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Rayleigh-Ritz variational principle for ensembles of fractionally occupied states
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The Rayleigh-Ritz minimization principle is generalized to ensembles of unequally weighted

states. Given the M lowest eigenvalues El & E2 & . & E~ of a Hamiltonian 0, and given M real

numbers w l & w2 & . & w~ y 0, an upper bound for the weighted sum w, E,
+w2Ez+ . +w&E& is established. Particular cases are the ground-state Rayleigh-Ritz principle
(M =1) and the variational principle for equiensembles (w& ——w2 —— ——w). Applications of the
generalized principle are discussed.

I. INTRODUCTION

The variational principle of Rayleigh and Ritz (RR) is
one of the oldest and most powerful tools in quantum
theory. Besides directly optimizing parametrized wave
functions, the RR principle forms the basis of modern
many-body techniques determining the best function in a
class of trial wave functions (e.g., Slater determinants in
Hartree-Fock theory). Another application is density-
functional theory, the variational principle of Hohenberg
and Kohn' being essentially a reformulation of the RR
principle.

In most cases, the variational method is applied to the
ground state. This is because, in applications to excited
states, the trial wave functions must be orthogonal to all
lower eigenstates. For the lowest eigenstates in a symme-

try class, trial wave functions of that symmetry automati-
cally satisfy this condition; for other eigenstates, howev-

er, ensuring orthogonality is prohibitively complicated.
For excited states, therefore, the RR principle for equi-
ensembles, which provides upper bounds for the arith-
metic average of the lowest M eigenvalues, constitutes an
important alternative. Long ago applied to the 2'S term
of He, this method more recently provided the founda-
tion of Theophilou's density-functional formalism for ex-
cited states.

In this paper, we shall derive a RR variational princi-
ple for more general ensembles, in which the lowest M
eigenstates are weighted unequally. For noninteracting
systems, these ensembles correspond to fractionally occu-
pied single-particle states, a circumstance that motivated
our study, as the following discussion explains.

That fractional occupation is convenient for calculat-
ing excitation energies was 5rst pointed out by Slater.
On the basis of the Hartree-Pock-Slater theory, he intro-
duced the transition-state approach and derived an ap-
proximate expression relating the single-particle eigenval-
ues of the Hartree-Pock-Slater equations to the excitation
spectrum. Following this development, Janak derived
an analogous relation in density-functional theory, relat-
ing each Kohn-Sham eigenvalue to the derivative of the
total energy with respect to the occupation of the corre-
sponding orbital. Although producing practical expres-
sions for numerical applications, these derivations are

based on the ground-state formalism. Thus, for example,
the transition-state approach unwarrantedly assumes
that the exchange potentials for the excited states and for
the ground state have the same functional dependence on
the density.

An alternative formulation, based on a Hohenberg-
Kohn theorem and on Kohn-Sham equations for frac-
tionally occupied states, seems therefore desirable. As
shown in a subsequent paper, ' hereafter named paper II,
one such analysis, stemming from the RR principle for
unequally weighted ensembles, leads to an exact expres-
sion relating the excitation energies to the Kohn-Sham ei-
genvalues. As usual in density-functional theory, an ap-
proximation is necessary to make this formal relation
practical. The resulting, approximate expression is
nonetheless significantly more accurate than Slater's for-
mula; this we show in a third paper, " hereafter named
paper III, by computing the excitation spectrum for the
He atom.

II. STATEMENT OF THE THEOREM

E, &E2&E, & (2)

WitJtin each mult'iplet of degenerate energies, we choose
an arbitrary set of orthonormal eigenstates and label
them consecutively. Once chosen, the labeling is kept
fixed in all further manipulations.

For any trt &M, X is defined as the subspace spanned
by the eigenfunctions

~
j) of H with EJ &E . By 8' we

denote the subspace spanned by the eigenfunctions
~
j)

of H with E &E, i.e., % com. prises L and the com-
plete multiplet of states with energy E (see Fig. 1).

After these preliminaries we can state the following
theorem.

(a) I.et to„to2, . . . , wM be real positive numbers or-
dered such that

The generalized RR principle we want to establish ap-
plies to any time-independent Hamiltonian H„whose
spectrum, generally degenerate, is given by

H~ J)=EJ
~
J) (J=1,2 3, . . . ) .

The eigenstates are numbered so that
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N) QN2+ ' ' PN~)0. (3)

w, &~, IH IO, &+ +wM&~~IH Ie~&

Then the following inequality is satis6ed for any set of
orthonormal functions [ I P, ), I $2), . . . , I P~ ) I:

the second relation in (7) yields [ I P, ), I Pi ), . . . ,

lm&l »nce Idi& I4»& .
) are orthonormal, the two subspaces [ I P, ),

Iy~), . . . , Iy )] aild [Il), I2), . . . , Im)] have the
same (Snite) dimension and are therefore identical. In
that case,

0 N)E] +w2Ep+ ' ' ' +w~E~ (4) [I 1& I2& Ir&l&[14i& (t'z& . I& &]

(b) The equality in (4) holds if and only if for m =M,
and for all other m with w +w +„ the subspace

[ I
((},), I {(}z),. . . , I P )] spanned by the trial functions

I Pi), I /2), . . . , I {I} ) lies in Q and contains' as a
subspace, i.e.,

(5)

In terms of the labels r and s (r +1(m (s) defined in
Fig. 1, characterizing the multiplet of energies degenerate
with E

E„&E„+]——E„+2—— ——E = =E, gE, +),

the condition (5}can be stated alternatively as

[ I
1& I2& . Ir&1{:[I4 &

I {/ &

C:[I 1), I2), . . . , Is)]. (7)

If an occupational jump, w Qw + „happens to coin-
cide with a jump in the energy eigenvalues, E~+E~+i,

is automatically satisfied, so that the relations (5) or (7),
respectively, take the simple form

, IP &]=[I» I2&

To illustrate part (b} of the theorem, we consider the case
M =2 for a nondegenerate ground state

I
1 ) and a possi-

bly degenerate first excited state
I
2), i.e.,

E] &E2 —— ——E gE +&, p&2.
If the states are equally weighted, w

&
——wz, the re1ation

(7) needs to be satisfied only for m =2, i.e.,

Il&&[14'i& I kg&]c-[I 1& I2& . , Ip&1.

In other words, the equality in (4) holds if and only if
the trial states

I P, ), I {(}2)are chosen from the subspace

[ I
1),

I
2), . . . , Ip)] in such a way that

I
1) is con-

tained in [ I Pi ), I Pz) ]. The situation is particularly sim-

ple if Ez is nondegenerate (p =2). In this case, the sub-

spaces [ I P, ), I $2)] and [ I
1),

I
2)] are identical, so

that
I
1)E[ I t}}i),I(t'i2)] is redundant. Therefore, the

condition (10) takes the form

[ I(('i& 1{tv&l=[ I
1&

I
2&] .

On the other hand, if wi+wz, the relation (7) must
hold, in addition, for m = 1. This yields [ I P, ) ]C [ I

1 ) ],
saying that

(12)

Th«rst pa««re»tion (10}
I

1&&[l{{}i&
I {/»&1 is

then automatically satisfied. Thus, for w, ~w i, the
equality in (4}holds if and only if

I((}i&&[I
2&

I
3& I/ &]

Once again, the situation is particularly simple if Ez is
nondegenerate. In that case,

{14)

FIG. 1. The spectrum of the Hamiltonian H, Eq. (1), depict-
ed schematicaBy. The horizontal axis represents an index dis-
tinguishing between degenerate levels (e.g., the magnetic quan-
tum number of orbitally degenerate atomic states). The vertical
axis displays the energy. The sohd circles identify the levels in
the ensemble of the first m eigenstates. The curly brackets indi-
cate the sets X =—[I 1), I2), . . . , Ir)j and '9 —=[I1},

I
2), . . . , I

s)]. As the relation {6) suggests, the mth state in
the spectrum is generally degenerate, and in general
the highest multiplet {i.e., the multip1ei

I
r + 1 ),

I
r +2), . . . , I

m ), . . . , I
s )) in that ensemb1e is partially occu-

pied.

is necessary and suScient for the equality in (4} to hold.
The two-state example suggests that part {b) of the

theorem can be cast into a simpler form if all states in-
cluded in the ensemble are nondegenerate, or, more gen-
erally, if the occupation numbers remain constant within
each multiplet of degenerate energies. A block of indices
[/, /+1, . . . , /+I I characterized by constant occupation
numbers wi —i&wI =wi+i = ' ' wI+t&wI+f+& then
comprises a complete multiplet or a set of complete mul-
tiplets with successive energies. Since, in this case, all oc-
cupational jumps, w &w + „coincide with jumps of the
energy, E +E +„ the condition (5) always takes the
form of Eq. (8). As an immediate consequence of the re-
quired orthonormality of the trial functions, the equality
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in (4) then holds if and only if for each block
Il, 1 + I, . . . , I+tI with uii, +w& —— . ——w, +,
&ic&, , the trial states (P&&, (P, , &, . . . , (P, , & lie
in the subspace spanned by the eigenstates

[ S&, [ )+I&, . . . , )1+r&, ie.,

consequently,

X 1~k, I'=1 (J=i,» . .).
k=1

(24)

Substituting Eq. (21) for
~ Pk & on the right-hand side

of Eq. (19) we find

(bE) q"'= g p)E —g E (25)

III. PROOF QF THE THEOREM

To prove the theorem, one has to demonstrate that the
quantity

where

(26)

(dkE} = y [{y ~H ~tI) & E„—] (16) denotes the probability that the eigenstate
~ j & lie in the

subspace[lki& lkz&* 14 &] Clear»

is non-negative [part (a}],and vanishes if and only if the
conditions C[

~ P, &,
~
$2&, . . . , ~ P &]t."iV holds for

m =M and for all other m with ui +w +, [part {b)].
For notational convenience, we de6ne

and

0&pj ( 1 (27)

m+ i =0 ~ (17)
p =m.j

This allows us to rewrite Eq. (16) as

M m

{bE) = g (ui —w, ) g [{P ~H~P & E„]. —
m=1

Equation (25) can be written

(bE)""'= g (p, —1)E,+ g p, E, ,
j=m+1

(29)

(18} from which we deduce that

For an equiensemble of m states, i.e., for the particular
set of occupation numbers m, =m2

—— ——e = 1,
w =0, the quantity defined by Eq. (16) becomes

m

{bE )""'= g [&6 I
H

I dk & Ek ] . — (19)

Equation (18) therefore enables us to treat the general
ensemble of unequally weighted states as a linear super-
position of equiensembles

(bE)sr= g (ic —ic +i)(bE) q"' . (20}

I kk &= g ~kj I J &

j=1

the coefFicients obeying the normalization condition

(21)

i
uk.

i
=1 (k=1,2, . . . , M) .

j=l
(22)

Being orthonormal, the set I ~ P, &,
~ Pz&, . . . , ~ Psi&I

can be complemented by appropriately chosen states

I PM+i & I Sr+2& . to form a compie«, «thonormal
basis. Expanding the eigenstates of 0 in this basis we
6nd

li &= & &k) Ilk& V=1 ».
k=1

(23)

Since, by construction, m & m +,, it only remains to
be shown that (bE)~"')0. To this end, we expand the
trial functions

~ Pk & in the complete set of eigenfunctions
ofH,

(b,E)'q"'= g (1 p, )(E —E, )+ —g p, (E, E) . —
j=m+1

(30)

In view of the inequality (27), each term on the right-
hand side of Eq. (30) is non-negative, i.e., (bE) q"'&0,
which proves part (a) of the theorem.

To prove part (b), we refer to Fig. 1. The degeneracy
associated with E reduces Eq. (30) to the form

oo

(bE)'q"'= g (1—p, )(E —EJ )+ g p, (EJ E) . —
j=s+1

(31)

This expression vanishes if and only if p = 1 for j & r and

pj =0 for j & s, which means that

(32)

Thus, (bE )I vanishes if and only if (32) is satisfied for all

m such that m &w +i, which completes the proof of
part (b).

IV. CGNCI. UDING REMARKS

To close our discussion of the RR principle for un-

equally weighted ensembles, a brief comparison with the
long established equiensemble principle seems appropri-
ate. The latter is a particular case of the former, all
the wi in Eq. (4) taking the same value,
m =m& —— . ——mz p0. Since the choice of m is imma-
terial, changes in m being equivalent to changes in the
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+to (P ~H~P )) gw E
P8 =1 m=1

(33)

unit of energy, the number of trial states (M) determines
the entire ensemble. In contrast, for fixed M, the inequal-
ities in (3) allow us to vary continuously the difference be-
tween the weights attributed to any two states. This adds
flexibility to the variational method. The central result of
paper II, an exact relation between excited energies and
Kohn-Sham eigenvalues, is an example of how this flexi-
bility can be exploited.

We finally note that the relation (4) is valid also for
in6nite ensembles,

provided g" i w F. is convergent. The relation (33)
holds for arbitrary orthonormal systems

~ P )
(m =1,2, 3, . . .); the left-hand side, however, may be plus
infinity.
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