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Time delay in tunneling: Transmission and re8eetion time delays
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The problem of time delay in one-dimensional quantum-mechanical scattering by a potential bar-
rier is studied in the framework of tine-dependent scattering theory. It is shown how the concept
of sojourn time can be used to deSne three separate time delays: the time delay for transmission
through the barrier, the time delay for reaction, and the total time delay {i.e., averaged over
transmission and re8ection). In addition to the anticipated dependence on the Smatrix and its ener-

gy derivative, the time delays depend on certain parameters which can be interpreted as describing
positions of detectors in a gedanken-experiment measurement. The problem of de6ning separate
time delays for transmission and re8ection appears to be rooted in the foundations of quantum
theory and its interpretation.

I. IIi.i.aODUCi. iON

The majority of theoretical studies of scattering pro-
cesses is concerned with a stationary description of
scattering in terms of cross sections, but the collision pro-
cess itself is always understood in terms of time-
dependent dynamics. Experimentally, the temporal as-
pects of scattering are readily accessible only in collisions
involving longlived intermediate states. In general, in-
teraction or collision times cannot be measured directly
at present but instead must be inferred in a qualitative
fashion from the characteristics of other quantities such
as the scattering angle distribution (diff'erential cross sec-
tion}, internal and translational energy distributions, or
various polarizations. The temporal aspects of scattering
are important in understanding the behavior of many of
the quantities traditionally measured in scattering experi-
ments and in the selection of appropriate theoretical col-
lision models. These considerations motivate both exper-
imental and theoretical interest in the time of duration of
a collision, a particularly useful definition of which is the
time delay.

Interest in the study of time delay is also stimulated by
its role in other areas. ' Topics include the principle of
causality, the partitioning of scattering am litudes or
the S matrix into direct and ffuctuating parts, the mani-

festations and characteristics of chaos in the time delay,
the interpretation of virial coefficients, and more direct
experimental measurements of collision times.

The theory of time delay in classical mechanical
scattering is, at least conceptually, a straightforward
matter due to the fact that the arrival and the departure
times of s classical particle are well de5ned and meaning-
ful. This is unfortunately not the case with quantum
theory. It is well known that there does not exist a gen-
erally accepted and unambiguous formula for the time of
arrival of a quantum particle at a detector. This quanti-
ty, although evidently experimentally accessible, does not
have a self-adjoint operator as its quantum-theory coun-

terpart. All theoretical approaches to time delay must
somehow circumvent this problem. An elegant and
efficient way to do this is by employing the concept of so-
journ time of a particle in a spatial region. This ap-
proach has received considerable theoretical attention
and is well founded mathematically (two-body and
many-body problems have been thoroughly investigat-
ed'o "). However, so far the concept of sojourn time has
been successfully applied to deal only with the so-called
total time delay, i.e., the time delay averaged over all an-
gles in two-body scattering or over all angles and all
channels in multichannel scattering. %e find it most
desirable to show that the concept of sojourn time does in
fact provide a unified base for the general theory of time
delays, including angle-dependent time delay in two-body
scattering and state-to-state time delay in multichannel
scattering. Other approaches to the treatment of time de-
lay are summarized and classified in Ref. 1.

In the present paper we study a one-dimensional
scattering by a potential barrier. In this case one can
speak about three separate time delays: the time delay
for particles transmitted through the barrier, the time de-
lay for reflected particles, and the total time delay, i.e.,
appropriately averaged over the transmitted and reflected
particles. We show how all these time delays can be
defined using the concept of sojourn time. We think the
solution points the way to application of the sojourn-time
concept to the more complex problems of the angular
and the state-to-state time delays mentioned above. At
the same time, the study is also of some independent in-
terest in view of considerable theoretical e8orts devoted
in recent years to the definition of the time a particle
needs to tunnel through a potential barrier. '

No practical applications are included here since this
wss deemed to be incompatible with the goal and spirit of
the paper. Our time-delay expressions can nevertheless
be easily evaluated for any solvable model. Naturally, the
practical signi6cance of the results ~ould be best assessed
by application to models whose form and parameters are
suggested by physical considerations.
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II. SCAz-x j;RING THEORY PRELIMINARIES lim (( exp( i tH}% —exp( —itHO)%*)( =0 .
E+ oo

(2.2}

0+ ——s —hm exp(itH) exp( itHO—}
t+ cc

(2.1)

are assumed to map %f=L ('R) isometrically onto the or-
thogonal complement %t of 1f&. In particular, every
state vector VEJt& represents a scattering state, i.e.,
possesses in- and out-asymptotes + and %'+,

Qg+

%e consider a one-dimensional quantum-mechanical
system with Hilbert space %=L (R}and the Hamiltoni-
an H = ——,'(d jdx )+ V(x). The potential V(x) (further

called also the potential barrier) is assumed to have finite
range, i.e., there is an Ro&0 such that V(x)=0 for

~

x
~
)Ro. This restriction is made in order to facilitate

mathematical treatment. It by no means provides a
necessary condition for the validity of our main results of
Secs. IV and V, which, no doubt, remain true for a much
wider class of potentials. Ho denotes the free Hamiltoni-
an, Ho ————,'(d jdx ) and %&CL2(R) is the subspace of
all bound states of H (possibly &b ——[0) ). We put 8=1
throughout.

The MeAler operators

%'+ and %' are related by the scattering operator
S=Qt 0+, 4'+ =S'0, which is a unitary operator from
L (R) onto Li(R).

It will be most convenient to work in the (two-valued)
energy representation employing the Hilbert space
L ((0, oo ),C ) which consists of pairs F = (f, ,f2 ) of
square integrable functions defined on the continuous-
spectrum energy range (0, ao). [The meaning of f, and

f2 is made clear in Eq. (2.4) and below. j The scalar prod-
uct of F =(f, ,fz) and G =(g, ,gz) is given by

&F
~
G) = f"[y;(E)g,(E)+f2 (E)g,(E)]dE . (2.3)

The unitary correspondence U:L (R)~L ((0, ao ),C )
between the usual position representation and our energy
representation reads

(U%')(E)=(2E) ' (4(&2E ),4( &2E )—), E&0

(2.4)

where 4 denotes the Fourier transform (momentum rep-
resentation) of %. Correspondingly,

f &k &k exp(ikx)+i(k' j2)+ f dk& kexp(i—kx)42(k j2)
0 00

= f dEe, z(x)@i(E)+ f d Ezez( x)4z( E),
0 0

(2.5)

where

e,E(x)=(2ir) ' '(2E) ' exp(ix &2E ),
cps (x)= (2~) ' "(2E) '"exp( ix &2E )— (2.6)

f dx e,'E(x)e,E (x)=5;,5(E E') . —(2.7)

are the two linearly independent continuous-spectrum
eigenfunctions of the free Hamiltonian, normalized so
that

(p(@],@2))(E)=&2E(@/(E),—@2(E)) . (2 &)

The scattering operator S, as an operator commuting
with 00, acts on the energy representation wave function
(4,,4z) as follows:

In the above energy representation, the free Hamiltoni-
an acts simply as multiplication by E. The momentum
operator p takes the form

(S(@„@,))(E)=(S„(E}@,(E)+S„(E)4,(E), S„(E)@,(E)+S„(E)@,(E)), (2.9)

where for each E ~ 0, S;.(E) is a two-dimensional unitary
matrix. We will assume that the functions S~(E) are
suaciently smooth functions of E.

The state vectors of the form (4&,0), (0,@z)
EL ((0, ~ ), C ) describe states (wave packets} with posi-
tive and negative momentum, respectively, cf. (2.5) and
(2.6). If the actual state of the system at tiine r =0 has an
in-asymptote of the form (in the energy representation)

=(4i,0), then this means that the particle (wave

packet} approaches the potential barrier from the left be-

e+(E)=(S„(E)+,(E), S„(E)+,(E)). (2.10)

This is a superposition of states corresponding to the par-
ticle moving to the right and to the left, i.e., correspond-
ing to the transmitted and reflected particle, respectively.
The probabilities of transmission and refiection are

fore colliding with it. Long after the collision, the time
evolution is essentially the free time evolution determined
by the asymptotic out state %'+,
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(2.11} dN'erential equations

f "dE Isii«) I' I+'i«) I', (2.12)

respectively (for J dE
I @,(E)

I
2=1).

0
The stationary scattering states are solutions of the

+ V(x) sz(x) =Eel(x),1 d

dx
(2.13)

where E ~0. Since our potential has 5nite range 80, we

have

A exp(iv'2Ex )+8 exp( iv—2Ex } for x & —Rp
sz(x)= .

C exp(iV'2Ex)+D exp( iv —2Ex) for x )Rp .

(2.14)

(2.15)

The coefficients A, B,C,D are related by the matrix
S(E)= [S;~(E)]:

=S(E)C A (2.16}

For each E)0 two linearly independent solutions 'E,z
and 'Ezz of (2.13) can be chosen so that z;z 0+——e;z, or
more correctly, so that

Ee&E x
&
E+ Ee2E x 42F

eiz(x)+S2i(E)s2z(x) for x & —Rp
Z,z(x)=

Sii(E)eiz(x) for x )Ro,
(2.18)

(2.19)

Yzz(x) = ~

S2i(E)e,z(x) for x & Ro-
ezz(x)+S,z(E}e,z(x) for x )Rp .

(2.20)

(2.21)

Equation (2.17) means that each scattering state can be
expanded in a continuous superposition of Ciz and 'fez.
The two orthogonal components

J dE'Eiz(x)@i(E)
0

dE'E2E x +2 E

correspond to the particle approaching the barrier from
the left and from the right, respectively.

III. THE CONCEPT QF THE TIME DELAY

Imagine an experiment in which a source of particles is
located (e.g.) on the left of our potential barrier in the re-
gion where the influence of the potential is negligible.

E'E)F x 4) E + EE~E x 42 E
0 0

(2.17}

Z,z and Z2z are normalized in the same way as s,z and

s2z, cf. (2.7}. Asymptotically,

t
—~f h~ —~ —~f (3.1)

define the (experimental) transmission time delay and the
reflection time delay, respectively. %hen P„denotes the
transmission probability and P„ the re6ection probability,

P„+P, = 1, then the weighted sum

b~=P„br„+P„b~„=(P„r„+P„r„)~I—(3.2)

gives us the mean total time delay for particles incident
from the left of the barrier —a global quantity which
does not distinguish between the case of transmisson and
re6ection (note that P„~„+P„w„is just the mean transit
time from the source to the detectors a, b treated as a sin-

For simplicity, let the source be ideal in that each particle
leaving it is in the same pure quantum state. The beam of
particles directed towards the barrier is partly re8ected
and partly transmitted. The intensities of the transmitted
and rejected beams are proportional to the transmission
and re6ection probabihties (2.11}and (2.12), respectively.
These probabilities provide the basic "stationary"
description of the experiment.

One can also be interested in some temporal correla-
tions present in the experiment. We can imagine that the
source of particles is equipped with a shutter controlled

by the observer, and that during the time interval (t', i")
when the shutter is kept open only one particle emerges.
The instant t' or t" provides the observer with a refer-
ence time, a "departure" time. The particle after collid-

ing with the barrier is picked up by detectors located at
points a and b (a & b) on opposite sides of the barrier in

the region where the potential is negligible. %e measure
the arrival times of the particle at a (reflection} or at b

(transmission). Repeating the experiment many times,
each time we come out with a transit time for the particle
defined as the difference between the arrival time and the
departure time. Finally, we can calculate mean transit
times: v„ for transmitted particles and ~, for rejected
ones. %hen we perform the same experiment without the
presence of the barrier, i.e., for free particles, we obtain a
mean free transit time ~&. Note that in the latter experi-

ment all the particles are picked up by detector b. The
difFerences
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time ~( {a, b ), —oo, oo ', 4 }of our particle in ( a, b ) with the
corresponding sojourn time ~o((a, b), —00, Do', 4' ) of the
free particle. The difference

gle detecting device}.
The quantities k1 )~&D'r~, b1 are free from inevitable

ambiguities present in the definition of the departure time
(these ambiguities cancel out in the process of subtrac-
tion). However, d~„,b,v„,hr do, in general, depend on
the positions of the detectors. %e will come back to this
point after deriving theoretical expressions for our time
delays.

br i,(%')=~((a,b, ), —oo, ao , %'') r—o((a, b},—oo, oo', 4 )

(4.3)

is the mean excess time spent by our particle in (a, b)
while interacting with the barrier; it is the time delay and
depends on the interval (a, b}. In terms of the gedanken
experiment described in Sec. III, b,~, b(% } pertains to the
arrangement with detectors placed at a and b.

In the analogous two-body problem a sphere of radius
R and center coinciding with the center of mass of the
colliding objects plays the role of the interval (a, b) The.
limit R ~ 00 is eventually taken to eliminate the R depen-
dence of the time delay. This limit procedure seems to be
natural and goes without further comment in theoretical
treatments. However, for a one-dimensional potential
barrier, especially when it is not symmetric, it is not clear
how to choose an analogous-limit procedure. One can of
course take a = —r, b =r, r ~ 00, but more generally one
can also choose a = r+c—, b =r +c, r ~ ao, where c is
an arbitrary constant. As we will see below, for each c
the limit lim, b,v, „,+„(4}exists and depends in a
definite way on c. This indicates that the time delay can-
not be unambiguously de5ned by means of a r ~ 00 limit
without some convention regarding the de6nition of a
center of the barrier. This problem seems to have been
overlooked so far.

In Appendix A we derive asymptotic expressions (A7)
and (A15) for ro((a, b), —oo, ao;4} and
~((a, b), —00, 0o;4} as a~ —~, bazoo. Substituting
them into (4.3}one obtains, after some simple algebra,

IV. THE TOTAL rj.MK DELAY

The mean sojourn time of our particle in a spatial in-
terval (a, b) during a time interval (t„tz) reads

r((a, b), t„tz,%)= f dt f dx
I %,(x) I, (4.1)

0

where 4, = exp( itH)%—. The corresponding quantity
for the freely evolving particle will be denoted by
ro((a, b), t, , t2, %'), i.e.,

~0((a, b), t, , t2;4'}=f dt f dx
I %0,{x)I', (4.2)

g

where %o, = exp( itHO)%—. In (4.1) and (4.2),
—oo &a &b & 00, —ao & ti & t2 & oo, and the sojourn
times can be, in general, infinite. When t

~

———&e, t2 ce, ——
we speak about the mean total sojourn times.

In the following, '0 will always denote the state vector
at time t =0 of our particle interacting with the potential
barrier. 4 will be the corresponding in-asymptote, i.e.,
0+%' =%. We shaH write (4 i, Cz) for the energy repre-
sentation of 4, i.e., 4 = U '(4&, 4z), cf. (2.5).

In analogy with two-body scattering' the definition of
the total time delay goes as follows. We take a long inter-
val (a, b) containing the barrier and compare the sojourn

h~, b(+)= f dE(2E) ' [b[ I Si,(E)4,(E)+S,2(E)4,(E)
I

—
I 4,(E)

I
']

—a[ I
Szi{E}@'i{E)+S22{E)@z{E)

I

' —
I
@'2{E)

I
'l]

+ f "dE y C,'(E)Q,,(E)e,.(E),
ij =1

where Q(E}= iS (E)—[BS(E)/BE],or

(4.4)

BSk (E)
Q;, (E)= i g Sk;—(E)

k=1
(4.5)

js the ljfetjme matrix Q(E) first introduced by Smith in the general context of multichannel scattering.
It can be seen that g~, b(+) is explicitly dependent on a and b Substituting a. =c r, b =c + r, and taking t—he (now

trivial) limit r ~ ~ yields the c-dependent quantity

h~, (%')=c f dE(2E) ' [ I S„(E)4,(E)+Si2(E)@q(E)
I

—
I @,(E)

I

0
2—

I Sqi(E)N, (E)+Sqt(E}@2(E)
I

+
I
4q(E)

I ]+ f dE g 4,'(E) Q(JE N}(iE) .
0

E,J =1

(4.6}
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If the potential barrier were symmetric with respect to a
certain point n, then it would seem natural to choose the
origin of the coordinate system at a and choose c =0. In
that case one is left only with the term involving the Q
matrix and recovers the traditionally accepted expression
for the total time delay. However, when the potential has
no symmetry then there does not exist any natural choice
of either the origin of the x axis or of the point c. '

P,, '(tll)r((b, ~), t, , t, ;Or)=t, y,—(% ) . (5.2)

Classically one would interpret the constant term y&(%)
as the mean arrival time at b of the transmitted particles.

Consider also the corresponding free sojourn time

mean time spent by the transmitted particle in the region
(b, oo) during the time interval (t, , t2). When t, ~—oo,
t2~ oo, we expect r((b, oo ), t„tz, tlr} to have the asymp-
totics

V. THE TRANSMISSION AND REFLEtar.ON
nME DELAYS ro((b, oo), t„t2, tII )= f dt f dx

~
tllot(x}

~tl b
(5.3)

The concepts of transmission and re6ection time delays
are meaningful only when in the remote past the particle
approaches the barrier either from the left or from the
right, i.e., when the actual state %' at time t =0 has an
in-asymptote of the form tp = U '(4 „0) or

= U '(O, Ct2), cf. (2.5). Without any loss of generality
we treat here only the case of the particle approaching
the barrier from the left, i.e., tlt = U '(4&,0).

The sojourn time r((a, b},t, , t2; tII ) does not distinguish
between transmission and re6ection. Consider, however,
the sojourn time

We expect that

ro((b, ~),t, , t, ;tI )=t, —y„(g -), (5A)

4r„g(%'}= lim ro((b, oo ), t„t2;0' )
f) —+ —oo

as t~~ —oo, t2~oo. The asymptotic expressions (5.2}
and (5.4) do indeed hold true as is shown in Appendix A,
cf' (A9) and (A18). Therefore the limit

r((b, oo), t„t;tlr)= f dt f dx
~
%,(x)

~

~ . (5.1)
b

f2~ oo

—P,, '(%)r((b, ~ ), t, , t„til) (5.5)

We assume b to be very large, b ~ oo. Since the particle
approaches the barrier from the left, it can be present in

(b, oo ) only as the transmitted particle. Therefore,
P,, '(%)r((b, oo ), t„t2,%), with P„(%') being the
transmission probability (2.11), can be interpreted as the

exists and can be interpreted as the dilerence between
the mean arrival times at b of the transmitted and the
free (reference} particles. %'e take it as the theoretical
definition of the transmission time delay.

For baz oo, 4r„b(tlr) can be efFectively evaluated via
the asymptotics (A9) and (A18). One then obtains

4r„t,(%')=b f dE(2E) 'i~
i 4,(E) i

—1
0

ae, (E)
+ E ) E —i

0

( Stt(E)
~

', , BS„(E)—1 +P;, '(~) f "
dE

~
~,(E)

~
'S;, (E) -i

0

=b f dE(2E) '"[&,(E}(' —1 + f dE ~C, (E) ~'
[S„(E)[

' . , aq, (E)
[ S„(E}[

'
0 Ptr P 0 tr

BSt ) (E}
+Pt, (+) f dE ~Stt(E)@t(E}

~
Re —iStt'(E)

0 t)E
(5.6)

where all terms on the right-hand side are real. Here by g&(E) we denote the phase of @,(E), i.e.,
@q(E)= [ 4,(E)

f exp[i@&&(E)].
The««ical «ansmission and reflection time delays should satisfy Eq. (3.2) with P„and P„given by (2.11) and (2.12),

~erefore the re lection time delay «„,y(p) ca»ow be found by using our formulas for 4r, (@)and
4r„g(%'), and unitarity of the Smatrix. The result is
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h~„, b(+)=—a f dE(2E) '~
I 4,(E)

I

—b f dE(2E) '
I @i(E)

I

a@i(E)
+ f dE@i(E) i— I

s„(E)
I

'
. . . , as„(E)

P(q) "
o

' " aE
—1 +P„'(4)f dE

I
@i(E)

I S2, (E) —i

= —aP, '(4) f dE(2E) 'i
I S~,(E)4,(E)

I
b —f dE(2E) '

I 4,(E)
I

+ f "dE
I c,(E) I' I ski«} I'

0

+P„'('0) f dE
I
S2i(E)4i(E}I

Re iS—2i'(E}
as2, (E)

0 21 1 21 as a~ —00 and b~00, (5.7)

where P,(4) is the reflection probability (2.12).

VI. DISCUSSION

Using the concept of sojourn time we have derived theoretical expressions for the transmission time delay, the
reSection time delay, and the total time delay as measured in the gedanken experiment of Sec. III. These expressions
exhibit a simple linear dependence on the parameters a and b which can be interpreted as describing positions of the
detectors. According to (5.6), (5.7), and (4.4) (with I2 =0—the particle incident from the left), we have

I
s»(E}

I

'
bw„b p(%') —br„b(%)=P f dE(2E) '~

I 4,(E)
I

—1 as b (6.1)

i5'rrab+p(q ) —«;., b(q ) = —P f dE(2E} '"
I
@i«)

I

' » & ~—~ and b~ ~

~r, b+p(q ) il'r, b(q )=P f dE(2E) '"
I
@'i«)

I
'I.

I sii«} I

'—1] as it —ao and b

b~„,+, b(%') hr„, b(%')=—aP„'(+) f— dE(2E) 'i
I Sz, (E)4,(E)

I
as a~ —00 and b~a&,

h~, + b(4') —br, b(%')= —a f dE(2E) 'i
I S2,(E)4,(E)

I
as a~ —oo and b~ao .

(6.2)

(6.3)

(6.4)

Note that (2E)'~2 is the velocity outside the barrier, and

I @,(E) I, P,, '(+)
I
S»(E}4,(E) I, and

P„'(+)
I Sz, (E)4,(E}

I

2 are the energy distributions for
the incoming, the transmitted, and the rejected particles,
respectively. Therefore Eqs. (6.1)-(6.5) are what one
would expect upon shifting detectors in our gedanken ex-
periment. A shift in b changes the mean transit time
(from the source to the detector) of the free (reference)
particles by the amount

p f dE(2E) 'i
I
@i(E)

I

nothing in our method which precludes any other choice.
However, the same reference wave packet should be used
to define aH three of the time delays if Eq. (3.2) is to
remain valid. This is consistent with our gedanken
experiment measurements, indicating that the choice of

is the most natural one.
Expressions (4.4), (5.6), and (5.7) greatly simplify in the

limit of wave packets with well-de6ned momentum, i.e.,
when 4,(E) vanishes outside a narrow interval

(Eo,Eo +5). Then, approximately

and the transit time for transmitted particles by the
amount

as„(Eo )
bv„b(+) =Re iS, , '(Eo)— (6.6)

pP, , '(qi) f dE(2E) '
I
+i(E)sii(E)

I

The transit time for the reflected particles (detected at a}
remains unaltered. This clearly yields (6.1) and (6.2); (6.3)
then follows from (3.2). Analogously, a shift in a affects
only the transit time for the rejected particles, the result
being (6.4) and (6.5).

It is to be noted that the above dependence of the time
delays on a and b follows from the choice of %' as our
reference wave packet. Theoretically speaking there is

b ~„,b (+)= —(a +b)(2Eo )

aS2, (Eo)
+Re —iS2, ' (Eo ) (6.7)

«.b(q )= (a+b)
I S2i(Eo) I'—(2E, )

'"
+Q»«o) .

Equation (6.6) agrees with the Eisenbud definition of the
"state-to-state" time delay. ' 2 The dependence of
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S~S&——exp( —imp)S exp(imp) .

In our energy representation the translation operator
exp(i gp) has the matrix

exp(i('v'2E ) 0
0 exp( iP 2E—)

Hence, S& has the matrix

(6 9)

Si)(E)
S2i(E) exp(i2P 2E )

S,2{E)exp( i 2+ 2E )—

Si2(E)

(6.10}

Using Eqs. (5.6), (5.7), and (4.4) (with 4z ——0) we can now
easily show that the time delays are afFected by the shift
as follows:

hr„s(%) on b disappears since in the limit of well-
de6ned momentum the transmitted and the incoming
wave packets become indistinguishable. This is, ho~ever,
not the case with hr„, &(%) and hv, s(ip). That they
must remain dependent on a and b agrees with
(6 2)-(6 5).

The dependence of the total time delay on a and b re-
sults in the impossibility of de5ning an absolute time de-
lay which is independent of the choice of a "center" of
the barrier. i3 We have discussed this point in Sec. IV.

Consider now the efFect of a spatial shift of the barrier
on our time delays. A shift g changes the potential from
V(x} to V&{x)= V(x —g}, i.e.,

Vg ——exp( i gp—) V exp(i gp),

where p is the momentum operator. Since

exp( —imp)HO exp(imp ) =Ho,
we can write

H ~H& exp( ——i gp}H e—xp(imp ) .

It follows from the definition of the Soperator, cf. Sec. II,
that

g .,(q) ar. ,(e)+2g f "dE(2E) '"
x I Szi&E}@'i{E}

I

'
~

(6.13)

[The shift g to which Eqs. (6.11)—(6.13) refer cannot be
arbitrarily large. One should have

I g I ~~b —a, because
formulas {5.6), (5.7), and (4.4) are not exact but asymptot-
ic formulas for the time delays as a ~—ao, b —+ ao.] The
results are, in fact, not quite trivial. In terms of our
gedanken experiment (6.11) implies that the mean transit
time (from the source to detector b) of the transmitted
particles is independent of the location of the barrier. On
the other hand, the mean transit time (from the source to
detector a) of the rejected particles is, according to
(6.12), changed by twice the mean time free particles with
energy distribution P, '(ip)

I Szi(E)4,(E)
I

need to
travel the distance g. Classically that would suggest that
the energy distribution of the transmitted or rejected
particles is the same before and after the collision with
the barrier. The point is that quantum mechanically
there is no sense in speaking about transmitted or
rejected particles before they are detected as such. Let
us also note that the results (6.11)-(6.13) favor the en-
semble interpretation of the wave function against the
single-particle interpretation. If one assumes that the
wave function describes a single particle, then the energy
distribution before the collision is

I 4,(E)
I

and after
the collision,

when the particle is transmitted and

P, '(4)
I S2,(E)4,(E)

I

when it is rejected. This makes it dincult to understand
the factor 2 in (6.12) or the invariance in (6.11). The
above considerations indicate that the study of separate
time delays for transmission and reflection is a nontrivial
problem deeply rooted in the foundations of quantum
theory and its interpretation.

d r„ i,(4)~br„ i,(%), (6.11)

h~„.,(% ) h~„. ,(% )

+2(P, '(4) f dE(2E)
0

X I S2i(E)@i(E)
I

(6.12)
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APPENDIX A: CALCULATIGN QF THE SDJVURN TIMES

1. The free sojourn time

Integration by parts apphed to {4.2) yields

dt b
r,(«,g), t, , t, ;q)= f dt —f dx I%„&x)I'=t f dx

I
+„&»I, —f, «td, f dx

I +0 «}
I

=t f dx
I
%z(x) I, + f dt t[J(b, +0, )—J(a, +o, )],

Q 1 l
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where J(x,+«) is the usual probability current,

8'k«(x ) i}+0',(x)
J(x,+«}=(2i} ' 4'0, (x} —'I'«(x)

(A2}
For t] ~—o, t2~ cc one can derive simple asymptotic
expressions for ~0((a, b), t, , t2;~p) in terms of the energy
representation wave function (@i,42), i.e.,
ill = U '(4 „42), cf. (2.5). Strictly speaking, our deriva-
tion is mathematically legitimate only for suIFiciently
well-behaved wave functions, e.g., when

4,,4zGCO ((0, ~)) (infinitely difFerentiable with com-

pact support). It rests upon some properties of the one-
dimensional free motion which we 6nd convenient to list
and justify separately in Appendix B.

The first term on the right-hand side of (Al) can be
evaluated using one of the formulas (86}—(810) of Appen-
dix B. The asymptotics of the second will involve conver-
gent integrals

t tJ x, %'0,

[cf. (819) and (820) of Appendix 8]. They can be dealt
with as follows. If x =Woo, then J(x,+«)=0 [by (819)
and (820)]. If

~

x
~

& ~, then by (2.5}:

J(x, 'p«)=(2~) 'Re f dE exp( irE—)(2E) '"[C,„(E)+4,„(E)]
0

X f dE exp( —itE)(2E) '~~[4,„(E)—4z„(E)]
k

where we use the abbreviations

4,„(E)=4,(E)exp(ix&2E ), @2„(E)=@2(E)exp( ix&2—E ) .

Then, by integrating by parts the second factor in (A3) we obtain

tJ(x, ill«) =(2n ) 'Re f dE exp( —irE)(2E) '~ [4&i,(E)+@i„(E)]
0

8@i„(E) B@q„(E)
X E exp —itE 2E ' —i +i

(A3)

i 2 ' f —dE exp( itE)E '~ [—4»(E)—4z„(E)]

Finally, unitarity of the Fourier transform yields

8@i„(E) 8@2„(E)f dt tJ(x, ip«)=Re f dE[@i„(E)+@2,(E)]' i — +i
oo 0

Re g "EC,„Z+q~E '4E-'e, „s-@,„S
0

ae, (E) ae, (E)= f dE 4', (E) i —+kz (E) i
0

+x f dE(2E) '~2[
~

+'i(E) ['+
~
@i(E)

~

']

+Re i f dE(4E) '4, (E)'@,(E)exp( 2ix&2E }—
0

(A6)

%e can now see that for —~ &a ~b g ao and our well-behaved wave function %', the mean total sojourn time
ro((a, b), —0o, ao', ~p) is finite and reads

~o((~, &), —~ ~, "p}=(&—~) f ~«2E) '"[
I
~'i«) I'+

I ~'2«) I']

+Re i f dE(4E) '@i (E}4z(E)[exp( 2ib&2E ) —exp( 2ia&—2E)]- (A7)
0

Since &2E is the velocity of our particle (the mass m =1), the first term is what one expects on classical grounds. The
second term disappears whenever the direction of the momentum of the particle is specified (i.e., 4i ——0 or 42 ——0).
Generally it expresses interference of the components of the wave function describing particles moving in opposite
directions. By the Riemann-Lebesgue lemma this term always vanishes in the 1imit a ~—Oc, b ~~.

The asymptotic expressions for ~0(( —00,a), t, , r z,
.'ll ) and ~0((b, ao ), t „t2, 4) read
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84,(E) B@q(E)
~,({—m, a), t, , t„e)=t, f "

dE [ e,(E) [

'—t, f"dE [ C,(E)
~

'+ f "
dE i—ei(E) ' +ie;(E)

+a f dE(2E) ' [ [@,(E) ) + /4q(E)
/ ]

+Re i E 4E '4& E 4z E exp —Ziu 2E as t, ~—~ and tz~~,
0

ae, (E) au, (E)
~o((b, oo), t„t~;%)=tq f dE [4,(E)

~

—t, f dE (@i(E)
~

—f dE —i@i(E) +i@q(E)
0 0 0

(AS)

—b f"dE(2E) '"[ I@'i(E)
I

'+
I @z«) I'1

Re—i f dE(4E) 'Ci(E)@z(E)exp( 2ib&—2E ) as t, ~—oo and tz~oo .
0

Again, the final terms in (Ag) and (A9) can be dropped in the limit a ~—oo, b ~ oo.

2. The sojourn tlnie for the interacting particle

(A9)

r((a, b), —oo, oo;%)=t f dx
i %,(x) i f + f dt t[J(b, %', )—J(a, ip, )]

=t 1 —f at&
I
e (»

I

' —f dx
I ipse(x) I

' + f dt t[J(b, +, ) —J(a, ~p, )] . (A10)

We expand ip, in terms of tlm continuous-spectrum eigenfunctions 'Eiz and Eis as in (2.17). (A10) involves %,(x) only
for x & a and x & b. Assuming that a & —Ro b & Rp we can use the asymptotic expressions (2.18)-(2.21). This yields

To find an asymptotic expression for the sojourn time r((a, b), —oo, oo, 4) ( —oo & a & b & oo ) as a ~—oo, b ~ oo one
starts with the analogue of Eq. (Al), i.e.,

4, (x}=%oi,'(x) for x &a & —Ro,

%,(x)=%'oi, '(x) for x &b &Ro,

(Al 1)

(A12)

(A14)

with Vo', '=exp( itHo )4'"—, %g'=exp( —
itHO

)4' ', and

4'"(x)= f dE 4i(E)si@(x)+ f dE[Sgi(E)4i(E)+Siq(E)+q{E)]st@{x), (A13)

4' '(x) = f dE[Sii(E)4,(E)+S,z{E)@z(E)]siz(x)+f dE@&(E) zze( )x

[(4„4z) is the energy representation of 0' ]. Due to (Al 1) and (A12) we can use Eqs. (87)-(810) for the free particle to
demonstrate that the first term on the right-hand side of (A10) vanishes. The second one can be easily evaluated using
(A6}, where the last term can be dropped in the limit a~ —oo, bazoo. The resulting asymptotic expression for
r((a, b), —oo, oo', %') reads

r((a, b), —oo, oo, %)=—a f dE(2E) '~ [ ~4i(E) ( + ~Sqi(E)@i(E)+Sic(E)@q(E)( ]

+b f dE(2E) '~ [ [@q(E)
~

+ [Sii(E)4,(E)+S,q(E)@i(E) [ ]
2

+ E 4; E,- E4 E as@~—{x) egg& —woo,
i j =1

where Q(E) = iS (E)[BS(E)/M—) or

(A15)

OS'(E)
Q;, (E)=—t g S„';{E)

k=1
(A16}

The sojourn time r{(b, oo ),t„tz,'4') can be treated in a similar fashion. Here we assume that 4 = U '(4„0), since
this is enough for our treatment of the transmission time delay in Sec. V. In place of Eq. (A10) we now have

f~
r((b, ~),t„t,;0')=t f dx

i P,(x)i', —f dttJ(b, %, ). (A17)
g
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When b & Ro, we can use the asymptotic expressions (A12) and (A14) (with 42 ——0). Then (89), (810), and (A6) yield

B@i(E)
6(b, oo ), t„ti;%'}=t2p„(%)—f dE

I S,i(E) I 4i (E) —i

Bs,i(E)—b f"dE(2E)-i"
I
ei(E)s»(E)

I

'- f "«
I
+i(E)

I
's'i(E) —i

0 0 E

as t, —+ —oo, t2 ~~, and b & R o, (A18)

where P„(%)is the transmission probability (2.11).

lim f dx I+0(x)I =f dp I4(p)I

= f dE
I 42(E}

I

~, (83)

lim f dx
I 40, (x)

I

= f dp I 4(p)
I

= f dE I@2(E)
I

(84)

APPENDIX I' SOME PROPERTIES
OF THE ONE-DIMENSIONAI. FREE MOTION

Let 4 be an initial state of the free particle and let
'Po, =exp( itH—OW If .(a, b) is a bounded interval, then

1
t + 2 0 (81)

f —

+choo

0

This is the well-known evanescence of the probability of
finding the particle in (a, b). For semibounded intervals

( —oo, a) and (b, oo) we have

lim f dx
I
%z(x)

I

= f dp I
~II(p)

I

2

= f "dE Ie,(E) I', (82)

t f dx
I %0,(x)

I
=t f dE I+,(E)

I

as taboo . (810)

Here the exact meaning of the symbol = is that the
difFerence of the right- and left-hand sides coverges to
zero as t approaches + 00 as indicated. Relations
(86)-(810) hold true for sufficiently well-behaved wave
functions; in particular, for 4„@2CCo" ((0, oo ) }
[infinitely differentiable of compact support in (0, oo}].
%e proceed to the proof.

The freely evolving wave function %0, can be written in
the form

0'0, (x)= f dE exp( —itE)eiE(x)4i(E)
0

+ f dE exp( —itE)ezE(x)42(E)
0

=(2m. )
' f dk 4(k)exp(ikx itk2/—2) .

(811)

We assume that 4„@zCCO"((O,oo)}. Then by (2.4),
'II&CO (Rx (0)}.

%hen t and x are such that

(812)

lim f dx I+0,(x)I = f dp I4(p)I

= f dE I@i(E) I
2, (85)

for all k Esupp%', then one can apply the following in-
tegration by parts to the last integral in (811}:

e„(x)=(2~)-'"f" dk4(k)
00 kt —x k

where 4 is the momentum representation of 4, and
(4„42) is the energy representation of
+=U '(4i, 42), cf. (2.4) and (2.5). The intuitively trans-
parent statements (Bl}-(85)can be easily proved using
an asymptotic formula for exp(itHO), cf. Ref. 24. Howev-
er, we will need the stronger version of Eqs. (Bl)—(85):

(86)
a

t f dx
I +o (x}I'=t f « I@'i(E) I'

X exp( ikx i tk 2/2)—
=(2n )

' f dk exp(ikx itk2/2)( i—)—
dk kkt —x

(813}

After the nth iteration of this procedure we clearly have

+0,(x)=(2~) ' f dk exp(ikx itk /2)( i)"— —
as t ~—oo, (87)

"Ee,E ' d 1
o

dk kt —x
(k), (814)

as t~ oo, (88} where (d/dk)o[1/(kt —x)] is to be understood as the
differential operator equal to

t f"« ~I„(x) 'I= tf"« IC',«)I'
b 0

as t~ —ac (89)
1 d

(kt —x)~ kt —x dk
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It is a matter of straightforward induction to prove that
n

2n j—n

4(k}= g (kt -x)-J g t'f„(k),
(815)

where all the functions f, are .derivatives of various or-

ders of the function 4.
Let (a, b) be a bounded interval. There exists an e &0

with {—e, e) A supp@=(Z}. Take T & 1 with e
I
T

I—m»{ la I I
b

I
)&0. Then (812) is satisfied for all

xE(a, b},
I
t

I
& T, and all kEsupp4. Substituting (815)

into (814) we obtain

I'Po~{»I &(2~) '"f dk g X If„&k) I

j=ns=o

dk
I f~J(k)l

o [s I
t

I
—max(

I
a I, I

b
I
)]'

for
I
t

I
& Tand all xE(a, b). Since n is arbitrary, this implies, in particular, (86).

The proofs of relations (87) (89) all follow the same pattern. Let us prove (87), for example. We define

~p, ,(x)—f dE exp( ltE)e, z(x)@&(E)=(2~) ' f dk 4,( k)e xp(ik x—itk 12),
0 —00

%zz(x) = f dE exp( —itE)ezra(x)4z(E) =(2n )
' j f dk 4z(k)exp(ikx itk /2—) .

0 QO

(817)

(818)

Here, 4'i F Co ((0, 00 )), 4'g&Co (( —ao, 0}); P ='Pl+f2, %'o, =0'io, +0'2o).
For some e & 0 we have ( —00, e) fl supp@, =S. Thus if we take T, & 1 with —sT, —a & 0, then (812) will be satisfied

for all t & —T„x& a, and all k F supp@, . Substituting (815) into (814) we obtain

I pio~{x) I

=(2~)-'"f" dkx X „„„„„If;{k}I

,=., =o I
«-x I' "

I
«-x

I

""
I
«-x

I

""

&(2n') ' g g 2
dk

I f,j(k) I

o (e I
t

I
+a)1 " (e

I
t

I

+a)"i (x+sT, )"i

=0&(1+ It I) ""(1+Ix I) "") (819)

for t & —Ti and x & a. Note that in the same way one can show that the bound (819}holds also for t & T', and x & a.
Analogously,

o &x)
I
=O«1+

I
t

I

)-""(1+
I
x

I

)-"") (820)

for t & —T2 and x & a, or t & Tz and x & a.
To prove (87) we write

f dx I+o~(»l' —f dE I@'i(E) I' = f dx
I p~o(x)+'p2o(x} I'- f" dx

I ~...(x) I'

& f dx I'bio, (x)l'+ f dx
I +,o,(x}l'

+2 f dx [%,o, (x}]'+zz(x)

& f "
dx

I +io, (x)l'+ f' dx
I +2o,(x)l'

+2 dx 4'z«x dx %'&«x (821)

Applying now inequalities (819) and (820) with n & 3 to majorize the right-hand side of (821) we see immediately that
(87) holds true.
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