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Uniform semiclassical approximation to supersymmetric quantum mechanics
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Recently, A. Comtet, A. D. Bandrauk, and D. K. Campbell [Phys. Lett. 150, 159 {1985})intro-
duced a modified semiclassical quantization rule motivated by the structure of supersymmetric

quantum mechanics. In this paper, following their modified semiclassical framework, we provide a
method to obtain wave functions in a uniform approximation. %'e demonstrate our method by con-
structing wave functions for the Morse, Rosen-Morse, and anharmonic oscillator potentials. Accu-
rate fits to the wave functions are found for all three potentials.

I. INTRODUCI'ION

H = — +P (x)— [8',8]P'(x),fi d
2~ dx &2m

(la)

where x(t) is a bosonic variable, 8(t) is its fermionic
partner, and P(x) is related to the ground-state wave
function as i11ustrated below.

Introducing the matrix representation 8=o + and
8'=a, Eq. (la) can be rewritten as a two-component
system with the Hamiltonians

Until very recently, the use of symmetry concepts was
restricted to transformations only between bosons or only
between fermions. On the other hand, in systems with
both kinds of particles, there are a number of symmetry
operations that can transform bosons into fermions and
vice versa. A natural description of the underlying sym-
metries of such mixed systems is provided by the concept
of supersymmetry. ' Because of the unified description it
provides, there have been many searches for physical
manifestations of supersymmetry. These investiga-
tions show that when supersymmetry is realized in na-
ture, it is generally broken to some extent. To simulate
supersymmetry breaking in field theories, Witten intro-
duced supersymmetric quantum mechanics. This for-
malism investigates Hamiltonians which are squares of
conserved, anticommuting charges. Supersymmetric
quantum mechanics has been extensively studied in the
past five years. '-"

Insight into the quantization of supersymmetric Ham-
iltonians is provided by the use of semiclassical
methods. Applications to date, however, have tend-
ed to concentrate on the energy spectra whereas wave
functions provide a more stringent test of quantization
procedures. %ave functions are also needed for the cal-
culation of transition rates. The purpose of this article is
to provide a method for obtaining accurate semiclassical
wave functions of supersymmetric Hamiltonians. This
will be achieved in a uniform approximation.

A supersymmetric quantum mechanical system is de-
scribed by the Hamiltonian

fi d 2 fi
H+ ——— i +P (x)k P'(x)

2m dx 2m

Ai di
+ Vg(x} .

2m dx

Introducing the operators

8 = +(I)(x)
a

2m

(lb)

(2a)

0 0 ) 0 8
Q=ao Q'=o o (4)

with which the supersymmetric Hamiltonian takes the
form

H+ 0

O H

Q and Q are conserved charges

[»Ql=[H Q ]=o.
The eigenstates of H can be written as the column vector

y(+ (

y( —)

which satis6es

Hg=Eg.
From Eqs. (2) and (8},one obtains

I3 = — +(I)(x),fi

2m

H+ and its supersymmetric partner H can be written
as

H+=8 8, H =88t.
The two-component system can be explicitly defined by
introducing
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pter(
—) gE y(+)

gy(+) +E y( —)

(9a)

(9b}

P(x) = — [di)(0(x)/dx][$0(x)]
&2m

so that

(10)

The special form of Eq. (lb) follows from general factori-
zation techniques for an arbitrary one-dimensional
Hamiltonian H. In fact, using the exact ground-state en-

ergy Eo, and the exact ground-state wave function fo of
H, the superpotential P(x) can be expressed as

corrections, at least to the energy eigenvalues. In this ar-
ticle, we want to see if a similar reasoning can be extend-
ed to the calculation of the eigenfunctions. Proceeding in
this manner and keeping terms only to first order in A' in

Eq. (14},one obtains

in'' '(x)-k f (E —P )' dx

i 2

2—,
'f, dx+ —ln 2m

H —Eo ——H

We note that Eq. (10) can be rewritten as

$0 (x)-exp — f (It(x)dx( —) &2m
(12)

Considering the formal order of each term with respect
to A in Eq. (15), the primitive semiclassical approximation
to 1(,correct within a factor of exp(vari), is given as

'(&)- [(() (x)—E] '
I ~

P(x)
~ +[/ (x)—E' ]I'

and thus H has a normalizable ground state.
In Sec. II we first review the primitive semiclassical ap-

proximation to the wave functions of the supersymmetric
quantum mechanics as presented by Comtet, Bandrauk,
and Campbell. Next we summarize the technique of
Miller and Good2 to construct the uniform semiclassical
approximation to the wave functions. Finally we intro-
duce the uniform semiclassical approximation to the
wave functions of supersymmetric quantum mechanics.
In Sec. III we apply our results from Sec. II to the Morse
potential, the anharmonic oscillator, and the Rosen-
Morse potential. Section IV contains a discussion of our
results and conclusions.

II. SEMICLASSICAL APPROXIMATIONS TO
SUPERSYMMETRIC QUANTUM MECHANICS

E —(()'+
l &2m+—ln 2m
4 fi2

(14)

A. Primitive semiclassical approximation to wave

functions —supersymmetric Wentxel-Kramers-BrNouin

In this section the eigenfunctions of the Hamiltonian in
Eq. (lb) are constructed using the Wentzel-Kramers-
Brillouin (WKB) method. In this approximation the
solution of the differential equation

(H —E)y'-'=0

is given by

'(x)=exp + f E —P +&2m
&2m

Xexp + f [P (y) E]'~ dy— (16a)

for the classically forbidden region and

'(x)- [E—P (x)) '~ exp —sin
i . i (x)
2

Xexp 2 f [E pz(y—)]'~ dy (16b)

for the classically allowed region. The physically ac-
ceptable solution in Eq. (16a) is the exponentially decreas-
ing one, and in Eq. (16b) the combination that behaves
like a sine function.

The formal expansion in Eq. (15) motivates the omis-
sion of the additional term fig' in the pre-exponential fac-
tor (P E) ' . Ho—wever, retaining the term propor-
tional to P' in the second phase integral in Eq. (15) gives
rise to additional pre-exponential factors which do not
occur in conventional WKB. It is precisely these terms
which lead to the modified quantization condition22

&2m f [E—(() (y)]'~ dy =nM, (17)
a

where P (a)=P (b)=E. Indeed, the second phase in-
tegral in Eq. (15), which contains P, is the contribution
of the fermionic sector since it originates froin the last
term in Eq. (la). Furthermore, this phase integral calcu-
lated between the turning points a and b yields

fi b P'(y)
dp =

2 a QE P~(y) 2

which is exactly equal to the boson zero-point energy,
thus canceling its contribution.

Except for the harmonic oscillator in any number of di-
mensions (and problems that can be reduced to it), the
function P(x) depends on iii in a nontrivial way (cf. Sec.
III}. Nevertheless, as was argued in Ref. 22, one can for-
mally count the powers of A' in Eq. (14), expecting the
complicated i)i dependence of (() to cancel higher-order

8. Uniform semiclassical approximation to wave functions

Since the primitive semiclassical wave functions in Eqs.
(16) diverge at the turning points, they are not useful for
practical calculations. Therefore, a method which gives
approximate wave functions that are uniformly valid at
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the turning points and away from them is needed. The
uniform approximation of Miller and Good is appropri-
ate to this problem. A brief outline of the application of
this method to the bound-state problem is given here.

The method involves approximating the solutions of

mapping function. The form of Eq. (lb} suggests that a
term linear in A should be explicitly present in the map-

ping function. Since the problem is again that of bound-
state eigenfunctions of a potential well with two turning
points, a possible choice which preserves this topology is

d—iii %(x)—2m [E—V(x)]%'(x}=0
X

(19) d U(S) —(I + kiri —S')U(S) =0 .
dS

(27)

in terms of the known solutions to a similar equation. In
the present case, the bound-state eigenfunctions of a po-
tential well V(x) with two distinct turning points are to
be found. To apply the method of Ref. 27, one needs to
choose an equation containing an auxiliary potential
(mapping function) with the same topology. An ap-
propriate choice is

The constant A will be determined by requiring that the
modified quantization condition, Eq. (17), be recovered.
The solutions to Eq. (27) are again of the form given in

Eq. (21}except that now I =(2n +1—A }fi. Substituting
Eq. (22) into Eq. (13) and taking Eq. (23) to hold again
yields

U(S) —(I —S )U(S)=0.
dS

(20)
Il

—(S')'(I + A i'' —S'}
T

U(S)-H„(S/&iii)exp( ,'S /f—i)— (21)

with (2n +1)iri=1 In Eqs. . (20) and (21), the variable S is
a function of x. Its x dependence is determined by re-
quiring that the solution to Eq. (19}be of the form

This is just the Schrodinger equation for a one-
dimensional oscillator and has the solutions

+2m [E—$2(x)]+&2m O'P'=0 .

The form of Eq. (28) leads to an expansion of S(x) in
powers of iii that now contains a first-order term, in con-
trast to the result in Sec. II S. Keeping only terms to first
order in A gives

4'(x)- T(x)U[S(x)] . (22)
S(x)=So(x)+AS, (x) . (29)

Substituting Eq. (22} into Eq. (19}and choosing
Substituting Eq. (29) into Eq. (28) and equating powers of
i}l gives

T(x)= [S'(x)]
leads to

Tll
fi —(S'}(I' —S )+2m [E—V(x)]=0 .

T

2m [E—p (x)]=(I —So)(SO) (30)

Equation (24) implies that an expansion of S(x) in
powers of A will contain no first-order terms. Thus, re-
taining only terms up to first order in A gives
S(x)=So(x) where So(x) is determined by

' 1/4r S,(.}T(x):—[S' (x)]

or equivalently

0 r —~''" &= 2m
"

E —Vy y. (25)

The approximate wave function is made uniformly valid
at the turning points by choosing the zeroes of I —S02(x }
to correspond to those of E —V(x) so that T(x) is finite
every~here. Thus we obtain the usual Bohr-Sommerfeld
quantization condition

z2
&2m f &E—V(y)dy= f (I —o )' do

v'p

=(n + —,')Air .

&2m p'=2(I —So)SOS', +(So) ( A —2SOS, )

where only terms up to first order in fi have been re-
tained. Equation (30) can be immediately solved to give

$0(Z}f (I —o )' do =v'2m f [E p(y)]' dy .—

(32)

Choosing the zeroes of I —So(x) to correspond to those
of E —P~(x) produces a wave function that is uniformly
valid at the turning points and also gives the quantization
condition

&2m f [E—P (y)]'~ dy =—,'(2n +1—A)iiiir . (33)

The modified quantization condition of Eq. (17) is ob-
tained by choosing A =1. Now Eq. (31) can be solved
for S,(x}with the result

C. Uniform semiclassical approximation
to suyersymlnetric wave functions

, y(x} . , So(x}
Si(x)= z»z sin ' —sin

2[1 —S,'(x)]'" E v'I.

The method of Sec. II 8 can be modified to provide ap-
proximate solutions to Eq. (13) by choosing a different for a ~x ~ b and

(34a)
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—1 P(x)+[/ (x)—E]' &I
2[8(~)(x}—I']'~z ~E So(x)+ [So(x)—I ]'~

(34b)

for x ~ a or x & b.
Thus, to 6rst order in A, the approximate wave func-

tions are

f„(x)=, , ~z H„(S(x)/&A)exp[ ——,'8'(x)/i)I], (35)

where N is a normalization constant and S(x) is given by
Eq. (29). Equation {35)is the main result of this paper.

For the ground state, E = I =0 and a =b =xo, so that

tion of Eq. (26) and the modilied quantization condition
of Eq. (17). We must emphasize that either quantization
condition gives the exact energy eigenvalues. In Figs.
1(a) and 1(b}we compare the exact wave functions for the
6rst and second excited states with the approximate wave
functions obtained by using the standard uniform semi-
classical approximation of Ref. 27 [Eq. (22)], and the uni-

form approximation to the supersymmetric quantum
mechanics, developed in Sec. II C [Eq. (35)]. We observe
that both approximations are equally good.

So(x ) = 2&2m J (()(y)dy
Xo

(36) 8. Anharmonic oscillator

&2m
Qo(x)- exp — f P(y)dy

fg xo
(37)

which is the exact wave function as required by the
choice of P(x) in Eq. (10).

and S,(x) is given by Eq. (34b) everywhere. Thus, up to
an overall normalization, the ground-state wave function
ls

In this case we take

( V )1/2

P(x) =
3 0

using which we can define two potentials

Vo x @Vo) x
6 1/2

V~(x) = — +
i/2m a

(39)

III. APPLICATIONS

In this section we apply the formalism developed in
Sec. II to three different one-dimensional systems: The
Morse potential, the Rosen-Morse potential, and the
anharmonic oscillator. For these systems we calculate
not only the bound. -state energy spectra, but also the
wave functions in the uniform semiclassical approxima-
tion to supersymmetric quantum mechanics. In Ref. 22,
it was shown that the modified semiclassical quantization
condition gives the exact energy eigenvalues for the first
two systems. In contrast, this quantization condition
does not yield the exact energies for the anharmonic os-
cillator with the potential energy V(x }=ax +Px, but it
predicts the correct quantum number dependence for all
the energy eigenvalues.

A. Morse potential

For the Morse potential we have

The potential V (x) is a symmetric double well, whereas
the potential V+ (x) is a single well (cf. Ref. 15). We plot
these two potentials in Fig. 2. %'e note that, because of
supersymmetry, the ground-state energy of V (x) is 0,
which lies just on the hump in the middle of the poten-
tial. Since there are no levels below this energy (i.e., in
the region where there are two pockets of the potential},
for this particular potential there is no doubling of energy
levels due to tunneling. In general, the supersymmetric
partner which includes the level with E =0 would exhibit
this level doubling and this feature can be important in
practical calculations. '~

In Table II, we present the energy eigenvalues. We as-
sume that V0=1 MeV, a =1 fm, and m =931.5 MeV.
The exact energy eigenvalues for the potential V (x) are
calculated by solving the Schrodinger equation numeri-
cally. In this table the column marked SS is obtained by
using the modified quantization condition of Eq. (17).
We also applied the standard WKB (Bohr-Sommerfeld)
quantization condition of Eq. (26) both to the potential
V (x} (the column marked WKB ) and the potential

P(x) =( Vo)'~ [1—exp( —x/a)]-
&8ma ' (38a)

so that the potential V, as calculated by Eq. {lb), explic-
itly reads

a( V, )'"
V (x)= Vo[1 —exp( —x/a)] + 8ma' &2m a

(38b)

TABLE I. Energy levels of the Morse potential, Eq. (38b),
with V0=300 MeV, a =1 fm, and m =931.5 MeV. The first
column is the exact energy, the second column {SS)is calculated
using the modified quantization condition, Eq. (17), and the
third column (%KB) is calculated using the conventional &KB
formula, Eq. (26).

In our calculations we have chosen Vo ——300 MeV, a =1
fm, and m =931.5 MeV (nucleon mass). In Table I, we
present the energy eigenvalues calculated using both the
ordinary WKB (Bohr-Sommerfeld) quantization condi-

Exact energy

0.00
116.57
191.33

0.00
116.57
191.33

VfKB

0.00
116.57
191.33
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TABLE III. Energy levels of the Rosen-Morse potential, Eq.
{41),with Vo=200 MeV, a =1 fm, and m =931.5 MeV. The
second column (SS) is calculated using Eq. (17) and the third
column (WKB) is calculated using Eq. (26).

Exact energy

0.00
89.19

136.57

0.00
89.19

136.57

%KB

4.39
91.90

137.60

persymmetric quantum mechanics. In particular, we
have constructed accurate semiclassical wave functions in
a uniform approximation, which are 6nite at the turning
points. In contrast, the primitive semiclassical wave
functions introduced by Comtet and co-workers are in-
correct at the turning points. For the ground state, our
approximation gives the exact wave function as required
by the choice in Eq. (10).

%'e have compared our wave functions with the exact
ones for three different problems. The first one was the
Morse potential, for which both the Bohr-Sommerfeld
formula and the supersymmetry modified quantization
rule give the exact energy eigenvalues. We have found
that both the standard uniformized WKB and our super-
symrnetry modified uniformization provide an excellent
approximation to the exact wave functions. The second
test case was the anharmonic oscillator, for which neither
quantization rule gave exact energies, although the super-
symmetry modi6ed rule fared somewhat better. For this
case both wave functions were still good approximations
except near the extrema of the wave functions, where
WKB appeared to be slightly better. The third test case
was the Rosen-Morse potential, for which the supersym-
metry modified quantization rule gave the exact energy
eigenvalues, in contrast to the Bohr-Sommerfeld formula.

In this case, our supersymmetry modi5ed rule yielded
somewhat better wave functions.

Recently there was much discussion in the literature
concerning the exactness of semiclassical bound-state en-
ergies for supersymmetric quantum mechanics. It was
argued that for shape invariant potentials 2 the supersym-
metry modi6ed quantization rule gave exact energy eigen-
values. ' (It was also conjectured that shape invariance
is not only suScient, but also necessary for a potential to
be exactly solvable. This conjecture was nevertheless
disproved. ) For the two shape-invariant potentials we
studied, namely, for the Morse and Rosen-Morse poten-
tials, the supersymmetry-modi5ed quantization rule gives
the exact energy eigenvalues as shown by Dutt, Khare
and Sukhatme; ' however, our uniform wave functions
were not exact, except for the ground state. Obviously,
the exactness of the energy eigenvalues in an approxima-
tion scheme does not automatically guarantee the exact-
ness of the wave functions, which provide a more sensi-
tive test. Consequently, we cannot conclude from this
study that the supersymmetry-inspired semiclassical ap-
proximation is better than the standard %'Ka approxi-
mation. It would be interesting to investigate further the
connection between shape invariance and the exactness of
the wave functions.
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