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Density-fnnctional theory for ensembles of fractionally occupied states.
I. Basic formalism

E. K. U. Gross, L. N. Oliveira, ' and%. Kohn
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A density-functional theory for ensembles of unequally vreighted states is formulated on the basis
of the generalized Rayleigh-Ritz principle of the preceding paper. From this formalism, two alter-
native approaches to the computation of excitation energies are derived, one equivalent to the
equiensemble method proposed by Theophilou [J. Phys. C 12, S419 (1979)], the other grounded on
an expression relating the excitation energies to the Kohn-Sham single-particle eigenvalues.

I. INraODUCTION

Density-functional theory was originally developed'
as a ground-state formalism. For excited states, a
straightforward extension on the basis of the Rayleigh-
Ritz principle is possible only for the lowest-energy state
in each symmetry class. '" A more general approach,
applicable to arbitrary excited states, has been proposed
by Theephilou, s who extended the theory to equiensem
bles of the lowest M eigenstates, equally weighted. Using
a variational principle for the ensemble energy, he
demonstrated that the ensemble density uniquely deter-
mines the external potential and that the correct density
of a given system can be obtained by solving self-
consistently a set of Kohn-Sham (KS) -like equations.
The exchange-correlation functional E~[p] arising in
this formalism has recently been investigated, a quasi-
local-density approximation for E~ having been derived
by identifying the equiensemble with a thermal ensemble.

In this paper, we shall develop a density-functional
theory for ensembles of fractionally occupied states. In
these ensembles, the M states are weighted unequally.
The extended Rayleigh-Ritz principle presented in the
preceding paper, hereafter referred to as I, enal)les us to
generalize Theophilou's ensemble, diff'erent weights
w„w2, . . . , w being assigned to the lowest M eigen-
states. A density-functional formalism for such an en-
semble, parametrized by M distinct weights, can be con-
structed. For practical applications, however, it is more
convenient to de5ne the weights as functions of a single,
real parameter w. Thus, for example, in the case of a
nondegenerate spectrum, we assign to the highest-energy
state in the ensemble the weight w (i.e., choose wst ——w)
and assign to each other state the weight (1—w)/(M —1)
[i.e., choose w, =w2 —— . ——wst, =(1—w)/(M —1)].
The condition w& &w2& . - &w~, required by the vari-
ational principle in paper I, implies that 0 & w & 1 lM.

For w =1lM, this deSnition of the weights ensures
that Theophilou's formalism for an equiensemble of M
states be recovered, all weights being equal to 1/M. Simi-
larly, for w=O, the formalism for an equiensemble of
M —1 states is obtained, all weights being equal to
1/(M —1). In these two limits, therefore, Ref. 6 provides
an approximation for the exchange-correlation energy
functional.

Our analysis leads to an exact expression relating the
excitation energies to the KS energies. In a subsequent
paper, hereafter referred to as III, we shall show that,
with a simple approximation, the expression for E„, in
Ref. 6 turns the formal relation into a practical, accurate
calculational device. In this context, we shall compare
our expression with Slater's transition state formula.
Here, however, we concentrate on deriving the exact rela-
tion.

The paper is organized as follows. Section II develops
the density-functional formalism for M 2, i.e., for en-
sembles comprising only the ground state and the first ex-
cited state, both assumed nondegenerate, with weights
1 —w and w, respectively. Section III addresses the cal-
culation of the first excitation energy. Section IV extends
the basic formalism to larger ensembles, including degen-
erate states. Section V discusses the calculation of the
corresponding excitation energies. The density function-
als considered in Secs. II-V are defined for ensemble v-

representable densities; Sec. VI extends the domain of
these functionals to arbitrary non-negative functions, us-
ing the constrained search formulation of Levy' and
Lieb "

II. DENSITY-FUNC~iONAL FORMALISM
FOR NONDEGENERATE TWO-STATE ENSEMBLES

Consider a many-electron system with Hamiltonian

8=7'+0+ 0',

where

,' fVg (r) Vf—(r)d r,

f P (r)f (r')f(r')f(r) 3

f
r r'/—

0'= fP(r)v(r)d r,
and

(2b)

p(r)=g (r)g(r) .

Here, v (r) denotes the external potential, and f(r) is the
usual fermion field operator. Atomic units are used
throughout this paper.

For notational convenience, the ground state,
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P~ 1&=E, ~1&,
and the first excited state,

8 ~2)=E, [2&,

are assumed nondegenerate. This restriction is by no
means essential, however; degeneracies will be discussed
in Sec. IV.

We consider the ensemble density

trIB 8 I+trIBNI «rtDN&+trtP 9 ), ,

which proves the desired statement.
For fixed w, therefore, the potential 0''and hence its

eigenstates
~

1') and
~

2') are uniquely determined by
p'(r), so that the ensemble expectation value of 1'+ 0 is a
functional of the density,

F[w;p']—= (1—w)&1'
I
~+~ Il'&+w&2'

I
&+~12'& .

p(r) =(1—w)(1
~
p(r) [ 1)+w(2 [ p(r) [ 2), (3)

where m is any real number in the interval

0(m& —, . (4)

The coefficients on the right-hand side of Eq. (3) ensure
that

(10)

has the following properties:

It follows from the variational principle derived in pa-
per I that the functional

E„[w;p']—:fp'(r)u (r)der +F[w;p']

fp(r)d r =N, E,[iu;p'] & (1—w)Ei+wEt for p'(r)Qp(r) (1 la)

provided that both states,
~

1) and
~
2), contain N parti-

cles.
If now

and

E„[w;p]=(1 w)E, +—wEz, (1 lb)

p'(r)=(1 —w)(1'
( p(r)

~

1')+w(2'
~
p(r)

~

2'& (6)

is calculated with the ground state
~

1') and the first ex-
cited state ~2') (both assumed nondegenerate) of the
Hamiltonian 8 ' =1'+0+ 0', then

p'(r }Wp(r),

provided that P'and P'' differ by more than a constant.
The proof of this statement follows the original argu-

ment of Hohenberg and Kohn' (HK). For notational
brevity, we define a density matrix

D=(l —w)[1)(1i+w i2)(2i
The ensemble expectation value of any operator 2 is

then the trace

«I& &I=(1—w)&11~11&+w&21&12& .

Now, consider the density matrix

& '=(1—w) I
1'&&1'I +w

I
2'&&2'

I
~

The variational theorem of paper I then shows that

trIDP) (tr[8'8) .

Since
~

1') is different from
~
1), we have a strict in-

equality here [this follows from part (b) of the variational
principle; cf. Eq. (14) of paper I].'

In the trace on the right-hand side, we rewrite A' as
8 '+ P' —f" The defin. ition (2c) of f' and the analogous
definition of f' then yield

trIBBI &trIB'8')+ fp'(r)[u(r) u'(r)]d r—. (7)

The primed and unprimed variables interchanged, we
6nd

trID '8 'I ~trIB BI+fp(r)[u'(r) —u(r)]d r .

By adding (7) to (8) and assuming p'(r) =p(r), we are
led to the contradiction

where p(r) is the ensemble density associated with u (r).
In the following, the variational principle (11) will be

used to generate a KS scheme. This end in mind, we
de6ne a density functional for the exchange-correlation
energy by

E„,[w;p']—:F[w;p'] —T, [w;p']

(12)

where

T, [w;p']=—(1—w)(1,'
~

f'~ 1,'&+u (2,' [ f ~
2,') (13)

denotes the kinetic energy of a noninteracting ensemble
subject to the external potential

f",=f u,'(r)p(r)d r . (14)

This potential is chosen to make the noninteracting en-
semble density equal to p', i.e.,

p'«)=(1 —w)& 1' IP«)11'&+w&2,' I p(r)12,'&

where
~
1,') and

~ 2,') are the ground state and the first
excited state of the noninteracting system in the potential
1 ",. Existence of the potential, i.e., noninteracting-
ensemble u representability, is assumed.

With the definition (12) of the exchange-correlation
functional, the total-energy functional (10) can be written
as

E„[w;p']=T,[w;p']+ fp'(r)u(r)d r

+ ' f f P P, d'r d'r +E[wp ] .
[
r r'J—

According to the HK theorem proved above, the densi-
ty p'(r) determines u,'(r) uniquely, so that a unique poten-
tial u, (r) is associated with the density p(r) minimizing

E,[w;p']. The following analysis determines u, .
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The noninteracting N-particle functions
I 1,

' ) and

I 2, ) are Slater determinants comprising single-particle
orbitals obeying the Schrodinger equation

[——,
' Vi+u,'(r)]y;(r) =s;q;(r); s, & ei & . (17)

The change in the total kinetic energy is therefore

5T, = —f u, (r)5p(r)d r,
and Eq. (21) reduces to

In terms of these orbitals, the ensemble density, Eq.
(15), is given by

X—1

P'{r)= X l~;(r) I'+(1—w)19N«) I'

5E„=f 5p(r) —u, (r)+u(r)+ f p der'
lr —r'I

+u„,[w;p]( r) d'r =(), (24)

+w
I 'pN+1(r) I

(18)
leading to the final result

Similarly, the noninteracting kinetic energy can be ex-
pressed as

u, (r)=u(r)+f, der'+v [w;p](r) .
p(r')

lr r'—
I

(25)

N —1

Tg[w;p ]= g t(+(1—w)tjv+wtN+i (19)
With this potential, Eq. (17) becomes the usual KS equa-
tion, here to be solved self-consistently with Eq. (18).

with

gj= q)'. r ——,
'7'2 q. r 3r . (20)

According to the variational property, Eq. (11),
E,[w;p'] must be invariant under small changes Sp
around the correct density p(r), i.e.,

III. CALCULATION OF THE FIRST
EXCITATION ENERGY

For M=2, the ensemble energy, defined in analogy
with Eq. (3), is

5E„=5T,+fSp(r)v(r)der+ ff, d r der' 8(w)=(1 —w)E&+wE2 . (26)

where

+ prUxc N&p r r=O, (21)
If this quantity were known for w=0 and for some other
u & —,', the first excitation energy could be obtained by
straightforward subtraction:

u„,[w;p]{r)=5E„[w;p)ISp(r) . (22)
E2 E& ——[C(w)——t (0)]lw . (27)

For fixed w, the change in the noninteracting kinetic
energy is given by

N —1

5T, = g St)+(1 w)St~—+w St~+, ,
j=l

where, in view of Green's theorem,

5tj =f Stpj (r)( ,'V )yI(r)d r——
2 ~ r 3r

Since the orbitals p~(r) solve Eq. (17) for u,'{r)=u,(r),
it foOows that

5tj ——f Stpj'(r)[ej. u, (r)]yz(r)d r-

+ +j r 6j —Ug r ipj r r,

Alternatively, if 6'(w) were known for a range of w, the
first excitation energy could be computed by difFerentia-
tion

Ez E, =d8(w)/—dw . (28)

The noninteracting kinetic energy, Eq. (19), can there-
fore be expressed as

The ensemble energy C(w) is the minimum of the func-
tional E„[w;p'], Eq. (16). Explicit expressions for the
right-hand side of both Eqs. (27) and (28) can therefore be
obtained by solving self-consistently the KS equations, w

Sxed, and then substituting the resulting density p (r) for
p'(r) in Eq. (16).

For Eq. (28), in particular, this program leads to con-
siderable simpli6cation, as we now show. The single-
particle energies e;, Eq. (17), are given by

s, =t, + f I q), (r) I'u,'(r)d'r . (29)

St, =e,5f I q, «) I'd'r —f v, «)5
I q, (r) I'd'r

The qj. being normalized, the first term on the right-
hand side vanishes, so that

N —1

T~[w jp ]= g s;+(1—w)a~+we~+)

—fp'(r)u, '(r)d r . (30)

5t = —fu, (r)5lq&{r)l . d r. (23) For p'=p~ and v,'= u„one then finds, from Eq. (25),
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C(w)=E„[w;p ]
X —1

g e +(1—w)eN+weN+i

p~(r)p„(r')
d rdr'

I
r r'—

I

The last term on the right-hand side is

5E„,[w;p ]=f u„,[w;p„]5p (r)d r

BE„,[w;p]+ 'B.

p rU„, m;p r r+E„, u;p (31)

Since the derivative of 6(w} is needed in Eq. (28}, we
now compute the change 5@(w) resulting from a small
change 5w:

58(w)=5T, [w;p ]+fU(r)5p (r)der

p~(r')5p~(r)
r —r

where the partial derivative of E„,with respect to m is to
be evaluated at Sxed density p(r) =p (r).

The first term on the right-hand side of Eq. (32),

5T [w;p ]= g 5r;+w(5rN~i —5jN)

+(rN+1 rN )5w

+5E„,[w;p ] . (32) is easily evaluated from Eqs. (23) and (29):

I

5T.[w p ]= fU—.«} & 51m «}I'+w[5ImN+i«} I' —5ItN(r}I'] d'r

u, r y~+1 r — y& r W r+ C,~+,—eZ

BE„,[w;p]
SN i SN++ Bw P =Ptii

Equation (18) then shows that

5T,[w;p ]=(sN+, —eN)5w —f u, (r)5p (r)d r .

With these transformations, Eq. (32) becomes

(33)

I

quasi-local-density approximation for the equiensemble
exchange-correlation potential, is presented in paper III.
Deferring to that paper a more extensive discussion of
Eq. (34) and of its relation to the formally similar Slater
transition state expression for the excitation energy, we
turn our attention to degenerate ensembles.

and the right-hand side of Eq. (28) can finally be comput-
ed, yielding

BE„,[w;p]
E2 —E1——e,~+ Bw P =Ptii

(34)

Were the exact exchange-correlation energy known,
then, for any w in the interval 0&w & —,', Eqs. (27) and

(34} would yield exactly the same excitation energy.
Since in practice we must rely on approximate forms for
E„,[w;p], the value of E2 Ei resulting fro—m Eq. (27) is
different from that resulting from Eq. (34). Accordingly,
considerations of calculation al accuracy dictate the
choice of m and of the computational formula. Since the
KS eigenvalues ez+, and cz are associated with the same
density p (r), while the equiensemble energies C(w) and
8(0) are associated with the difFerent densities p (r) and
po(r), respectively, and since the KS eigenvalues are
smaller in absolute value than the ensemble energies, the
diSerence a~+1—e~ can be computed more accurately
than 8(w) —C(0). Equation (34) will therefore produce
more accurate results than Eq. (27), provided that a reli-
able approximation for BE„,[w;p] jBw be available. One
simple expression for this derivative, obtained from the

IV. DENSITY-FUNCTIONAL FORMALISM
FOR ARBITRARILY LARGE ENSEMBLES,

INCLUDING DEGENERATE STATES

In this section we shall consider ensembles consisting
of the lowest M eigenstates of the Hamiltonian8=f'+0+ 0;

8
I

m ) =E
I
m ) (m =1,2, . . . , M), (35)

the energies, generally degenerate, being labeled such that

E, &E, &

The density matrix de6ning our ensemble,

g(w)= g w
I
m)(m

I

1 —ml81=N2= ' =N~ g= M —g
(38a)

m-g+] =~m-g+2= ' '

is characterized by three parameters, M, g, and m, which
enter the occupation numbers m as follows:
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g is an integer satisfying 1 &g &M —1 while w is a real
parameter in the range 0(w & 1/M. The case w =0 cor-
responds to the equiensemble of M —g states,
wi ——w& —— ——wsf s

——1/(M —g}, w, ,sf =0. The
other limit, w =1/M, yields the equiensemble of M
states: w, =w2 —— ——w ——1/M. The parameter
thus interpolates linearly between these equiensembles.
This fact becomes most evident when the density matrix
(37) with occupation numbers (38) is written in the
equivalent form

M —g
's(w)=(1 —wM) g I

m &(m
Im —g

p(r)=trIB 's(w)p(r)I

p'(r) =trI 8 '(w)'p(r) I

are different,

(44)

p(r)Qp'(r), (45)

provided the potentials P' and P' difFer by more than a
constant.

To prove this statement we first establish the strict in-
equality

M
+(wM) g I

m &(m
I

m=1

Now consider the density matrix

(39) g w (m I
f'+0+k'Im &

g w (m'I f'+0'+O'Im'&, (46)

M —g
's(w}'=(I —wM) g I

m'&(m'
IM —g

M

+(wM) g I
m'&(m'

I

m=1

constructed from the lowest M eigenstates of the Hamil-
tonian 8 ' = f'+ 0+ P'',

m=1

with the occupation numbers w given by Eqs. (38). This
relation follows from the variational principle of paper I.
In order to demonstrate that (46) is in fact a strict in-
equality we assume the opposite, i.e., equality of the left-
hand and right-hand expressions in (46). Then part (b) of
the variational theorem of paper I implies that, for
q =M —g and q =M,

8'lm'&=E' Im'& (m=1, 2, . . . , M),

with energy eigenvalues satisfying

E'1 &E2 &

Then, for fixed M, g, and w, the densities

(41) I
r &]C-[

I
1'&

I

2'&
I
q'&1

C-[
I

1& I2& ls&] (47)

Here, [ I tp& &, . . . , I 1(k &] denotes the subspace spanned
by the states

I P, &, . . . , I gk &, and the labels r and s
(r & q (s) characterize the multiplet of energy E:

E, &E~ & &E, gE„+,—— ——E = . =E, gE, +, &E,+, &

The relation (47} allows us to expand the states

I 1&, I2&, . . . , I
r& as

Singling out the contribution of the multiplet with en-

ergy Es, we have

I J &= g ized'm lm & (3 =1~» (48)

and, similarly, the states
I

1' &, I
2' &, . . . , I

q' & as

I

k'&= g pf, I j& (k =1,2, ,q} . (49)
J =1

Writing the Hamiltonian 8' as 8—(P' —f'), the
Schrodinger equation (41) reads

[8—(O' —P'')] la'&=E„'
I
k'&,

so that

(P' —f')
I
k'&=(u E„'}

I
k'& (k =1,2, . . . ,—q),

Substituting the expansion (49) for
I
k'& on the right-

hand side of Eq. (50) and employing the Schrodinger Eq.
(35), we obtain

(~-0''}Ik'&= y. (E,-E.')p., I j& (k =1,2, "., q}.
j=1

+«, Ek}—
j=r+1

which, by Eq. (49), leads to

(f' —0')
I
k & = y (E, E„')p„,

I J&-
j=1

r

+«, Ek}—
j=l

r

=«q Ek}lk'&+—g «, Eq+'k) IJ&. —
i=1

»»lly, by Eq. (48), the states
I 1&,

I
2&,

reexpressed in terms of the states
I

1'&,
I
2'&, . . . , I

q'&,
so that
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A similar chain of arguments leads to

trIB ~'g(w)'8'j &trIB~g(w)P. 'j . (53)

Based on these two inequalities, the proof of the HK
statement, p+p' for V+ V'+ const, proceeds exactly as
in Sec. II. Thus, for fixed M, g, and w, the external po-
tential is uniquely determined by the ensemble density.

In the case of nondegenerate systems, the potential
yields a unique set of lowest eigenstates

~
1),

~
2), . . . ,

~

M ), so that the ensemble expectation value of an arbi-
trary operator A,

trIB~g(w)A j= g (m
~
2

~

m)
M —g

m =M —g+1
(m

~

A ~m), (54)

is a unique functional of the ensemble density.
In the presence of degeneracies, the situation is more

complicated. First of all, the "lowest M eigenstates" of a
given Hamiltonian are determined only up to unitary
transformations within the multiplets of degenerate
eigenstates. The expectation value (54) therefore general-
ly depends on the choice of the eigenstates. ' In particu-
lar, there are in general many difFerent densities associat-
ed with a given external potential. Conversely, ho~ever,
as demonstrated above, the potential producing a given
density is uniquely determined (up to within a constant).
The intermediate density matrix generated by the
(unique) potential to reproduce the given density, howev-
er, need not be unique; i.e., we can encounter the follow-
ing situation:

r

+ g (E, E—)Pt,)a, ~

m')
j=1

(k =1,2, . . . , q} . (51)

Equation (51) implies that the subspace [ ~

1'),
~

2')
, . . . , ~

q') ] is invariant under the action of the operator
(f'—P''). Therefore, according to a theorem of linear
algebra, (f —f ') has eigenstates in [ ~

1'),
~

2'), . . . ,

~

q') . This is a contradiction to O' —t "&const, since P'

and ' are multiplicative operators.
tors.

This establishes the strict inequality (46), which, more
compactly, is written as

trIB ~'g(w)P j (trIB ~
g( w)'Pj. . (52}

E'g[w;p'] =—fp'(r)u (r)d r +F 'g[w;p']

has the following properties:

(59)

M —g
EMg[w. pi], g yM —g

for p'( r }~p(r) (60a)

M —wgE, 'g[w;p]= g E +w
M —g m =M —g+1

(60b}

I ~

m ),m =1,2, . . . , M j differing by a unitary transfor-
mation within the multiplets of degenerate states. As a
consequence of this, the ensemble expectation value (54)
of an operator A is in general not a unique functional of
the ensemble density.

The derivation of a variational principle for the ensem-
ble density requires a unique and universal analog to the
functional F[w;p]=trIB(f'+ 0)j, described in Sec. II.
The construction of this functional for degenerate ensem-
bles foHows the extension of the traditional HK theorem
to degenerate ground states ~ we Srst observe that the
ensemble energy 8= gg, w E is independent of the
choice of eigenstates, since unitary transformations
within a multiplet do not affect the energy eigenvalues.
In other words, if the potential 0' corresponding to a
given density p(r) generates different density matrices 8
and D, as indicated in diagram (55), then these density
matrices yield the same ensemble energy

tr I 8 ( f'+ 0+ P' }j =tr I D ( f'+ 0+ P') j =8 . (56)

The value of the ensemble energy (56) is therefore fixed
by the density up to within a constant Con. sequently, the
quantity

F ' [iu;p]:—8—Jp( r }u [p](r)d r (57)

is a unique functional of the density; the ambiguity with
respect to the additive constant in the external potential
cancels out. The functional F'g[w;p] may now be writ-
ten as

F 'I[gw;p]=trIB Mg(w)(f'+0') j, (58)

where 8 'g(w) is any of possibly many density matrices
generated by the unique potential P' that corresponds to
the given density p(r).

The variational principle of paper I then ensures that
the functional

p(r)~ f'~ '

g w ~m)(m (

M
D= g w ~m)(m (

~p(r), (55)

the sets of eigenstates I ~
m ),m =1,2, . . . , M j and

where p(r) is an ensemble density associated with the po-
tential u(r). [In the presence of degeneracies, the rela-
tions (60) are valid for any ensemble density p(r) corre-
sponding to the potential u (r)].

Next, we shall derive a Kohn-Sham scheme. For this
purpose, we define a density functional for the exchange-
correlation energy as
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E"'[w p]=I-'"'[w p] -T"'lw p]

, f f P(r)P(r') dq
/
r r—'

/

(61)

Mps[w pt ] TM s[w pt ]+fpl( r)u ( r}d

, f f P'(r}P'(r') di
i
r r—'

/

p(r}=tr j8 ~'s(w}p(r) I

is satis6ed with a density matrix

(62)

M —g
QMs(w)= g (m, s)(rn, s

(M —g

The noninteracting kinetic energy functional
T~'s[w;p] is constructed as follows: given the interact-
ing ensemble density p{r), we postulate existence of a lo-
cal single-particle potential f, such that

+Ehf g[w . I] (68}

5E, 's=5T, 's+ f5p(r)u(r)d r

PPPP 3 3

fr r'[—

According to the variational property, Eq. (60),
E„'s[w;p'] must be invariant under small changes 5p
around any of the correct minimizing densities p{r}cor-
responding to u (r), i.e.,

m =M —g+1
im, s)(m, s i, (63) +f5p(r)u„;s[w;p](r)d'r =0, (69)

constructed from the lowest M determinantal' solutions

~
m, s ) of the Schrodinger equation

where

u„;s[w;p]{r)=5E„,s[w;p]/5p(r) . (70)

(f'+ P, ) im, s) =E, im, s)

with

E],&E2, &E3, &

(64)

(65)

By Eq. (67), the change in the noninteracting kinetic en-
ergy is

5T, 's=58, —f 5p(r)u, [p](r)d r fp(r)—5u, (r)d r .

(71)

Once the existence of a noninteracting Hamiltonian
(f'+ P,') reproducing a 'ven interacting density p(r) is
assumed, uniqueness of, follows from the HK theorem
proven above. However, as before, the intermediate den-
sity matrix generated by the (unique) potential 0,

'
to

reproduce the given density need not be unique, i.e., we
can encounter the following situation

The variation of the noninteracting ensemble energy,
M

58, = gw 5E (72)

5@,= y w. (m, s
~
5P,

~
m, s)

is then computed using Srst-order perturbation theory,

M

8,= g w
~
m, s)(m, s

~

m=1
M

D, = g w im, s)(m, s
i

p(r), (66)

so that

m=1

PI' 0 T (73)

5T, ' = —f 5p(r)u, [p](r)d r . (74)

T, 's[w;p]—=8, —fp(r)u, [p](r)d r (67)

is a unique functional of the density.
In terms of this functional and the exchange-

correlation functional, Eq. (61), the total interacting en-
semble energy, Eq. (59), is given by

where the sets of eigenstates t ~
m, s),m =1,2, . . . , M)

and I ~
m, s ),m =1,2, . . . , M I difFer by a unitary trans-

formation within the multiplets of degenerate states.
To define a unique functional T, 's[w; p], we follow the

construction of the functional F 's[w;p]: being invari-
ant under unitary transformations among the eigenstates
of a multiplet, the noninteracting ensemble energy

, w E, is fixed by the density up to within a
constant, so that

Equation (69) then reduces to

5E, 's= f 5p(r) u, (r)+u(r—)+f, d r'p(r')
f
r r' /—

+u„,s[w;p](r) der =0,

leading to the Snal result

u, (r)=u(r)+ f p, d'r'+ufs[w;p](r) .pfr')
[r r'[—

With this potential, Eq. (64} yields a generalized KS
scheme, to be solved self-consistently with the density
(62},i.e.,
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p(r)= g & m, s
) p(r) i m, s )

1 —mg
~-

M —g

and the ensemble energy amounts to

4 (w)=trIB (w)8)

m =M —g+1
&m, s ~P(r)

~
rn, s) . (77)

1 —NgI
(g l&1+g2+2+ +gl I+—r 1)—

M~

V. CALCULATION QF EXCITATION ENERGIES
+gIE (83)

In this section, we shall describe the computation of
excitation energies of a given interacting system with
specified external potential. The corresponding energy
spectrum, generally degenerate, will be divided in multi-
plets,

8~i,k)=E, ~i, k), k=1,2, . . . , g;,

For nondegenerate two-state ensembles, this expression
reduces to Eq. (26). We now wish to show that relations
analogous to Eqs. (27) and (28), allowing us to compute
excitation energies from 8 (w) or from d8 (w)/dw, re-
spectively, can be derived from Eq. (83). To this end, we
first consider the special choice w =1/Mr, which reduces
8 (w) to the equiensemble energy

(78) s (1/Mr ) =(giEi+g2E2+ +grEr )/Mr . (84)

an energy E; and a degeneracy g; associated with the ith
multiplet. The labeling is chosen such that

This equation and its analog for I —1 lead to an ex-
pression for the excited-state energy Er

Et ~E2 (E3 & (79) Ei ——(Mr /gi )[8 (1/Mr ) —6 '(1/Mr i )]

At this point, we have to take a de6nite choice for the
ensemble parameters, M and g, introduced in the general
formalism of the last section. Since the objective is to
calculate the multiplet energies Ei,E2, . . . , it is most
convenient to choose M and g in such a way that both the
M-state and the (M —g)-state ensembles contain only
complete multiplets. This guarantees a unique minimiz-
ing density for the variational principle (60) and thus a
unique solution of the KS equations (cf. Ref. 13). The
values to be taken for M are therefore

(85)+8 '(1/Mr, ) .

I
Mr= gg;, (80) g gr( ) /g

Once the lowest I equiensemble energies are calculated,
therefore, the lowest I eigenvalues can be easily obtained.
Equation (85), a generalization of Eq. (27), is of course
implicit in Theophilou's formalism, which provides for-
mal expressions for the equiensemble energies e (1/Mr ).

The more general approach described in Sec. III estab-
lishes an important alternative to the calculation of exci-
tation energies. To show this, we differentiate Eq. (83)
with respect to m:

where I is the total number of multiplets included in the
Mr-state ensemble. Given Mr, the most natural choice
for g is gr, i.e., the degeneracy of the highest multiplet in
the ensemble. ' The parameter w in the density matrix
then interpolates between the equiensembles of MI and
(Mr gr ) =Mr i s—tates:

D '(w) =D' '(w)—

=gr(&r —(g&~i+gz&2, + ' ' +gr i&r i1™r—i j .— —

Noticing that the second term within the square brack-
ets on the right-hand side is the equiensemble energy

'(1/Mr, ), and substituting Eq. (85) for the first
term in the square brackets, we are led to

8 (1/Mr) —8 '(1/Mr &)=(1/Mi)d@ (w)/dw . (87)

i,k)&,k
i

i=1 k=1

+w g ~Ik)&I k
~

(81)

This shows that if, for i =1,2, . . . , I, each 18'(w)/
dw

~
is calculated for some w, in the interval

0(w; & 1/M„ then the equiensemble energies 8'( 1/
M, )—reckoned from the ground-state energy E,
=6' ='(1/gi }—can be easily computed:

The corresponding ensemble density is given by

p (r}=trIB (w)p(r)I

1 g I—
g &i k

~
p(r) (i,k)

i=1 k=1

+w g &I, k (p(r) ~I,k), (82)

(88)

and Eqs. (85) and (87) determine the excitation energies
measured from the ground state:

1 d@(w) 1 d A'(w)
I 1 = +

gr dw w=wr, ~ M( ilaw
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This is the desired generahzation of Eq. (28). If 8 (w)
were known exactly, Eqs. (85) and (89) would yield exact-
ly the same excitation energies. In practice, however,
8 (1/Mi }and d 8 (ui)/dw can be calculated only approx-
imately. The dNerence between equiensernblc energies
on the right-hand side of Eq. (85), a small quantity found
by subtracting bvo large energies, introduces large rela-
tive errors. Since, as we show next, each derivative
d 8'(w)/dw

~
„can be determined with the same rela-

tive accuracy as 8'(w), Eq. (89) produces significantly
more accurate excitation energies than Eq. (85).

Exphcit expressions for 8 (w) and d8 (w)/dw are
found by evaluating the functional

gI
T, [w;p ]= g a, +wb,

j=l I—l

Pu ""s "d "s

with

and

(96)

(97}

(98)
Ei[w;p]=TI[w;p]+ fp(r)U(r)d r

P~P~ 3 d3 (90)

m =Mr 1+1

Next, we insert Eq. (96},along with the definition of U, (r),
Eq. (76), in Eq. (90), to find

(91)

By assumption, the states
~
m, s }are Slater determinants

(cf. Ref. 16), the single-particle orbitals being computed
from

+Uq(r) IPJ(r)=SJOJ(P1), si (E2( (92)

and Eqs. (76) and (91) in self-consistent fashion.
In terms of these orbitals, the density of the Slater

determinant
~
m, s) is

(m, s )p(r) [m,s)= g f, [O1,(r) ~

I,
j=l

(93)

where f J =0 or 1 denotes the occupation number of or-
bital IpI(r) in the N-particle state

~
m, s }. Similarly, the

noninteracting N-particle energies are given by

E,=gf s~.
j=l

This allows ils to rcwritc thc total dcIlsity, Eq. (91},aIid
the kinetic energy, Eq. (67), in terms of the single-particle
orbitais as

at the solution p (r) of the KS equations and
differentiating it with respect to w In Eq. (90), we have

introduced the abbreviations Ei:E, '—', TI:T, ' ',—
and EI E~l'gI

We first compute the kinetic contribution, T, [w;p ],
to the ensemble energy: in terms of the N-particle func-
tions

~
m, s ) obtained from the KS equation (64}, the ex-

act ensemble density is given byI1 —gpgl I—1

p (r)= g (m, s
~
p(r)

~
m, s }

m=l
M~

+w g (m, s (p(r) ~m, s} .
m =MI )+1

1 —Ngr8 (w)= g aj+wb,
j=l I —l

P (r)P (I")
d rd r

/
r r' f—

—Jp (r)U„,[w;p ](r)d r+E„,[w;p ] . (99)

For nondegenerate two-state ensembles, this expression
reduces to Eq. (31}. The analysis leading to Eq. (34) final-

ly yields in the general case

d8 (w) " gr=& b M-
N

BE„,[w;p]
Bw P =PILI

(100)

Equation (100) involves only KS single-particle states
and a functional of the density. Provided that an accu-
rate expression for BE„,/Bw be employed, dC (w)/dw
can be computed as easily and as accurately as the
equiensemble energies. To underscore this point, paper
III proposes a simple approximation for BE„,/Bw and
computes the excitation spectrum of the He atom, com-
paring the results of Eq. (85) with those of Eq. (100).

To conclude this section, we illustrate the computation
of a particularly simple spectrum where the Ml lowest
KS S-particle states correspond to excitations of one par-
ticle from the highest single-particie level e.& occupied in
the noninteracting ground state. The total KS energies
then take the form

X —1E,= g s, +SN, + (m =1,2, . . . , Mi }, (101)
j=l

and the corresponding X-particle states are given by

i
IO1~O'Z~. . . ~ O'N —1~1PN —1+m lN!

1 —NgI
p (r}= g aj+wbj

~ O1, (r) ~

j=l I—1

(95) (m =1,2, . . . , MI) . (102)

The occupation number f, for orbital O1J in state
~
m, s .)

then takes the form
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1, 1&jr%—1

~j,(N 1+m)

(103a)

(103b)

and the coeScients u,. and b,- entering the general expres-
sions (99) and (100) for the ensemble energy and its
derivative are readily computed

tion, we shall extend the domain to arbitrary non-
negative functions. For the equiensemble case, a detailed
mathematical analysis, including also a rigorous deriva-
tion of the Kohn-Sham scheme, has been presented by
Hadjisavvas and Theophilou. ' Here, we consider the un-

equally weighted ensemble defined by Eqs. (38). For fixed

M, g, and w, the extension of the functional I' s[w;p] is

then de6ned as

MI

Q. =
Ml „1&j&X—1

1, N&j&N —1+Mr
0, j &%+Mr

(104a)

(104b)

(104c)

I' ~s[w;p]= min trIB s(w)(f'+0)[ . (109)
D '&(~)~p

The notation D 's(w)~p indicates that the minimum is
searched over the set of all density matrices

(105a)1&j&N —1

N &j & N —1+Mi i (105b}

%+Mr 1&j &X—1+Mr
(105c)
(105d)

MI 0,
f J=

, +

0, j &%+Mr .

g
N —1+M~

p'(r)= g ly, (r) l'+
Mj=l I—1

The ensemble density, ~. (95), then reads

X I(('. &((t. lM —g

(110)

(constructed from arbitrary orthonormal N-particle func-
tions

l Pi &,
l $2 &, . . . , l P~ & ) yielding the prescribed

function p(r) as expectation value of the density operator,
1.e.,

p(r)=trl8 's(w)p(r)J .

Similarly, the extension of the noninteracting kinetic
energy functional is given by

N —1+MI

j=N+MI
(106)

T™s[w;p]= min trtB ~s(w)f'] .
D, '~(m)~p

(112)

Here, the search is to be carried through over the set of
density matrices

and the ensemble energy (99}and its derivative (100) are
given by 1 —w

, &(yM —g
N —1 1 —~g4'(~)= g e, + MI —1

N —1+Mr

j=N

N —1+MI

j =N+Mr
m =M —g+1

(113)

p~(r)p~(r')
d rd r

(constructed from orthornormal Slater determinants

l P, , &, . . . , l P, & ) yielding the prescribed function
p(r) as ensemble expectation value, i.e.,

p f Uxc ~p r P +Ex& N, p~ (107)
p(r) = tr I8, 's(w)p(r) J . (114)

and

d8 (w)
dN N+Mr

N —1+M~

r —1

BE„,[w;p]+

VI. CONSTRAINED-SEARCH FORMULATION

In order to show that I' ' [w;p] and T~s[w;p] are
well defined by Eqs. (109) and (112), one has to demon-
strate that, for an arbitrary non-negative function p(r),
the set of density matrices yielding p(r) is not empty. To
show this, we refer to the work of Zumbach and
Maschke, ' who constructed a complete set of Slater
determinants, each with a density equal to a prescribed
non-negative function p(r) Inserting th. ese determinants
in Eqs. (110) or (113),one immediately obtains an infinite
set of density matrices, each of which yields an ensemble
density equal to the prescribed function p(r).

With Eqs. (109) and (112), the extensions of the total
energy functional and the exchange-correlation energy
functional are given by

So far, the density functionals considered were defined
only for (ensemble) u-representable densities. In this sec- E „'s[w;p]= J p(r)u (r)d r +I' 's[w;p] (115)
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, y y
p(r)p(r') di„di„,

f
r r—'

[

Finally, one has to assure that the functional
E 's[w;p] provides a variational principle giving the
same minimum as E„'tt[w;p]. This is easily demonstrat-
ed using the variational statement of paper I:

l —m gE+w
M —g

min g g &((l ~P )y )+w

orth onorma1

m =M —g+1

or Equations (109) and (115)finally lead to

M —gQE+w
M —g

min trIB~s(w}PI,
D keg( ~)

l —m1 —wg

M —g m =M —g+1
E = min E „'s[w;p],

P(r) I

which, alternatively, can be written as

~g M —g M

gE+w g E
m =1 m =M-g+1

= min min trIB 's(w)8 J
I P'[~~ I D 'g(, u) P(r)

The definition of the Hamiltonian then enables us to
write

thus proving that E, 's[w;p] and E„'s[w;p] have the
same minimum.
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