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Possible new frequency shifts i'or the 2S, /2 -2Pt/~ transition in a hydrogen atom
within a specific boundary

Il-Tong Cheon
Department ofPhysics, Yonsei Uniuersity, Seou/, Korea

(Received 1 June 1987)

Changes in the frequency of the 2Sl/2 ~2Pl/~ transition in hydrogen when the atom is placed be-
tween two parallel, perfectly conducting plates are investigated. It is shown that the transition fre-
quency depends on the distance between the plates and that a change in the frequency of
he= —O. 894 MHz results for plates separated by 1 pm. This is suSciently large to be measurable.

I. INTRODUCTION

The Lamb shift of the 2S, z2 state in the hydrogen atom
is well known and arises from the interaction of the
bound electron with the fluctuating vacuum electric
field. ' Quantization of the radiation field in free space
leads to the important fact that the vacuum field does not
really vanish, but rather fluctuates. This nonvanishing
field leads to a zero-point energy g fico /2, which is
often considered unobservable and hence is disregarded.
In 1948, however, Casimir pointed out that this fluctua-
tion could be observed by imposing a specific boundary
condition in a given geometry. Namely, the difference
between the zero-point energy inside the volume L b
(L »b) with perfect conducting boundaries and the free
value for this same volume is finite and observable, i.e.,

g Picots„/2 t'bL /(2n—c) ] I (fuu/2)d to
I,j , n

(tr L /720—)lcb

This fact was confirmed" by the measurement of the force
exerted on two parallel perfectly conducting plates. Ac-
cordingly, one may speculate that the introduction of
boundary conditions of specified geometry would alter
vacuum fluctuations, which would in turn modify atomic
properties. Specifically, when the space around an atom
is restricted by perfect conductors, we expect new shifts
of the atomic energy levels in addition to the Lamb shift

since it is due to vacuum fluctuations of the electric field
in free space. Thus it is very interesting to investigate
thoroughly the energy spectra of a hydrogen atom when
it is placed between two parallel perfectly conducting
plates. Below we calculate this effect in the context of
quantum electrodynamics.

II. THEORY

The frequency shifts due to vacuum fluctuations can be
evaluated by analyzing radiative corrections and effects
of vacuum polarization on electron scattering by an
external electromagnetic field. Here, we use natural
units, i.e., R=c =1, throughout the calculation.

A. Radiative corrections

Let us evaluate the Feynman diagram, Fig. 1(a), in a
region of space with specific boundaries that consist of
two parallel perfectly conducting square plates of size I.
separated a distance b from each other. Since the
momentum of quantum-electromagnetic normal modes in
a rectangular cavity with conducting walls L XL )&b is
expressed as

~

k
~
=[(srl/L) +(srJ/L) +(mnlb) ]'~

the matrix element for the radiative correction, Fig. 1(a),
is given by'

A(, i(pF,pt)=(ict/4' ) I dko((2') lbL ] g y"(PF km) —'s' i(Pt —k ——m) 'y„(k —A2;„+is)
00 Ij,n

where yt' are the Dirac matrices, gf =y pi, and

k'=yoko y, (ttl/L) y2(mj—/L) y3(tr—n/b) =yoko——y, k, —y2k2 —y3k3

with

(2.1)

(2.2)

k, =(trl/L), k2=(ttj /L), k3=(ttnlb) . (2.3)

As mentioned in Sec. I, the matrix element (2.1) gives a result which is the sum of the Lamb shift in free space plus
the correction caused by the boundary.

The photon propagator (k —A,m;„)
' is conventionally regulated as (k —A, ;„) ' —(k —A, )

' with a large regulator
mass A, . In this case, the matrix element (2.1) can be rewritten as
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A,
2

A(, )(pz, pl )=(ial4m ) f dko[(2m) IbL ] g y"(Pz k— m—) '((i(nfl g—m—) 'y„ f, dg(k g—)
Ej,n min

=(4nia)(2m) ~ f dko[(2n)'/bL'] g f, dgy"(p'„—k+m)((i(pl —k+m)
Ej,p min

X y„(k —2kpp) '(k —2kpI ) '(k —g) (2.4)

where we have used the result

(Ii k—+m)(P k—' m—) =p 2—kp +k2 —m 2=k' —2kp,

with p =m .
The identity

(AS) '= f dy[Ay+8(1 —y)]

(2.5)

(2.6)

(ki —2kpz) '(k —2kpz) '= f dy(k —2kp ) (2.7)

p» =ypl+(1 y}pF—

Then, the matrix element is found in the form

A,
2

A(, )(pF,pr)=(4nia) f dy f, dg(2m) f dk()[(2n) lbL ) g y"(Ii'F k+m)—
min Ej,n

X((i(P, k+m—)y„(k' 2kp, )—-'(k' g)—
A,

2

=(24mia) f dxx(1 —x) f dy f dg(2m) f" dko[(2m) /bL ]
0

min 00

X g y"(pF k+m)((—i(pl k+m)y—„
E,J, A

X [k 2 —2xkp —( 1 —x )g]

(2.8)

(2.9)

The numerator in (2.9) can be decomposed as

y~(I)F k+ m )I(P—, k+ m—)y„=y("(P„((i&I i)iFkk —k((i/I+—k4k+ mpz()i+ m((if' —mk'((i m((it+ m—((i )y„.
Making use of the formulas given in Appendix A [(A28) and (A29), respectively],

(2m) f dko[(2') IbL ) g (1;k )(k 2pk 6) =i—(l—/96m )(1;p )(b, +p )
E,j,n

i+(1/128mb)(1;p )(5+p )

(2.10)

(2m. ) f dko[(2n) /bL ] g k kz(k 2pk 5) =—i(—1/96&)[pp —g (b, +p )/2](b, +p )
Ej,n

+i(1/128mb)[p pz —ri z(b+p )/3](h+p )

we obtain
1 1

A(, )(pr, pI)= —(24na) f dxx(1 —x}f dy f, dgI(96m ) '[x p»+(1 —x)g] (W+w/2)
min

+(128mb) '[x p»+(1 —x)g) ~
( W+(()/3)I,

where

W =y"[Pzdgl —xgfz((ip'» —xgf»((igfl +x p»((t(P» —m (P' x(i+»d(P)+ m»(pz((i + (iPz }+m ((f ]y„,
m =2y"gy„[x~p +(1—xg'] .

(2.11)

(2.12)

(2.13}
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The first term on the right-hand side in Eq. (2.11) gives the conventional radiative corrections in free space. The impor-
tant term is the second term, which gives the modi6cations to the free-space result. The second term depends on the
distance b and is precisely the quantity to be calculated in our present investigation. The quantities 8' and m can be
written as

W = —2/1((fPF + 2'„((fgfF +2xPI((fP —2x P dP 4—rnx (gf (f +((fP )+2m (PF((f +((fPz+Pi((f +((f/' ) —2m ~((f,

(() = —4((f[x p +(1—x)g]

by use of identities'

y"((fy„=—2((f

y"dory„=2(((f0+ N ),
y"N'dy„= 2N— (f .

Thus we find the b-dependent term takes the form

1 1 A.

A(, )(pF,pi)= —(3a/16b) f dy f dx f, dg[x(1 —x)[x p +(1—x)g'] 'i~G(
min

——34((fx (1—x)[x p +(1—x)g]

(2.14)

(2.15)

(2.16a)

(2.16b)

(2.16c)

(2.17)

2IfrffifF'+2m(pF((f+r(fpr+Ifr((f+4pz) —2m d+x[2pr((fpF+2pz((fp 4m—(p (f+((fp )]—2x2p ((fp (2.18)

(2.19)

where

The integrals over ( and x in (2.17) can easily be carried out utilizing the results given in Appendix B. The result is
1

A(, )(pF,pr ) = —(3a/16b) f dy Dy",

D =( ~Am ~r —
Ypr )[ 2Ifg((f IAAF+—2m (PF((f +((fPp+Pi((f +((f/1 ) 2m ((I ]

+-',p,-'[ln(2p, /A. ,„)—1][2'((fpF+2/, (fp, 4m (p,—((f+((fp, )] ,'p, 'p—,4-jd„——',((fp„ (2.20)

Taking the matrix between states u (pF) and u (pr), and
referring to the integrals in Appendix C, we obtain, for
q ~~4m,

I

I'ib, =(a/4mb)(4m cos 8) 'Iln(4m /A, ;„)—4—(csc8)

X ln[(1+ sin8) /(1 —sin8)] I,
A(')(pF pr ) = I i'&+ I'ii(4((f &4)+Rb&-

where

I,=(a/4mb){2+tan 8[3—ln(4m /A, ;„)]

(2.21)

Rb ——(a/4mb)[3 —(2m /A, ;„)ln(4m /A, ;„)].

(2.23)

(2.24)

In evaluating Eq. (2.21), we have used Pu(p}=mu(p),
pr=pI+g~ pI =pF=Pl, and2 2 2

—(1—tan 8)(csc8)
q =4m sin 8. (2.25}

X ln[( 1+sin8) /( 1 —sin8) ]+(2m /I, ;„)

X [1—(28/sin28)+28 tan8] I, (2.22)
Using similar techniques, we can evaluate Feynman dia-
grams [Figs. (lb) and (lc)] as

A(b)+A(, )
—— Rbrf . —b b (2.26)

Thus the sum A =A&,~+A~&~+A~, ~
can be written as

(2.27)

The Srst term contributes to the shift in the energy levels
of the atom, while the second term modi6es the electron
magnetic moment.

(a)

FIG. 1. Feynman diagrams for radiation corrections to elec-
tron scattering by an external electromagnetic fjLeld.

8. Vacuum polarization

Under an assumption that electron and positron wave
functions vanish at the surface of a perfect conductor, the
vacuum polarization, Fig. 2, is described by
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(q)= f" dpo[(2m) /bL ] g tTr[y&(p+g+m)y&(p+m)])[(p+q) m—] '(p —m )

l,j, n

where p, =(irl/L), p2 (——mj /L) and pi =(en lb} By the identity (2.16), we find

II„„(q)=f dz f dpo[(2') /bL ] g Tr[y„(gf+g+ m)y„(gf+ m)][(p+zq) +q (z —z )—m2]
oo

I,j, n

Here we shift the origin of integration and the summation from p to p —zq to get

II„„(q)=f dz f" dpo[(2n) /bL ] g Trly„[gf+g(1 z—)+m]y„(gf g—z+m}j[p +q (z z}——m ]
0 QO

,J, n

Making use of identities'

Tr(y„y„)=4ri„„,

Tr(y„y„y y )=4ri„ri„4ri —„ri „+4'
we can rewrite (2.30) as

II„„(q}=4f dz f dp [0(2n)'/bL'] g j
—(z —z')(2q„q„—ri„~ ) —g„„[(p /2) —m ]][p +q (z —z )—m ]

CC
l,j, n

where rico
———ii» ——g22 ———ri33 1. Now in order for the current

j„=(ia/4n. )II„„(q)a"(q)

to be invariant under gauge transformations

a "-+a"+q "4(q),
we should have

which implies

p0 2m I. —q z —z —p 2+m p +q z —z —m =0
l j,n

Thus we 6nd

where

II~, ~(qz)= —8 f dz f" dpo[(2n) /bL ] g (z —z )[p +q (z z) m]— —
0 00

,J, n

The elfective external field is given by'

a",z(q }=I1 —(ia/4n )[BII~,~(q )/Bq ] ~ q ]a "(q ) .

(2.28)

(2.29)

(2.30)

(2.31)

(2.32}

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

With the help of formula (A25} in Appendix A we find

(BII„,(q }/Bq ) =16f d f dp [(2 ) /bL ] g ( —2)2(pz — z)
o 0 QO I '

,j, n

i(4n. /15m ) —i(2m /—15m b) . (2 41)

Then we have

a,s(q )= I 1 —[(a/15mm )+(a/30m b)]q }a"(q ) .

(2.42}

The second term is the contribution from the vacuum po-

larization in free space, while the third terxn is due to the
boundary and is to be added to the radiation correction,
(2.22}.

The e8'ective potential which the charge feels is then
given by
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C. Contributions from soft photons and momentum

less than k

FIG. 2. Vacuum polarization.

F(q')~, (q) =[I+(I'i+ «')+(I,'+«') ]a„(q)

=—u „(q)+[I i —(a/15m m 2)q 2]a „(q}

+[I'i —(a/30m b)qi]a (q), (2.43}

where the Srst two terms are the conventional terms,
and for small q, I I, and I I are expressed in the forms

I, -=(a/2n)(2q /3m )[In(m/A, ;„)——', ],
I i =(a/4mb)(q /4m )[ —", +(Sm/3A, ;„)

—ln(4m' jg',.„)] .

(2.44)

(2.45)

The result (2.45} goes to infinity for A, ;„~0. This
diFiculty can be eliminated by taking contributions from
soft photons into account.

The results obtained in Secs. II A and II 8 still contain
an infrared catastrophe. This catastrophe should not
occur in the Lamb shift of a bound electron. The in-
frared divergences arise because the electron can emit
and absorb soft photons without being displaced very far
off the mass shell p =m . This difhculty can be over-
come by recomputing the vertex corrections under an as-
sumption that emission of photons of energy less than a
certain cutoff k (mZ a «k «m) is suppressed. Let
us divide our calculations into two parts, mZa
«k «m and mZ a «k «mZa. In the former
case we can repeat the previous calculation, taking the
modifications of the photon propagator into account.
For the latter case, it will be possible to treat the elec-
trons in a nonrelativistic approximation and also to take
account of the nuclear potential.

1. For the case mZa~~k &~m

As was done before, for
~

k
~
=[(ml/L) +(mj/L)

+(em/b) ]'/, we have

5A„=—ia(2n ) [{2m)3/bL ] g' f dko(2m) '[y„(If~ 'k+m) y—(pe g+m—)y"](k A;„+—ie, )

l,j , n

x [(p~ —k) —m +is] '[(pr k) —m+—re]'
=a(2~) [(2~) /bL'] g' —,'[(prpF)+(kq)](k +A.';„) '/2[(pFk)(pIk)] 'y„

where

=a(2m) [{2m) /bL ]g' f dz —,'[(prpF)+(kq)](k +A~;„) '/ (Pk) y„,
lj,n

(2.46)

P = ,'[{PF+PI)+~(-PF Pl)]— (2.47}

and we used the identity (2.16).
Making use of the previous procedure to convert summations into integrals by the Poisson's summation formula on

the Fourier transformation and the Euler-Maclaulin formula, we find
k

[(2~)3jbL 2] gi (k2~g2 )
—i/2(pk)2 417 f dKIC2(~2+$2 )

—I/2(K2PZ+IP P2 )
—I

l, J, Fl

k

+(2m /b) f dax(a +A, )
' (s P +A, P ) (2.48)

where the 6rst term on the right-hand side is associated with the value in free space, while the second term depends on
the boundary. Hereafter, we consider only the b-dependent term. %'e obtain

5A„(b)=—y„(a/2b)(l —q /3m )(A~„—k ')+y„(a /Sbm)(q /m )l„(k /1, ;„)

=y„(a/2b)(A, ;„' —k ') —y„(aq /16m b)[(Sm /3A, ;„)—2l„(2m/A, ;„)]

+y„(aq /16m b)[(8m/3k ) —21n(2m/k )] . (2.49)

Similarly, we can evaluate the contributions from the modi5cation of the electron propagator due to the changes in
the photon propagator,
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5X(b,pr ) =X(b,pI, A, )—X(b,pI, A, ;„)

= —ia(2~) '[(2~)'/bL'] g' f dko(2m ) 'y„(gfl —g —m +is) 'y "(k2—g',„+is)
lj,n

—a(PI —m)(2~) '
—,
' d'~[mi+(p, a))(pox)

N:&..k

=(PI —m)[(a/2b)(k ' —A, ;„')—(a/2mb)ln(k /A, ;„)] . (2.50)

Thus the contribution from the change of vertex caused by modifications of the photon propagator is

y„5I:5A„—(b)+ ,'X(b—,pF }(PF m) —'y„+ ,'y„(P—I m) —'5X(b, pr )

= —y„(aq /16m b)[(8m/3A, ;„)—21n(2m/A, ;„)]+y„(aq /16m b)[(8m/3k ) —21n(2m/k )],
where the q-independent term has been omitted because it could be absorbed into the mass renormalization.

Adding the result (2.51) to those derived in Secs. II A and II 8 we obtain

I ib+EI "+51"=(a/4mb)(q~/4m )[ ",, +(Sm—/3k )—21n(2m/k )] .

(2.51)

(2.52)

2. I'or the case mZ e~ggk~ ~~mZa

I.et us now calculate contributions from soft photons whose wavelengths are large compared to the size of the atom.
As mentioned before, the nonrelativistic calculation is sufficient for mZ a &&k « mZa. First, we begin with discus-
sions that are independent of photons being soft and then introduce later the restrictions due to soft photons. In
second-order perturbation theory, the energy shift due to emission and reabsorption of a photon by an electron in the
state P is given in the dipole approximation by

b,E ' =(a/6m~)(2m) 3[(2n )3lbL ] g g / (P ( p f
i )

/
k '(Ep E; —k)—

Ijn i

rvhich is analogous to the conventional expression. As done in Secs. II A and II 8, the summation over I and j,
J= g k '(Ep E; —k)—

1j,n

= g [(ml/L) +(nj /L}2+(nn jb) )
'~

tE& E; f(r«l/L—} +(—nj /L) +(mn jb) ]'~
I

1j,n

is replaced by integrals for L »b as

J= g f dx f dy[(n /L) (x +y )+(mn jb) ] '
tEii E, [(n/L) —(x +y—)+(mnjb) )'~

I
n=O

(2.53)

(2.54)

=—,'(Ljm) g f dx f dy[x +y +(Lnjb)2] '~~((L/n)(E E, ) [x2+y~+——(Lnjb)~]'~2I ' . (2.55)

Using the Poisson's summation formula on the Fourier transformation (A7) we find

co+ C

where

Co ——(m /2)(L jm) (b/L) f dr r[(L jn)(Ep E;)—r)—
0

and

Qo

Cb (m/2)(L jn) (b/L——) f dr r[(L jn. )(E& E, )—r] ' g jo—(2mbsr/L)
0

(2.56)

(2.57)

=(H /4b)(bL~/m3) f dr[(L jn)(Eii E;)—«]—
0

(2.58)

The last expression in (2.58) can be obtained by use of (A14).
Contributions from the soft photons can be obtained by changing the in6nite integrals into 6nite ones, i.e.,
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k

Co ——(n'/2)(bL /m' ) I dk k(Ep E—, —k)
0

(2.59)

k

Cb (——H/4b)(bL /~ ) I dk(Ep E—; k—) (2.60)
0

where the variable was changed to r =(Ljn )k. Thus Eq. (2.59) gives the expression derived by Bethe for free space.
The b-dependent term C& is just the quantity which leads to the contributions from the soft photons with the boundary
conditions considered here. Hereafter, we will only consider the b-dependent term.

Performing the integration in (2.60}and substituting into (2.53), we obtain

~E'(b)=«/3bm') g I &P
I I I

t &
I
'»

I
(E Ep)—l«p « —k)—

I
(2.61)

where m is the electron mass. Since k ~~E, E„,w—here E, E„—=(Za} m, we have

ln
~
(E; Ep)l(—Ep E; —k—)

~
=ln[(E; Ep)—lk ]—in[1+(E; Ep)l—k ]

=ln[(E, Ep)lk—]—[(E; Ep) lk———,'[(E; Ep)lk—] + I .

Then (2.61) can be approximated as

bE (b)=(a/3bm2) g / &Pfpfi) /
ln[(E; Ep)lk —]—(ilk )g f &Pfp[i) f (E; Ep)—

(2.62)

(2.63)

By introducing the Rydberg energy R» =m a /2, Eq. (2.63) can be rewritten in the form

bE (b)=(a/3bm } g ( &P [P [i) [ 2ln[(E, —Ep)/R ]+gg ( &P[ P [i ) [ ln(2m/k )

—(1/k ) g [ &P
~ P ~i) [ (E; —Ep)+[ln(R /k )—gin(2m/k )]m &P~ v ~P) (2.64)

The last term can be absorbed into the mass renormaliza-
tion since it has the same form as a contribution from a
mass counter term, and hence it can be omitted. The
procedure suggested by Bethe et al. 6 and Harriman7
yields the Srst and second terms in the forms

g ) &P
~ P ~

i ) ( 2ln[(E, —Ep)/R„]

=(~/R„)g ] &P[p[i& ['(E, E,), (2.65—)

g' g [ & P [ p [ i ) ) ln(2m /k )

=(g'B /R» )ln(2m lk ) g f & P ( p (
i ) [ 2(E; Ep) . —

hE'(b)=(al16m b)[(8m' l3R»)+21n(2m/k )

—(8m/3k ))&P
~

V'V
~
P& .

(2.68}

Since the matrix element & p ~ q ~ p) can be expressed
as &p~ V V

~
p) for small q, the result (2.68} is added to

Eq. (2.52) to yield

(a/16m b)[ —",, +(8mA/3R )]&p
~

V~V
~
p), (2.69)

which leads to an additional shift to the original Lamb
shift. Finally, we note that a treatment without dividing

into soft and hard photons has been given by Ericksen
and Yennie.

(2.66) D. The addition@ shift to the transition 2S& ~2 ~2P»2
in a hydrogen atom

The detailed derivations of these equations are given in
Appendix D. The numerical value of A and 8 are calcu-
lated by computer,

For the Coulomb potential we have

V V=4nZa5 (r) . (2.70)

A = —0.28929, 8 =0.50 .

Considering the equivalence

X I &PIp li& I'«; Ep)= ,'&PI [(p ~)—.p] IP&-

=,'{P
~

V'V
~
P& (2.67)

and taking $=3R»/4mb, we Ilnd

The additional potential due to the two parallel perfectly
conducting square plates at a distance b from each other
is given by

b U=(mZa /4m b)[ —",, +(8m'/3R„)]53(r) . (2.71)

The energy shift can be obtained by evaluating the ma-
trix element of the potential (2.71) with the wave function
of hydrogen atoms as
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5E„, = f P„',„(r)AU/„& (r)d'r

=(~&/4m'b)[, ', +(8m' /3R, )]
~ g„,„(0)

~

',

1/mn'ao for i =0
~& -(0)~'= o fo. i~o, (2.73)

with ao ——(fi jmca) =0.529)& 10 cm. Therefore, the

2S)~2 level is raised by

b,E2oo (ma ——/4m b)[P, +(8m'/3R~)]/8mao . (2.74)

The frequency shift for the transition 2S)~2~2P)~q is

thus given by dividing b,EztN by the Planck constant h.
This shift is entirely caused by the boundaries considered
in the present paper.

III. NUMERICAL RESULTS

a = 1/137.035 987(29), (3.1)

which was recommended by Lauptrup et al. ' Our
present results are suficiently large enough to be ob-
served. Even hv= —0.089 MHz for b =10 pm can be
observed by presently available techniques, as it is larger
than existing experimental errors.

Recent experiments have obtained errors less than
0.009 MHz. The best values to date for the Lamb shift of
the hydrogen atom are

The shift for the 2S,~2~2P, ~z transition in a hydro-
gen atom due to our specifically chosen boundaries is pro-
portional to b '. It obviously vanishes as b goes to
infinity. The numerical value of this shift can be obtained
from Eq. (2.74}. The result is

hv= —0.894b ' MHz,

when b is measured in pm. Namely, for b =1 pm, we ob-
tain b,v= —0.894 MHz, This is consistent with value
—0.347 MHz calculated by a semiclassical treatment.
We have used

%'hen a hydrogen atom is placed between two parallel
square plates made from perfect conductors, one can ex-
pect to observe a new shift in the frequency of radiation
for the transition 2S&&2~2P, &2, in addition to the usual
Lamb shift.

In addition, it might be possible for the hydrogen atom
to interact with its own radiation 6eld, which would be
re6ected by the surfaces. This interaction would also
shift radiation frequencies. The e8'ects of the coupling of
an excited two-level system with itself through the elec-
tric dipole radiation reflected by a nearby mirror have
been investigated by numerous physicists. ' ' This
effect has recently been observed as a frequency shift in

the emitted radiation. ' This shift is signi6cant only if
the wavelength of the radiation field is of the order of the
distance between the electric dipole and the rejecting
mirror.

For the transition 2S,&2~2P&&2 in the hydrogen atom,
the wavelength of radiation is about 28.3 cm and it is ex-
tremely large compared to the distance b =1-10pm be-
tween two parallel plates. Therefore, reAection of the ra-
diation 6eld by the walls is not feasible.

Finally, we stress the point that the additional frequen-
cy shift discussed in this paper is suf6ciently large to be
observed by presently available techniques, even if it is
small compared to the conventional Lamb shift. The
shift predicted in the present investigation is a striking
result of the quantum-mechanical prediction of a dynam-
ic vacuum.
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APPENDIX A

We evaluate the Feynman integrals

Lv= 1057.845+0.009 MHz
(2m )'

g [ko (n.l/L) (mj /—L)—
by Lundeen et ah. ,

"
hv= 1057.862+0.020 MHz

by Andrews et al. ,
' and

hv = 1057.8514+0.0019 MHz

by Sokolov et ah. '

—(mn/b} +is bo]—
To do this, we can make use of the integral

J [k2+le —(b, +k }] dko —— ter(bo+k )—

(Al)

(A2)

IV. CONCLUSION
which can easily be obtained. Double differentiation of
(A2) with respect to ho gives

Through this investigation we have seen that the Auc-

tuating vacuum field is strongly affected by boundaries
made from two parallel perfectly conducting plates.

f [ko+ie (bo+k )] dk—o= in3(ho+k —).—
(A3)
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Then me obtain
(L/m} g f dx f dy[x +y +(Lnib)

0 0 0

X y„[&0+(~&IL) +(trj /L) +(5m/b)z]
1j,n =0

(A4)

=-,'(L/~)' g f dx f dy[x'+y'+(Lnlb)'
—00 00

which is equal to (Al). When L ~&b, and where L actu-
ally goes to (N, the summations over l and j in (A4) can
be replaced by integrals as Now consider the summation

(A5}

C, = ,'(L/n—)—' g f dx f dy[x +y +(Lnlb) +(Llm) b, ]
S =—ao n= —00

Use of the Poisson's summation formula on the Fourier transformation,
00 00

f ( )=«X J f (s(exp(2ss(ss(ds,
n = —ao S =—ao

gives

00 00

[x +y +(Lnlb) +(Llm) 40] ~ = g f [x +y +(L/b) t +(Lln) bo) ~ exp(2trist)dt
n= —ao S= —00

00

f [x +y +z +(L/n) ho] ' exp(2tribsz/L)dz .
S = —ao

Thus

C, = ,'(L/tr)'(b/-L) g f" dx f dy f" dz[x'+y'+z'+(LA)'50] '".exp(2nibsz/L)
S = —ao S = —00

(A7)

(AS)

=—,'(Lln)(blL) 'g f dr r f df f dg[r +(L/n') bo] g (2@+1)i"j„(2n'bsr/L)P„(g),
S = —00 p=O

(A9)

where j and I' are the spherical Bessel function and the
Legendre polynomials. After integration over angles, we

obtain

Co —(4~/8)(LIn) —(b/L) f dr r [r +(LItr) bo]

(A12)

C, =(4'/8)(Lier) (b/L)

rr~r2+ L, m
2

&( g j0(2mbsr/L) .

Comparing (A5) with (A6), we easily Snd

(A10)

from (A10). The summation in (A10) can be evaluated by
use of the Euler-Maclaulin formula

g f(s)= f "f(t)dt ——,'[f(x)]0"
S=0

+ g (B2k l(2k)!)[f'z" "(x}]0", (A13)
k=1

—,'(L/n) (b/L) g f dx f dy[x +y +(Lnlb}—00 00

where Bz„ is Bernoulli s number. Considering jo( ao ) =0,
j02" "(00}=jo "(0)=0,and jo(0)=1,we obtain

g j0(2trbsr/L) =(L/4br)+ (A14}

a&here
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jp(2n bsr /L) =2 g j p(2rrbsr IL ) 1—=(L /2br),
S = —oo s=0

(A15)

C, =(nL/4b)(L/rr) (b/L)

2rr 3

f dkpkp g [kp ( n! /L) (—nj /L)
bL

—(mn. lb) +ic—b,p] =0 .

Thus the replacement of k by k —p gives

(A24)

&& f dr r[r +(Llrr) 5p]

271 bL
3b (2~)' '

Similarly, from (A12) we obtain

4~ bI.
(2m. )

(A16)

(A17)

27r 3
(2n. ) f dkpkp

i(—1/64mb}pp(b, +p )

Similarly, we obtain
I

g (k —2kp+ic 5—)
Ij,n

i (—1/3 2rr )pp(h+p 2)

(A25)

which actually gives the results for free space, i.e., no
specifj.c boundaries. Therefore the efFects of our boun-
daries can be obtained from the g," „C, term in (Al 1),
i.e., (A16).

Thus

27r 3

(2m ) f dkp

i(1/—64rrb)pj(b, +p )

g k (k2 —2kp+ic 5—)
Ij,n

i(1—/32m )pj(b+p )

(A26)

(2n )

&& g [kp (rrl/L) — (nj /L)— (~nlb)—+ic b,p]—
Accordingly, the results (A22), (A25), and (A26) can be
combined as

i (n /2—)bp ' i(n /4b—)bp 18) (277) f dk p
(2m )'

Defining that k, =(rrl/L }, kz (nj /L),——and k&

=(mnlb), we have )& g (1;k )(k —2kp +i c b,)—
ki:—kpi [(nl/—L)2+(nj /L) +(an lb) ],
pk=poko —p k

(A19)
i (1/3—2m )(1;p )(b, +p2)

f(1/64~b—)(1;p.) (g+p')-'" . (A27)
=Ppkp —[Pi(rrl /L)+P2(nj /L)+Pi(en Ib)]

Differentiation of (A27} with respect to b, and p gives
(A20}

and then (A18) can be written as

2rr 3

bI 2

i (1/32m )6—p
' —i (1/64rrb)bp (A21}

3

(2~) f dk g (1;k )(k —2pk —5)

=i(1 /96&)(1;p )(6+p ) +i(1/128mb)(l;p )

X(&+p') '~'

If k —p is substituted for the variable of integration,
(A21) becomes

2rr 3
(2n. ) f dkp g k k (k2 —2pk —b, )

Ij,n

2rr 3

(2n) f dkp g (k 2kp+ic b,)— —
bI.

i(1 /23m—)(b, +p )
' r(1/ 6m4—b)(h +p) =i(1/96m )[p p —ri (b, +p )/2](b+p )

i+(1/12 n8)[bpp q(b, +p )/3](b—, +p )
(A22)

(A28)

where S=a,—p'.
It is easy to verify the following integral:

27r 3

dkpkp g [kp (@1/L) (nj /L—)i—
bL

(mn/b) +ic b—p] '=0, —

and, then, double differentiation with respect to ho gives

(A29)

goo g $ ] f22 f33—1 and other elements
vanish. Notice that the first terms in (A28) and (A29) are
those obtained initially by Feynman' for the case of free
space, while the second terms are due to our specific
boundaries. Therefore we can rewrite Eq. (A27) in the
form
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(2n ) f dko
bL, ~

27r 3

g (1;k )(k —2kp+ie —6) —(2m) f d k (1;k )(k —2pk+is b—, )
l,j,n

i—(1/64mb)(1;p )(h, +p ) (A30)

which is the same type of equation given in Sec. I. %e
can also give the similar expressions for Eqs. (A2S) and
(A29).

I

1 A,f dx f, dgx (1—x)[x p +(1—x)g] =—', p~
min

(B3)

APPENDIX 8

Under the conditions A, ~ oo and A~;„~0 we will per-
form the following integrals:

x2p2+ ) x —5/2

0 min

7 Q+ ] X 3/2 o0

f dx f, dgx(1 —x)[x p2+(1 —x)g] 3~2=2p„' .
min

(B4}

APPENDIX C

When the variable y is changed into P as

y =—,'[(tang/tan8)+ I],
2~ —1 —2 i —3 we have

(Bl)

x, x 1 —x xp+1 —x
0 min

=—',p '[ln(2p /A, ;„)—1], (B2)

p„'= [ypI+(1 y»}pp]'—

=m —q (y —y )=[m (cos8/cosP)]~,

where q2=4m2sin28 was used. Then we easily evaluate
the following integrals:

1

/pe = 2 Nl sln2

1

g py = 1 pal cos
0

1

dy p„p„~in(p~/A )~={pz +pz~)I[in(m/A~;„)+ I]/m cos~8 —ln[(l+sin8)/(1 —sin8)]/m sin28cos8j,
1f dy p» '=ln[(1+sin8)/(1 —sin8)]/2m sin8,

0
1

dy py py~
—(pr~+PF~)/2m cos 8,

f )
dy P& Pz~pz =(Pr +PF )(Ps +PF )/4m cos 8

0

+(pq —pz )(pz, —pF, ) I in[(1+sin8)/(1 —sin8)] —2 sin8j /Sm 3sin38 .

In the evaluation of (C5), (C6), and (CS) we have used the formula

fdg(1/c go)=l [n(1 +sing)'~ (1—sin4)
'

] .

(C3)

(C4)

(C5)

(C6)

(C7)

(CS)

APPENDIX D

Following the treatment given by Bethe, we derive Eqs. (2.65) and (2.66}. The oscillator strength is de6ned as

I ( nl
I p I

i ) I
2=(mE /3v)g (i,nl),

where

v=(E; E„()/Ry . —

When (nl) =2s,

1024j(j~—1)(j —4) [(j—2)/{j+2)]2' for 3(j &49

(0.343514j '+0. 114j ') for 50&jg(j, &)= '

for transitions into discrete states, and for the continuous spectrum it is taken in the form

(D 1)

(D3)
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dg(i, 2s)/dv=2v (4+3v ')exp{ —4(v ——,') ' arccot[(v ——,') '~ /2]I Il —exp[ —2m(v ——,') '~
]J

and the summation over i is replaced by an integration over d v. Then, by numerical computation, we obtain

$,g (t', 2s) =—g g(i, 2s)+ I [dg (i, 2s)ldv]dv=(0. 02643)+(0.973 57)=1,
I =3 1/4

(D4)

A =—$~g (i,2s)[(lnv) iv] = —0.289 29, (D6)

8 = $t, g (i,2s)/v=0 50. , (D7)

where we have used the continuum energy E„=Ry /n expressed with the quasiprincipal quantum number n Th.e sym-
bol $, denotes a summation and integral for discrete and continuous states. Thus we ftnd

[ &2s
~ p ~

i&
) ln[(E, E, )—/R ]

=(rnRs/3)$, g (i, 2s)v 'Inv)/(tnR ~/3)$, g (i, 2s)

= A/Ry .

This result leads to Eq. (2.65). Similarly, Eq. (2.66) can easily be derived.
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