as a three-dimensional square-well potential in the
simplest way, or analyzed by calculating the density
distribution around 0-Ps self-consistently. ' The form-
er, which is called the "square-well model, " reasonably
represents this object in the limit of very strong binding
to the bubble relative to the extended state. ' The latter,
the density-functional method, is a more sophisticated
approach which removes the defect in the former that
postulates a bubble-density profile a priori. For the an-
nihilation rate of a free positron, this method has suc-
ceeded in explaining the nonlinear behavior which is re-
lated to the positron-induced cluster phenomenon in
He, ' ' Ar, ' and N2. ' lt has also predicted the stable
region for the electron bubble and its density profile in
He. ' As for the 0-Ps bubble, this method has been

applied to He, " Ne, " and Ar, ' and has shown that
there exist stable bubbles in these gases and that the devi-
ations of the o-Ps annihilation rate observed in certain
temperature and density ranges can be understood in
terms of the o-Ps bubble. Ho~ever, these same calcula-
tions have shown disagreement with the experimental re-
sults mainly in the onset region of deviation and the next
region of higher density.

Another idea for explaining the nonlinear behavior of
the o-Ps annihilation rate comes from density Auctuations
in gases. In this picture, it is considered that o-Ps does
not actively dig a cavity around itself, but rather passive-
ly interacts with the existing density 6uctuations without
in6uencing a local structure of the gas around itself. In
CH ' C H ' CO2, N and Ar, ' correlations
have been found between the deviations of the o-Ps an-
nihilation rate and gas quantities related to the density
fluctuations. The so-called density-fluctuation model, '

which treats the eFect of the density fluctuations on the
o-Ps annihilation rate from a classical thermodynamic
point of view, has explained the deviation especially in
the onset and next-higher-density regions in several gases.
On the other hand, the role of the density fluctuation in
the o-Ps behavior is discussed from the quantum-
mechanical point of view, too. Such an approach, howev-
er, gives rise to a diScult problem characteristically asso-
ciated with the theory for states of a light particle in
disordered materials. A few studies along this line
have been done for an excess electron and for 0-Ps. Espe-
cially for the excess-electron behavior, the approach of
Eggarter and Cohen '

employing semiclassical count-
ing to determine the density of states of the electron
and a percolation theory to deduce the degree of localiza-
tion of the states has explained the rapid and extreme de-
crease of the mobility in low-temperature He. This suc-
cess provides one possibility of' solving the behavior of
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the o-Ps annihilation rate in the region where the
discrepancy exists between the density-functional calcula-
tion and the experimental results, but there is no quanti-
tative study giving specific predictions comparable with
the experimental data.

The o-Ps annihilation in gases is practically the only
method that brings us knowledge of the o-Ps-gas interac-
tion. Moreover, this is important for studying the behav-
ior of the quantum particle in fluids, since the annihila-
tion process rejects the local structure of the fluid
around the particle more directly than a quantity such as
the mobility. Although preceding investigations have re-
vealed interesting features of the o-Ps behavior in gases,
some problems remain to be solved.

In order to better understand the behavior of o-Ps in
gases, we report in this paper experimental results of the
o-Ps annihilation rates in N2 as a function of density,
pressure, and temperature of the gas. %e further present
detailed comparisons with the current models where
applicable. The experimental results show a linear rela-
tion between the o-Ps annihilation rate and the gas pres-
sure over wide temperature and pressure ranges, and they
show correlations between the deviations observed and
some quantities dependent on the density Auctuations of
N2. The deviations observed in the onset region and the
next region of higher density are consistent with the pre-
diction of the density-fluctuation model. On the other
hand, the density-functional calculation indicates that the
o-Ps bubble exists stably in the region of higher densities
at the temperature near the critical temperature where
the density-Auctuation model breaks down. The semi-
classical approach based on the Eggarter-Cohen model
does not explain the behavior of the o-Ps annihilation
rate in Nz, although it gives reasonable results for the 0-
Ps in low-temperature He.

II. EXPERIMENTAL PROCEDURE

A. Apparatus

The gas chamber used was machined from an oxygen-
free high-conductivity (OFHC) copper rod, and its inter-
nal surface was electroplated with gold to enhance the
fraction of positrons stopping in the gas. Its dimension is
28 mm in internal diameter and 70 mm in active length.
A Na positron source (-7 pCi) deposited on a thick
gold foil was wrapped by a thin Mylar film and held near
the chamber wall. The chamber wall is about 4 mm
thick, sufFicient to withstand a pressure of over 100 atm
and still provide good heat conduction. A lead-plated an-
nealed copper-ring gasket was used for sealing the
chamber. As positron lifetime parameters are sensitive to
impurities in the sample gas, careful gas handling is re-
quired. Gas lines were constructed of stainless-steal tub-
ing (6.34 mm in outer diameter). The system was cleaned
with high-purity trichloroethylene before assembly, and
then an evacuating and gas Rushing procedure was per-
formed many times. The chamber was held in a sealed
copper cy11nder lrnrnersed in liquid N2 by a vacuum-

insulated gas supply tube. A Pt resistance thermometer
and a Au(+0. 07% Fe)-chromel thermocouple were in-
serted into small holes drilled at the bottom part of the
chamber, The temperature of the chamber was con-
trolled by balancing the cooling produced by a low-
pressure exchange gas with heating by a heater coil
wound along the chamber. The heater power was sup-
plied from an automatic temperature controller. The in-
stability of the temperature was less than +0. 1 K. The

temperature of the chamber was measured by the Pt ther-
mometer, which has been commercially calibrated. In
order to check the manufacturer's calibration and esti-
mate a temperature difference over the chamber, we com-
pared the published vapor-pressure curve of liquid N2
(Ref. 31) and Ar (Ref. 32) with measured vapor pressure
in the chamber. The uncertainty in temperature deter-
mination, arising from the combined eftects of tempera-
ture di8'erence over the chamber and of errors in the cali-
bration, is estimated to be less than +0.5 K. Commer-
cially supplied high-purity-grade N2 (minimum purity
99.9999%) was used for the sample gas. Gas pressures
were measured by using precision Bourdon gauges. The
accuracy of the measured pressure is better than 1% for
all the data points above 2.4 atm and better than 2% for
the other lower data points. The measured pressures
were corrected for barometric Auctuations at low pres-
sures. The density (D in amagats, 1 amagat=2. 69X10'
cm ) of N2 gas was evaluated from measured pressure-
temperature data by using a semiempirical equation of
state given by Jacobsen et a!. ' The error in density es-
timation due to all causes is to be less than 3% for all the
data at 100, 120, 150, and 170 K, and for data in the den-
sity regions D 5 100 and D ~ 350 at 130 K. For the data
at 130 and 140 K outside the above regions it exceeds
3%, being 6% at 140 K at maximum, and especially in
the vicinity of the critical points (150&D & 300 at 130 K,
T, = 126.2 K and D, =250 amagat) it becomes more than
10%.

Lifetime spectra have been measured by a system hav-
ing the merit of a high counting rate similar to one
developed by Coleman et al. Detectors consisted of
large fast plastic scintillators (12 cm in diameter by 10 cm
high and 12 cm in diameter by 7.5 cm high for start and
stop detectors, respectively) and photomultipliers (RCA
4522). The start and stop rates were approximately
7)(10 and 2&10 s ', and the coincidence rate was
about 6/10 s '. The time resolution was about 1.2 ns
full width at half maximum (FWHM) for Co.

A raw spectrum obtained from this system is deformed
by random-coincidence events due to the high counting
rate. Therefore, it was processed by the "signal-
restoration method" to deduce the restored ("true")
spectrum before the usual nonlinear fitting analysis. The
restored spectra excluding the prompt region were fitted
by a simple exponential fitting program into two com-
ponents as free fitting parameters when the free positron
component was suSciently separated from the prompt
peak, or into one component when it overlapped with the
prompt peak. The statistical accuracies of most results
for the o-Ps annihilation rate are from below 1% to at
most 2.5% at the lowest gas densities.
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S. Results

Measurement of 0-Ps annihilation rate k, p, was car-
ried out at 100, 120, 130, 140, 150, and 170 K, and at
pressures in the ranges 1.5-7.7, 1.5-23.4, 1.6-75.5,
29.5-78.8, 3.9-73.4, and 3.0-76.7 atm, respectively.
These pressure ranges correspond to the density ranges
4.2-25.5, 3.5—85.5, 3.4-428, 76.3—359, '7.3—250, and
4.8-170 amagat, respectively.

The o-Ps annihilation rate is represented as a sum of a
vacuum annihilation rate A,„„anda pickofF quenching
rate A, . The former is constant independent of media;
currently, for example, a value of 7.056+0.007 ps ' (Ref.
35) is presented experimentally and 7.0386%0.0002 ps
(Ref. 36), theoretically. The pickoff' rate varies widely
rejecting a local electron density from molecules sur-
rounding 0-Ps. In many low-density gases A, increases
linearly with increasing density, and then A,, p, is written
in the form of

Aq pal=A, „qc+47TPocii Zes

„„+4~,r acne 'Z,~D,

where ro is the classical electron radius, c is the velocity
of light, n =nl D is the number density of the gas, and D
is the density in amagats. (The standard number density,
which is often represented by the notation of no, is writ-
ten nz in this paper. ) 'Z,z is the effective number of elec-
trons per atom (molecule) in a singlet state relative to the
positron of o-Ps. Also in N2 gas, Eq. (1) holds good at
room temperature. Griffith and Heyland have reported
that a linear relation is observed over the wide density
range of 0-234 amagat, resulting in 'Z, z ——0.260+0.005.
Our data measured at room temperature are in good
agreement with their result.

Present low-temperature results are shown in Fig. 1 as
a function of N2 density. A,, p, increases linearly or al-
most linearly at lower densities and in the next region
gradually deviates downward from the linear extrapola-
tion of the low-density data. The overall behavior differs
from that at room temperature mentioned above. The
onset of the deviation is not clear-cut because of the very
gradual nature of the transition. This feature resembles
those observed in other gases such as CH4, Cz86,
CO&,

~ and Ar, ' and He (Ref. 39}and Hz (Ref. 40) at 77
K.

'Z, z and a maximum density of the linear region D*
characterize the behavior of A,, p, in low densities. Vfe
have determined them by carrying out a weighted least-
squares fit of Eq. (1) to the data together with a fixed
value of A,„„=7.06 ps '. Our estimate of 'Z,& is
0.247+0.002, 0.253+0.005, 0.255+0.003, and
0.253+0.002 at 100, 120, 130, and 170 K, ' respectively.
There seems to be no apparent temperature dependence
among them. The present values are only slightly lower
than Griffith and Heyland's result of 0.260%0.005 at
room temperature, and agree within the quoted standard
deviations. Because of the small number of data points at
low densities, 'Z, & and D' are not estimated at 140 and

150 K. D' is about 10, 11, 12, and 23 amagat at 100,
120, 130, and 170 K, respectively. ' The fractional devia-
tion of density, (D D—I )/DI, which serves as a measure

of imperfection of real gases, is 0.08, 0.06, 0.05, and 0.06
at D' at the same four temperatures. (DI is a density of
the ideal gas at the same temperature and pressure as the
real gas. ) The fractional deviations do not have a unique
value, in contrast to the cases of CH4 (Ref. 21) and C2H6
(Ref. 22) but the order of magnitude is in agreement with

those in the above gases and COz (Ref. 24}.
Deviation of A,, p, from the linear dependence on densi-

ty is observed at densities greater than D*. The lower
the temperature, the smaller the value of A., p, at any

given density. A,, p, deviates monotoxiically in the range
up to densities near the liquid-gas phase boundary at 100
and 120 K, and in the entire range of the present mea-
surement at 150 and 170 K. At 130 K, it is observed that
there exists an inflection point at around 200 amagat and
above this region A p, no longer decreases. A similar
trend is also seen at 140 K, although the data are limited
in the higher densities. The nonlinear density depen-
dence of A,, p, is further clariffed by looking at a behavior
of the empirical parameter 'Z,z calculated from Eq. (1).
Ratios of 'Z,

N to 'Z,&——0.260, as a reference, are plotted
as a function of density in Fig. 2. The higher the temper-
ature, the smaller the departure of the ratio from unity.
At 130 and 140 K, the minimum exists at about 300
amagat and the ratio increases again after that. It is in-
teresting to notice that this feature is analogous to the
compressibility factor Z of N2, which is equal to a ratio
DI /D. At room temperature, the ratio Z,s/ Z,s is con-
stant at unity up to -200 amagat, resulting from the
linear dependence of A,, p, on density. 3 This also agrees
with the value of Z of N2 being nearly equal to unity
over a wide density range at room temperature. A simi-
lar analogy appears to hold well for other gases. For Ar,
for example, at 160 K, the ratio increases again after the
initial decrease and seems to reach unity at the density of
-690 amagat, ' and this feature resembles the variation
of Z in that it becomes unity again at -630 amagat after
the minimum at around 400 amagat. Also, for C2H6, a
similar feature can be seen, but the fitting to the varia-
tion of Z (Ref. 42) is less than those in the cases of N2
and Ar. It should be also noticed that the behavior of the
ratio in low-temperature He shows a different feature
from those in the above gases. The abrupt and large de-
crease of the ratio with increasing density at 6 and 10 K
(Ref. 8) is in contrast to the smooth decrease of Z at the
corresponding temperatures. The ratios become con-
siderably smaller than unity even at the higher tempera-
tures, where Z & 1.

In connection with the analogy between the ratio and
Z, it is interesting to note that A,, p, increases almost
linearly with pressure over wide ranges. It is not surpris-
ing that such a linear relation is observed in a suSciently
low-pressure range because at low pressures the real gas
density does not diler greatly from the ideal gas density
which is proportional to the pressure. This relation,
however, extends to comparatively high-density data
points above D . Figure 3 shows plots of A,, p, against
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Fj:G. 1. A,, p, vs N2 density at various temperatures. The statistical standard deviations fa11 within the size of the points unless oth-
erwise shown. The solid lines represent Eq. (1) with the values of A,„„=7.06 ps ' and 'Z,s=0.260.

P /T, ~here P and T are the pressure and temperatures of
the gas, respectively. At room temperature the value of
Z is almost equal to unity over a wide density range.
From the observation of the linear dependence of A,, p, on
density and the good approximation of the real density by
the ideal gas density, which is proportional to P, it is
guessed that the linear relation between A,, p, and the
pressure holds well also at room temperature in N2. The
value of 'Z, z- ——0.260 can be translated to the value of the
slope 57.1 ps ' atm ' K of the A,, p, versus the P/T plot.
The linear relation between A,, p, and P/T seems to hold
well in low and intermediate density ranges over a fairly
wide temperature range. A similar result for Xe has been
reported by Tseng et gl."

III. APPLICATIGN OF CURRENT MODELS
AND DISCUSSION

We discuss in this section the behavior of 0-Ps in low-
temperature N2 in terms of current models where applic-
able.

A. Density-functional method

The density-functional method is a sophisticated ap-
proach that gets around the defect of the square-well
model. For a system of an 0-Ps plus classical Avid at tem-
perature T and chemical potential p, the grand free ener-

gy as a functional is written as
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FIG. 2. (a) Ratios of 'Z~/'2~ vs Ni density at various tem-

peratures, where 'f,s——0.260. Some of the lowMensity data
points are omitted for clarity. The line of the ratio equal to 1.0
corresponds to the linear dependence of k, p, on density at room
temperature (Ref. 37). (1) Density dependence of the compressi-
bility factor Z. The curves are calculated by using the equation
of state for Nq (Ref. 31).
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FIG. 3. A,, p, vs P/T at various temperatures. Letters by the
symbols indicate the density and D are the critical densities of
the linear dependence of A,, p, on density. The slope of the solid
lines is 57.1. See text for further details.

Q[n]=F[n] pfdr —n(r, )+fdr V(r)
~
P(r)

~

+ fdr
~
Vf(r} ~2,

Plp

where F[n] is the free energy of the inhomogeneous lluid,
n (r) is the 6uid molecule number density, g(r) is the o-Ps
wave function, ni is the Ps mass, and V(r) is the mean
potential, produced by the fluid molecules, in which o-Ps
moves. The minimization of the functional with respect
to variations of n(r) and rP(r) yields two Euler equations.
These equations are usually solved together self-
consistently, and then the density profile and the o-Ps
wave function are obtained. As one is mainly interested
in the free-energy difFerence between the localized state
and the extended state in a homogeneous Quid, the
change in the grand free energy, b Q[n] =Q[n] Q[no], —
is often used, for convenience, where no is the density of
the homogeneous Quid far from the bubble. The bubble
state is possible when A,Q has a minimum with an inho-
mogeneous density profile. The bubble is stable with
AQ ~ 0 and metastable with AQ ~ 0.

The potential V(r }is approximated by E„(n(r) }when
the density changes slowly in the scale of the range of 0-
Ps —molecule interaction, where E„(n)is the energy
whereby a homogeneous Quid with density n shifts the 0-
Ps energy. In the present calculation, E„(n} is approxi-
mated by the optical potential

E„(n)=

V' P(r)+2'
p

2M QJ
[n(r) —no]g(r) =sf(r),

where c. is the lowest-energy eigenvalue. As the lowest
state is considered, g depends on r alone, and Eq. (4} is
reduced to a radial equation. The density n is also a func-
tion of r alone, and a simple form' n(r)=no —a/
e' ' ~ ' is assumed in the present calculation, where a,
P, and y are adjustable parameters. ' Using n(r) with a

where the scattering length a, plays the role of an adjust-
able parameter to St the calculation to the experimental
pickofF rates. For F[n], the local-free-energy approxima-
tion

F[n]=fdr f(n(r))

is used, where f (n) is the Helmholtz free-energy density
of a homogeneous Quid, which is calculated by using the
semiempirical equation of state. '

In the numerical procedure, rather than solving the
Euler equations directly, we employ a procedure similar
to that of Ebner and Punyanitya. ' Assuming an ap-
propriate form of n(r), the Schrodinger equation of o-Ps
is solved first:
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X (n )ea"'"r+A,
oo 0 h

AA/kT+ 1
(5)

where A. „(no)is the pickofF rate of o-Ps in the extended
state in the homogeneous Quid with density no, and Xb is
the pickofF rate for the bubble state. A„(n,) is estimated
assuming the linear relation A, „(n)=4m.roen 'Z, s with
'Z, s =0.260. A,b is calculated from the equation

dr pl r r (6)

Results of A,z for several diferent values of a, are
0

shown in Fig. 4. For a trial value a, =0.8 A, hA is nega-
tive in the density range 190&no &4SO amagat, which is
the stable bubble region. The calculated values are in
agreement with the experimental data within +20%%uo in
the range 280 5 no 5 430 amagat. At higher densities, the
calculated value rapidly increases almost linearly toward
the extrapolated line of A„(n), w, hich has not yet been ex-
plored experimentally. For a, =0.7 A, the calculated
values are, as a whole, larger than the experimental data,
refiecting small and shallow bubbles due to the weak
repulsion. In both cases, the calculated values of A~ are
considerably larger than the experimental values at densi-
ties less than about 2SO amagat and display a different
trend from the experimental behavior which shows a
monotonic decrease. An especially obvious discrepancy

certain set of three parameters, the radial equation is
solved numerically. Then, AA=—Q[n] —A[no] is calcu-
lated, using the assumed n(r) and the resulting c. Ad-
justing the parameters on a suitable size grid, a reliable
local minimum of AQ at homogeneous density no is ob-
tained. Finally, the pickoff annihilation rate A, is evalu-
ated. Avoiding the difBculty of the treatment of excited
states of the bubbles, we calculate A, using a two-state
approximation

exists at the onset region of deviation. If the value of a,
is increased, the onset shifts to the lower densities. How-
ever, results with the larger value of o, = 1.0 A, for exam-

ple, show poorer agreement with the experiment at
higher densities. For the calculation with a, =0.8 A, AQ
is at most —2.8kT and so the bubble is only weakly
stable. For a, =1.0 A the bubble is more stable with at
most AQ= —6kT. This situation is comparable with the
case of Ar, ' but contrasts with that of He in which the
0-Ps bubble is quite stable with AQ of order 100kT. '

Figure S shows some density proNes of the bubble. The
corner of the bubble is round and some residual gas mole-
cules exist in it. The calculation of Az at 140 K has also

0
been carried out with a, =0.8 A, yielding considerably
larger values than the experiment. The bubble is meta-
stable in all the range calculated and its profile is shallow
and smooth. For higher temperatures, the local
minimum of AA is not found in the present calculation
with the chosen form of n (r), its parameters, and the
sizes of grids used.

The optical potential used in the calculation is the sim-
plest approximation to E„(n).In dense gases, however,
it is probable that this potential gives an underestimate of
the real E„(n). The Wigner-Seitz method is the alter-
native way often used which may provide a good approxi-
mation to E„(n)for higher densities. This method
indeed provided a result which is in good agreement with
the barrier height measured by an experiment of electron
injection from He gas into liquid He. In Fig. 6, values
of E„(n)for o-Ps in N2 gas are shown for various values
of a, as a parameter. E„(n)by the Wigner-Seitz method
are considerably larger than the optical potential with the
same a, . Density-functional calculations using the
Wigner-Seitz E„(n)with o, =0.8 A will give values of A,

less than those with a, =1.0 A in Fig. 4. The Wigner-
Seitz E„(n)with a, around 0.55 A are different only
within about 10% from the optical potential with a, =0.8
A in the stable bubble region. Therefore, the calculation
using E„(n)by the Wigner-Seitz method with 0.55 A
will give similar results to the calculation with 0.8 A in
Fig. 4.
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FIG. 4. Theoretical and experimental pickoff annihilation
rates as a function of N2 density at 130 and 140 K. At 130 K,
the theoretical curves are calculated for four different scattering
lengths. The sohd curves represent the total ~ckoff rates and
the dashed curves the pickoff rates for the 0-Ps in the bubble
states.
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FIG. 5. Density profiles around 0-Ps at different densities at
130 K for a scattering length of 0.8 A. Letters indicate the den-
sity.
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Nz pair potential.
As described above, it is indicated by the density-

functional calculation that the o-Ps bubble exists at low
temperature near T, and the reduction of the a-Ps annihi-
lation rate is attributed to the bubble formation, at least
in the higher-density region at 130 K. The a-Ps-N2
scattering length is estimated to be about 0.8 A with the
calculation which provides better Sts to the experimen-
tal data with the optical potential. This value may corre-
spond to around 0.55 A for E„(n)by the Wigner-Seitz
method. At lower densities at 130 K, the present calcula-
tion fails to explain the gradual downward deviation.
Also, for higher temperatures, this calculation does not
provide good results.

B. Density-Suctuation model

FIG. 6. E„vsN2 density. The solid line is calculated by the
optical potential model vrith a scattering length of 0.8 A. The
others are calculated by the %'igner-Seitz model with four
diferent scattering lengths.

In the calculation shown in Fig. 4, the linear relation
has been assumed for the density dependence of A„(n).,
This relation, in fact, has been experimentally observed
over a wide density range at room temperature in gases
such as He, Ar, Ht, CO, and also N2. 3 Validity of the
use of this relation, therefore, may be supported in these
density ranges. It is unknown, however„whether the
linear relation also holds well even at much higher densi-
ties than these ranges. FerreB obtained a correction to
the linear relation of A, „(n)in high-density He within the
Wigner-Seitz model. ' This correction arises from the
normahzation of the o-Ps wave function in the region
which is allowed for o-Ps avoiding a volume occupied by
the He atom due to the repulsive interaction. This
method yielded a nonlinear density dependence, but
values of A, „(n)were considerably larger than the experi-
mental values which were found to be linearly dependent
on density. In the Nz case, this also provides results con-
tradictory to the experimental observation, that is, A, „(n)
is 1.6-fold larger than the experiment at 100 amagat and
1.8-fold larger than that at 200 amagat.

For E„(n)and A„(n)in ,He, Nieminen et al. calcu-
lated corrections to the %igner-Seitz model by using a
pseudopotential method, which was introduced by Stott
and co-investigators to calculate a positron distribution
in solids. This calculation provided values of A, „(n)
which reasonably agree with the existing experimental
data, but gave values considerably smaller than the
%'igner-Seitz calculations. Tuomisaari et al. ' also ap-
plied this method to the Ar case. They used a pair poten-
tial including an attractive tail, that is, the Buckingham
type or the I.ennard-Jones type, for the Ps-Ar potential.
The calculation yielded too many stable bubbles and gave
annihilation rates in poorer agreement with the experi-
mental data compared with those calculated by using the
%'igner-Seitz energy model. Such an approach may be
applicable for the N2 case, but it is considerably trouble-
some to carry out the procedure using an appropriate Ps-

The density-fluctuation model is an approach which re-
lates the deviation of the o-Ps annihilation rate from the
linear dependence to using the density fluctuations in
gases, using classical thermodynamics. It is known that
this model provides good fits to the experimental data in
several gases for density ranges where the deviations are
relatively small in magnitude.

McNutt and Sharma have measured k, p, in CH4 and
observed that there exists a linear relation between
(D Dl)/Dl, —the fractional density deviation, and b, A, ,
the deviation of the measured A,, p, from the value linear-
ly extrapolated from low-density data. ' From this corre-
lation, it is suggested that the downward deviation in
CH4 is not due to the bubble formation, but rather due to
the density fluctuations existing in an imperfect gas.
Namely, o-Ps may preferentially migrate into regions
with density lower than the average density, resulting in
the reduction of the annihilation rate. By correlating hA,

directly with the density-fluctuation distribution in gas,
they have proposed the "density-fluctuation model. "

In this model, the distribution of a relative density fluc-
tuation 5 from the equilibrium density in a small cell of
volume Vp with 0-Ps samples is considered. Using a
probability distribution of the fluctuation 5, and assum-
ing that o-Ps atoms sample regions in which the time-
averaged density is lower than the equilibrium, McNutt
and Sharma found the relation

AA, =4nr()cnL 'Z,frD(kTKol2mVO)'.

where Ko is the isothermal compressibility of the gas. In
this model, Vo is assumed to be independent of gas densi-
ty, and one can derive the volume from the slope of this
linear relation found in the data, if any.

In Fig. 7, bA, is plotted as a function of D(kTKo)'~~.
At 130 K, hk is around zero at the lowest-density region,
and after a somewhat concave region the linear relation is
observed in the range corresponding to the data with
densities up to about 110 amagat. The volume Vo de-
rived from the slope corresponds to a sphere of a radius
of approximately 5.6 A. The prediction of this model ob-
viously breaks down at densities higher than about 250
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FIG. 7. Deviations AA, vs D(kmo)' at various tempera-
tures. The inset shows the data in the lower-density regions.
The statistical standard deviations fall within the size of the
points unless otherwise shown. The solid lines represent a
weighted least-squares fit to the data for the densities 47-109
amagat at 130 K. Letters by the symbols indicate the density.
Some of low-density data are omitted for clarity.

smsgat, which is the region where the behavior of I,, p,
has been reasonably explained by the bubble model. At
120 K, the plot is in good agreement with that at 130 K.
The plot for 140 K shows a similar trend to 130 K. For
150 and 170 K, the plot shows a concave shape as a
whole, although partially overlaps to the linear region of
130 K.

As mentioned above, this model provides the sampling
volume which corresponds to a sphere with a diameter of
an order of 10 A or a cubic cell with a side of the same
order. This sampling length is far less than thc o-Ps
thermal wavelength of -80 A. The size of the sampling
volume is smaller than that of the typical bubble in Fig. 5
estimated by the density-functional calculation. In the
linear region of this model, about 50-100 smagat, this
volume contains only 1-2 molecules as an average densi-
ty. This situation on the sampling volume is also true for
Ar at 160 K. The density-fluctuation model provides at
least s qualitative explanation of the not very large devia-
tions in N2, as in the cases of other gases, but seems to
have a difBculty on the size of the sampling volume which
it derives from experimental data.

In connection with the prediction of this model, it is
~orth examining correlations between dA, and some
quantities which may serve as a measure of density Auc-
tuations in N2 gss. In Fig. 8, the values of d k are plotted

Fractional Deviation

FIG. 8. Deviations ALA, vs fractional deviations (D —Dl )/D&
at various temperatures. Letters by the symbols indicate the
density. The inset shows the low-density data.

as a function of the fractional deviation. hA, depends
linearly on the fractional deviation in certain ranges, al-
though at higher temperatures it shows a somewhat con-
cave shape of dependence as a whole. This linear relation
corresponds to similar observations by McNutt and Shar-
ma in their study of CH„(Ref.21) and C2H6 (Ref. 22). It
msy be also noted, on the other hand, that the present
plots show a distinct difFerence from those of C2Hs in the
region where the linear relation breaks down. The plot
turns upward from the linear relation in the present case,
and downward in C2H&. The upward turning has been
observed also in Ar. '

Figure 9 shows plots of b,A, against the density
difference D-Dz. Linear relations are found over wide
ranges at all temperatures. This linear relation is simi-
lar to the observation in C02 at room temperature by
Wright et al. , and is related to the dependence of A,, p,
on the pressure of the gas, These correlations suggest the
significance of the role of density fluctuations to the o-Ps
behavior in the gases, but have not been directly treated
by the theory of the o-Ps annihilation behavior in gas. A
full explanation of these observations remains open.

C. Application of the Kggarter-Cohen approach
to the 0-Ps prob1ern

The role of density Auctustions in the o-Ps behavior
may be treated from a quantum-mechanical point of
view. In this treatment, one imagines that the density
fluctuation in gases gives rise to s fluctuation of the po-
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Prior to the above calculations, Eggarter and Cohen
(EC) have developed a semiclassical approach treating
the e8'ect of density Auctuations to the excess-electron
mobility in low-temperature gaseous He. * Their mod-
el is simple in the procedures of calculation of the density
of states, and of the estimation of the fraction of localized
states. The method has succeeded in explaining the rapid
decrease of the electron mobility by introducing energy-
dependent mobilities of the electron both in extended and
localized states. The semiclassical counting of the densi-
ty of states and the percolation theory for the localization
employed in this model may be applicable to the o-Ps
problem.

In the EC model, a total system is divided into cubic
cells with a volume L, where

L =c02m h( 3/2mE )
' i

0
30

0-
0

I I

8
p —0

& {amagat )

tential in which 0-Ps moves. The states available to a
light particle in disordered materials have states localized
by the potential Suctuations in the Anderson sense.
From the repulsive o-Ps —gas interaction, it is considered
that the o-Ps in such states is sampling a lower density
than the average. There have been a few studies to un-
derstand the reduction of the o-Ps annihilation rate (and
the rapid drop of the electron mobility which is closely
related to the o-Ps case} within this context.

Hernandez and his co-workers have applied a varia-
tional method to these problems. ' They have exam-
ined the inhuence of the physical parameters such as the
scattering lengths, the packing fraction, the relative
atomic sizes, and the density to the light-particle state
and its localization. It has been sho~n that the observed
trends in the o-Ps annihilation rates in gases (and also in
the electron mobility in low-temperature He) conform to
the trends predicted by their calculations. However,
these calculations have not yet produced the quantitative
predictions for comparison with the experimental data on
the 0-Ps annihilation rate and the excess electron mobili-
ty, because the theoretical basis is a variational method.

FIG. 9. Deviations h,A. vs density dilerences D —DI at vari-
ous temperatures. The data for the densities D 5D are omit-
ted. The solid lines represent weighted least-squares Sts to the
data satisfying both inequalities D g D and D —DI g 10
amagat (Ref. 49). At 130 K, the maximum value af D —D& cor-
responds to D =400. The inset shows the low-density data at
130 K.

is an order of a de Broglie wavelength of an electron with
an energy E, m is the particle mass, and co is an adjusting
parameter of an order of 1. The assumption that the den-
sity in each cell is constant gives rise to an effective po-
tential for an electron, V(n}, the Wigner-Seitz potential,
where n =N/L; N is a number of atoms in the cell. The
number of atoms in the Snite volume L Suctuates and its
distribution is considered to be a Gaussian about N =nL 3

with the standard deviation o N, where n is the average
density and crz is calculated taking into account the
non-ideal-gas dependence of pressure on density. This
gives rise to the Suctuating potential V(n} with a Gauss-
ian distribution about V. Adding a cell density of states
over cells in the total system, a density of states n (E) is
obtained. The fraction of extended electron states at a
given energy is provided by the classical percolation
theory. The percolation theory provides a critical ener-

gy, E, . At energies less than E„the percolation proba-
bility is strictly zero and increases monotonically to unity
above E,.

According to this model, the change of electron mobili-
ty in low-temperature He as a function of the average gas
density is qualitatively interpreted as the following: The
function n(E}e ~" has a maximum at E,„and it is
sharply peaked. For low densities this peak occurs over
V and the dominant fraction of electron is in extended
states. As the average density increases, E,„shifts from
a higher to a lower side than E, . This means that the
fraction of electrons in localized states increases. There-
fore, the mobility drastically decreases several orders of
magnitude in this density range because of the small
mobilities of electrons in localized states. For high densi-
ties, finally, E,„&&E,and practically all electrons are in
localized states. The theoretical mobility is calculated by
using this function, introducing energy-dependent mobili-
ties for both in the extended and localized states.

The discussion on the distribution of states given by
this model may also be applicable to the 0-Ps case. The
result derived, however, is significantly aftected by selec-
tion of the value of the parameter co, which was deter-
mined, in the electron ease, by adjusting calculated
mobilities to experimental data. Therefore, we attempt
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first to apply this model to the problem of o-Ps in low-
temperature He gas because this case may be quite analo-
gous to that treated by the original EC model. For the
o-Ps —He scattering length and the potential V(n), we

owe to the bubble model analysis, ' concretely, a, =0.79
A and values of the optical potential. The non-ideal-gas
dependence of pressure with density is taken into ac-
count. "

The function n (E)e ~ for Ps in He shows a similar
trend to the electron case. Isothermally the fraction of
o-Ps in localized states increases with increasing density.
The higher the temperature, the broader the function in
energy. Figure 10 shows the variation of the function for
a particular case of cs =1.0 at 6 K. (In the original EC
model, the best fit to experimental data at about 4-20 K
was obtained with co =1.05-1.4, ' using a smaller value
at a higher temperature. ) The peak of n (E)e z~"r posi-
tioned at E~,„shifts from a higher to a lower energy than
E, while increasing density isothermally in the density re-
gion between p, and p&, where p& is the experimentally
obtained density deviation onset and p2 the critical den-
sity of the stable bubbles theoretically predicted by the
density-functional method. A small variation of co does

not change the qualitative feature, but small or large
values of co (for example, co ——0.6 or 2.0) yield distribu-
tions in disagreement with experimentally or theoretical-
ly accepted knowledge. This strongly suggests that this
model reasonably represents states of o-Ps in low-
temperature He, with appropriate co. We further
proceed to connect this result directly with the calcula-
tion of the pickoff rate A, . We first assume that o-Ps in
the extended state annihilates to sample the average den-
sity n and therefore, the pickofF rate of this o-Ps, A,,„„

is
4nv~~n 'Z, s. On the other hand, since a localized o-Ps
with an energy E exists in a cell with density lower than
n,„(E),which is the maximum density satisfying an in-
equality V(n}~ E, its o-Ps samples the density n (E) at
most. We assume that the density sampled by the local-
ized o-Ps with energy E is approximated by the average
value n,„(E). n,„(E) is further approximated by

con,„(E),co being another adjusting parameter. Ulti-
mately, the pickoff rate of such an o-Ps, A,~„,is assumed
to be

A~„(E}=4nroc'Z,FFcon,„(E).

The .total pickoff rate of o-Ps with energy E, A, (E), is
written as

A, (E)=4m r~ 'Z, zt [1—P(E)]con~,„(E)+P(E)nJ,

where P(E} is the same percolation probability as in the
original EC model. Finally, A,z is calculated from the
equation

(9)

Ee V
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FIG. 10. A function n {E)e ""for co ——1.0 in He at 6 K at
various densities: a, 0.05; 6, 0.1", c, 0.15; d, 0.2; and e, 0.3 {X10
cm ). V and E, are the average potential and the critical ener-

gy, respectively. p, is about 0.09&10 cm {Ref. 8) and p2 is
about 0.23 g 10 cm {Ref.9).

By using Eq. (9), a ratio of calculated A, to extrapola-
tion of the linear region is obtained. Good agreement
with the experiment has been obtained at temperatures of
6—40 K, as shown in Fig. 11(a). Small variations of co
and co do not yield very difFerent results, but they gen-
erally give poorer agreement. At 30 and 40 K, similar re-
sults are given by using co ——0.7 and a fairly small value
of co =0.6, but this usage fails at lower temperatures. It
should be noted that this model, although a rough ap-
proximation, gives good results over a wide temperature
range by using a unique value of co and values of co
analogous to the original EC model for an electron,
and, furthermore, the density range treated is the range
at which the density-functional calculation has shown a
discrepancy with the experiment. 9 The result described
above supports the assertion that the treatment of o-Ps
states in low-temperature He by the present model is
reasonable and that the present estimation of A~ is not in-
valid.

When the present model was applied to the N2 prob-
lem, however, no good result unfortunately was obtained.
Rejecting a smooth change of the factor of e
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fits to the experimental data between the low-temperature
He and the present N2.

Our model has a defect in that the calculated pickoff
rate does not always agree with the value calculated for
the o-Ps trapped in the stable bubble by the bubble model
in the higher-density region. The pickoff rate of o-Ps is
calculated by using the wave function of o-Ps and the
density distribution which o-Ps samples. However, it is
very diScult to characterize the wave function of o-Ps
weakly localizing in Auctuations and the density profile of
its region. In the original EC model, the authors have
characterized a size of a pseudobubble (equal to a trapped
electron plus a low-density region) by translating the
difference of a number of atoms in a cell from the average
number to a volume of an empty sphere. This seems to
be inappropriate for the o-Ps case since the calculation of
the annihilation rate may require a more realistic feature
of the object than the mobility. At energies

~

E E,
~

=kT—, even the characterization of the pseu-
dobubble used in the EC model is not justi6ed. For-
tunately (or unfortunately in the sense that the informa-
tion at these interesting energies is obscured), this model
provides a good fit to the experimental data in spite of
this serious problem because it is masked by the fairly
high mobilities of extended electrons. In the o-Ps case,
the treatment of this energy range may be important for
specific predictions of the pickoff rate comparable with
the experimental data.

FIG. 11. (a) Ratios of A~ calculated by Eq. {9) to the linear
extrapolation of the data for He measured by Fox et al. (Ref.
39). The crosses indicate the transition densities for 0-Ps from
free to bubble state measured by Rytsola et al. (Ref. 8). The
solid curves represent the density dependence of the ratios of
the experimental A~ (Ref. 8). (b) Calculated ratios for N2 at 130
K for scattering lengths of 0.8 and 1.0 A. The dashed curves are
drawn to guide the eye. The solid curve represents the density
dependence of the present experimental ratios.

against E due to the high temperatures, the function of
n(E)e " has a long tail extending over a higher-
energy side and is not very sharply peaked, in general, at
the region except for at high densities. Therefore„ the
contribution of the o-Ps in localized states is considerably
small in comparison to the total pickoff annihilation rate
calculated by Eq. (9). With use of the optical potential
and the scattering length a, =0.8 A, the values of the cal-
culated ratio with co near 1 show a weak density depen-
dence, as shown in Fig. 11(b). The value of the ratio be-
comes comparable with the experimental data and the
value of the ratio varies rapidly as the value of co is con-
siderably decreased. from 1. However, the corresponding
sampling length which is somewhat smaller than the de
Broglie wavelength is unclear in the physical meaning
and inconsistent with the original EC model. Provided
that the larger value of a, is used, one can adopt some-
what large values of co for the calculation, but this
change does not improve the discrepancy. Thus, the
present model does not provide a good 6t to the experi-
mental data of N2. The difference of the magnitudes of
the thermal energies might relate to a different quality of

IV. CONCLUSION

Deviation of the o-Ps annihilation rate from the linear
dependence on density has been observed in low-
temperature Nz. Linear relations have been found be-
tween the deviation and the quantities such as the frac-
tional deviation and the density difference for intermedi-
ate magnitudes of the deviation. The ratio of the mea-
sured pickoff rate to the linear extrapolation has shown a
density dependence similar to that of the compressibility
factor of N2 gas. In connection with the above observa-
tions, a linear relation has been found between the pickoff
rate and P /T over wide pressure and temperature ranges.

The density-functional calculation using the optical po-
tential for the o-Ps-gas interaction energy has indicated
that o-Ps-induced bubbles exist in the higher-density re-
gion, at least at 130 K, and that the reduction of the o-Ps
annihilation rate in this region is mainly due to this
phenomenon. An o-Ps —N2 scattering length of about 0.8
0
A is obtained by this calculation.

The relatively small deviation at relatively low densi-
ties can be explained, at least qualitatively, by the
density-fluctuation model. In order to obtain more in-
sight into the role of density Auctuations in o-Ps behav-
ior, the new approach, which owes much to the model by
Eggarter and Cohen, has been attempted to solve the o-Ps
annihilation problems. Our approach has provided
reasonable results for low-temperature He, but has given
no good results for N2.

It is probably safe to say that the behavior of the o-Ps
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annihilation rate in low-temperature N2 can be under-

stood by connecting the density-Auctuation e8ect in
lower densities with the formation of 0-Ps bubbles in
higher densities. Our understanding is, however, unsatis-
factory from a quantitative point of view. A more so-
phisticated theory is hoped for which can provide a
suScient explanation throughout, from the region where
existing density fluctuations play a dominant role to that
where 0-Ps actively influences the environment around it-
self.
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