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Energies of n =2 states for ions of the lithium isoelectronic sequence are calculated from

Z =3-92, starting from a Hartree-Pock potential and including second- and third-order correlation
corrections, the lowest-order Breit interaction with retardation treated exactly, the second-order
correlation corrections to the Breit interaction, and corrections for reduced mass and mass polariza-
tion. The resulting differences between theory and experiment for the 2p Sne structure and the 2s-2p

splittings are found to be in rough agreement with the one-electron Lamb shift, but clear deviations
can be seen. A discussion is given of the calculations required Co evaluate these deviations within

the framework of quantum electrodynamics.

I. INTRODUCTION

The lack of highly accurate calculations of properties
of many-electron atoms limits the interpretation in terms
of fundamental physics of the increasingly accurate ex-
perimental studies of these systems. A notable example is
the uncertainty in the atomic calculations of parity non-
conservation in heavy atoms, ' where the accuracy of in-
formation about the weak interactions that can be ex-
tracted from the most accurate measurement is limited
by the uncertainty in the atomic calculations. Another
example, which forms the subject matter of this paper, is
testing the underlying theory of atomic structure, quan-
tum electrodynamics (QED), in intense nuclear Coulomb
fields. Tests of QED in many-electron ions are of particu-
lar interest since the spectra of high-Z many-electron
ions are often more accessible experimentally than the
spectra of the corresponding one-electron ions. To inter-
pret these spectra, it is important to examine the level of
accuracy with which one can understand ions with more
than one electron. The system which is most intensively
studied is the helium isoelectronic sequence.

We wish to discuss here another multielectron system
that is in some ways simpler, the lithium isoelectronic se-
quence. A particularly powerful calculational method for
three-electron ions is many-body perturbation theory
(MBPT), as recently demonstrated for neutral lithium by
Lindgren. In Ref. 5 it was shown that agreement with
experiment at well under the 1% level could be obtained
for the 2s and 2p spectra and hyperfine constants within
the framework of nonrelativistic MBPT. Since neutral
lithium is an essentially nonrelativistic system, tests of
relativistic and QED effects are better made further out
along the isoelectronic sequence. An attendant advan-

tage of the study of an isoelectronic sequence is that the
convergence of MBPT improves as Z increases, since the
nuclear Coulomb field becomes increasingly dofninant.

For systems in which relativistic and QED effects are
enhanced, it is clearly important to have a formalism in
which such eSects are treated consistently. It has recent-
ly been shown that a modification of the Furry represen-

tation of QED used by Mohr" in his work on the helium
isoelectronic sequence provides a rigorous justification
for the application of MBPT to relativistic many-electron
systems. The modification consists of adding the core
electron Hartree-Fock potential to the unperturbed Ham-
iltonian of QED and subtracting a corresponding counter
term from the interaction Hamiltonian. The Breit in-
teraction and the Lamb shift are contained naturally in
the modified Furry formalism.

We find that the resulting version of MBPT gives a
description of the lithium isoelectronic sequence that is
accurate enough to isolate QED effects after one evalu-
ates second- and third-order correlation energies, the
Breit interaction, and the lowest-order correlation correc-
tions to the Breit interaction. Indeed, we find that
differences between theory and experiment for the
2p, /2-2s, /2 energy intervals and for the 2p3/2 2pi/2 fine

structures are consistent with the one-electron Lamb
shift. However, to account for these differences precisely
an effective Z must be used in the one-electron Lamb-
shift formulas, an effect referred to as screening of the
Lamb shift. Since we are working in a framework based
in QED, it is possible to identify Feynman graphs associ-
ated with this screening, and to describe the calculations
necessary to account for it; this description will be given
in Sec. IV.

The plan of the paper is as follows. In Sec. II the basic
formulas are set up and expressions are given for the
Breit interaction, the second- and third-order correlation
energies, and the correlation corrections to the Breit in-
teraction arising from diagrams containing one trans-
verse photon and one Coulomb photon. The results of
the calculation are presented for the lithium isoelectronic
sequence in Sec. III along with some of the computation-
al details. In Sec. IV comparison with experiment is
made, and issues related to the screening of the Lamb
shift are discussed.

II. FORMULAS

The starting point of our calculations is a frozen-core
relativistic Hartree-Pock description of a three-electron
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ion; the corresponding lowest-order contribution, E' ', to
the energy of a valence electron is the Hartree-Fock ei-
genvalue, c„. The corrections to the lowest-order energy
are treated using many-body perturbation theory
(MBPT).

As discussed in Ref. 6, the formulas of MBPT can be
shown to arise from a well-defined set of Feynman dia-
grams. The diagrams relevant to the present calculation
are presented in Figs. 1-5. The crossed circle in some of
the graphs represents a counterterm from the lowest-
order potential, which in our case is the Hartree-Fock
potential. Because we have chosen to work in Coulomb
gauge„ the photon propagator consists of two terms, a

l

Coulomb interaction and a transverse interaction that
reduces to the Breit interaction for low-Z ions.

Starting with Fig. 1, we note that the Coulomb part of
the photon propagator leads to a contribution that exact-
ly cancels the counterterm graphs (by the definition of the
Hartree-Fock potential) so that only the exchange of a
transverse photon need be considered. This photon can
be exchanged between any pair of electrons, but since we
are concerned with energy levels of the valence electron,
only the terms involving the valence electron and either
core electron need be considered. The associated first-
order energy shift is

ft(x)a; P„(x)Pt

(y)ajar,

(y) —g„(x)a,P, (x)f, (y)a P„(y)k " " ' '
k —ko

where ko=(llc)
~

e„—s, ~. Methods for evaluating ex-
pressions involving matrix elements of a between Dirac
wave functions using vector spherical harmonics have
been developed by Johnson and Mann; some of the basic
formulas are collected in Appendix A. The integration
over k in the exchange part of Eq. (1) leads to a phase
factor

ko
e

that dil'ers significantly from unity as one goes to high Z,
and is therefore treated exactly; this requires evaluating
the partial-wave expansion of the exchange term using
spherical Bessel functions. The expression that is finally
obtained is a generalization of the Breit interaction that
correctly describes the exchange of a transverse photon
in Coulomb gauge.

The remaining graphs involving only one-photon ex-
change are depicted in Fig. 2, and give the entire Lamb
shift for a one-electron system. In the case of a many-
electron system, there will be other effects of the same or-
der arising from the graphs of Figs. 3-5 among others.
Mohr has shown for the two-electron problem that it is
possible to assign an overall power of Z to each graph of
the theory, though each graph involves an infinite power
series in the parameter Za. The one-electron Lamb shift

shown in Fig. 2 enters in order Z cx, with a factor
Ii(Za). WhiIe, as mentioned above, Figs. 3 and 4 also
contribute to order a, power-counting arguments show
that they enter with one less power of Z. Therefore, as
one goes along the isoelectronic sequence, inclusion of
just the one-electron Lamb shift becomes an increasingly
valid approximation.

In the treatment presented here, since we start from
the Hartree-Fock potential instead of the nuclear
Coulomb potential, the power-counting arguments can-
not be carried through directly. However, the difference
between the two potentials becomes small for large Z, so
it can still be expected that the bulk of the Lamb shift
will be accounted for by the one-electron formula

a'Z4
b,E„I ——

3 F„I (Zct) .
mn

The functions E(Za) for n =2 states are collected in
Table II and the energy splittings that ~ould arise from
these terms are presented in Tables III and IV. These
functions are taken from Ref. 8, with nuclear-finite-size
corrections subtracted out, since finite-nuclear-size effects
are included in the lowest-order Hartree-Fock calcula-
tion. It is important to stress that this is not an approach
suited to systematically calculating screening corrections
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FIG. 1. Contributions to the 6rst-order energy. The dashed
line C in (a) represents a Coulomb photon, the dotted line T in
(b) a transverse photon, and the crossed circle in (c) a Hartree-
Fock counterterm. This type of diagram is summed over the
two core electrons 1s f and 1s l.

FIG. 2. First-order QED corrections to the energy. The
valence electron self-energy (a) and vacuum-polarization (b)
corrections. The wavy line represents a photon.
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to the Lamb shiA, but only a device to approximate an
important physical contribution. A systematic QED ap-
proach to this problem will be outlined in Sec. IV.

Turning now to two-photon exchange, we first treat
Fig. 4 in the case that the photons are both Coulomb
photons. This problem has been examined recently both
theoretically and numerically and is well understood;
the formula for the corresponding second-order contribu-
tion to the correlation energy is

1 8 t
Isg

is f
Isg

FIG. 3. A typical set of screening corrections to the valence
electron self-energy.

(2i guama gmaua gm—aau( — ) gal mv gmvab
—

gmut( — )
+

a, m, a em+e» eu ea a bm em+su —ea eb—

(g„,„„—g „„)(V„F—U)„,
+C.C.

F —Ea n

( VHF)ij = P (giaja giaaj ) '
(3)

In Eq. (3) the quantities g;Jk, are two-electron Coulomb
matrix elements. %e adopt the convention that occupied
core states are designated by subscripts a, b, . . . , excited
states are designated by m, n, . . . , the valence state by U,

and arbitrary states by i,j, . . . . The quantity U is the
potential used to define our basic states and VHF is the
core electron Hartree-Fock potential. Since we use VHF
to define our states the terms on the second line of Eq.
(3) vanish. The angular decomposition of Eq. (3) is writ-
ten out in Ref. 9 where a description is given of the
methods used to carry out the sums over intermediate
states n and m. Brie6y, we introduce a finite basis set for
the Dirac Hartree-Fock equations and replace the sums
over the Hartree-Fock states in Eq. (3) by sums over the
basis pseudospectrum.

We evaluate only the positive-energy intermediate-
state contributions in Eq. (3). If one intermediate state
occurs with negative energy and the other with positive
energy, zero denominators could result; this is a
phenomenon associated with continuum dissolution. ' A
full QED treatment excludes such terms, but allows a
contribution where both propagators have negative ener-
gies, leading to a correction that is of the order of screen-
ing of the Lamb shift.

The next term treated in this calculation involves the
graphs of Fig. 4, but with one or the other Coulomb pho-
ton replaced by a transverse photon. %e treat such a
term by generalizing the two-electron Coulomb matrix
element that enters into the second-order energy formula,
replacing g, ki in Eq. (3) by

gij kl gijkl +bij kl (4)

where b; ki is a two-electron matrix element of the Breit
interaction, which is written out in detail in Appendix B.
In our calculation of the one-Coulomb one-Breit terms
we treat retardation only to lowest order, ignoring the
phase discussed following Eq. (1). This is a reasonable
approximation provided i, j, k, and I are all positive-
energy states. However, a pitfall that arises from this ap-
proximation when negative-energy states are involved
will now be discussed.

While we have accounted for the exchange of two
Coulomb photons and of one Coulomb and one trans-
verse photon, we have left out the exchange of two trans-
verse photons. This is a correct procedure at the level of
interest here, but care must be taken to distinguish be-
twmn the Breit interaction and the exchange of a trans-
verse photon to justify the procedure. It is well known"
that treating the Breit operator to second order in con-
junction with negative-energy states leads to a spuriously
large contribution of the order of fine structure. This
contribution arises from a term in which both intermedi-
ate electrons are in negative-energy states. While the as-
sociated denominator reduces the size of this term by a,
the numerator is completely unsuppressed since the Breit
interaction couples the large upper components of the
wave function to the large lower components of the inter-
mediate negative-energy states. %e have directly evalu-
ated such terms, and they do indeed enter in order (Za)
and spoil the relatively good agreement found with exper-

I S 0
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FIG. 4. Two typical second-order contributions to the
valence energy.

FIG. 5. A diagram contributing to the third-order valence
energy.
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iment. The resolution of this problem has to do with the
phase factor discussed following Eq. (1). When a single
transverse photon is exchanged, the phase factor is either
strictly unity, for direct terms, or very close to unity, for
exchange terms. Therefore, to a good approximation,
one can evaluate the unretarded Breit interaction, mak-

ing only a small error, and in this sense one can treat the
Breit interaction as a term to be added to a many-body
Hamiltonian. However, when the negative-energy state
contribution is considered in second order, use of the
Breit interaction is meaningless because the transverse
photon exchange is accompanied by an extremely rapidly
varying phase factor. The description in momentum

space is that the photon propagator, 1/(k —ko), which
normally is close to 1/k, behaves as —1/4m, a much
smaller quantity due to the large energy transfer associat-
ed with exciting an electron-positron pair out of the vacu-
um. There is a nonvanishing contribution from this
graph known to be important at the level of the Lamb
shift' occurring in order Z a In(a); this is one of the
most important screening eFects in the Lamb shift.

The next elect considered here is the exchange of three
Coulomb photons; a sample graph is presented in Fig. 6.
In this case we must evaluate the rather lengthy expres-
sion

g(3) ( — )( — )( — )gacru gcaru gumba 8muba grbmc grbcm +
(~u +&m —Sa Sb )(—sr +Su —Sa —Sc )

(gcurm gucrm )(gnmua gmnua )(granc garne )

(e +e„—e, —s, )(e„+e —e, —e„)

( — ) ( — ) ( — ) ( — )gcamn gacmn gnmba gubuc gubcu gabrn gbarn 'gnmba (grumu gurmu+
n m a bc (en+em ea Sb)(en+em ea Sc) a bm n r ( en+ Sm Sa eb)(sr+Su Sa Sb)

(gacrm gcarm )(gnmua gmnua )(grunc gurnc )

(s +e„—s, —e, )(s„+s —s, —s, )

gcdrm gdcrm gumua gmuua grade gacsr gcasr gmuua gumua grsmc( — )( — ) ( — )( — )

(e —e, )(e„+s —s, —sd) „,, (s —e, )(e„+s,—,—s, )
+

( — )gcdun gdcun gunb g dc ( — )gausr guasr gnmuagrsnm+
nab cd (Su+en ea Sb)(su+en ec ed) a n m rs (en+em ea Su )(sr+as Sa u)

(gcanr gacnr )(gnuba gnuab )(grbuc grbcu )

(e„+s —s —eb )(e„+s„—s —s )
+

(gabsr gbosr )gu—mb gamu+ +„(e,+e —s, —eb)(e, +s, —e, —sb)
gcdmn gdcmn gnmuaguadc( — )

+c.c.
, , d (e„+s —e, —e„)(s„+s —s, —sd)

(5)

To put this equation into a form suitable for numerical
evaluation it is first necessary to carry out a somewhat in-
volved angular momentum analysis. The details of this
reduction to radial integrals are given in Appendix C.
The numerical evaluation of the third-order energy was
the most computationally intensive part of this work.

The 6nal corrections considered here are those involv-
ing the finite mass of the nucleus. For the 2s states, we
include only the efFect of the reduced mass Rydberg,
since mass polarization is known to be very small from
symmetry considerations. For the 2p states we add the
effect of mass polarization using the Hughes-Eckhart'
formula,

III. TABULATION GF RESULTS

We now present the results of our calculations of the
effects described in Sec. II. Table I contains a summary
of all of the corrections described in Sec. II. In the

24—
D

'0 l6—

AE= —512 Z,Z /(2Z, +Z )
M

Z, =Z —0.3, Z2 ——Z —2 . (6)

The effect of the finite mass of the nucleus turns out to be
small in comparison to the screening of the Lamb shift.
For this reason the relatively crude treatment of mass po-
larization used here is sufhcient; once Lamb-shift screen-
ing calculations are performed, a more rigorous and com-
plete treatment of mass polarization will be needed.

20 40 60 80 lOO

FIG. 6. The second-order Coulomb contribution to the
valence electron energy E' ' plotted against nuclear charge Z
for the three n =2 states of Li-like ions.
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TABLE I.
g{0)

Contributions to the energies of n =2 states for Li-like ions. s —=2s &~&, p —=2p &zz, and p =—2p&z~.

g(3) Total

—0.196320
—0.128 638
—0.128 636

—0.001 649
—0.001 375
—0.001 374(1}

—0.000 125(3)
—0.000 145(3)
—0.000 145(3)

Z—3
0.000005
0.000003
0.000001

—0.000002
—0.000001
—0.000001

0.000015
0.000008
0.000008

—0.198076(3)
—0.130 148{3}
—0.130 147(3)

S

p
p

—0.666 183
—0.519447
—0.519406

—0.002 909
—0.003 962
—0.003 956(3)

—0.000 159(S)
—0.000 289(9)
—0.000 294(9)

Z=4
0.000026
0.000027
0.000013

—0.000008
—0.000006
—0.000005

0.000041
0.000020
0.000020

—0.669 192(5)
—0.523 657(9)
—0.523 628(9)

S

p
p

—1.390 126
—1.167 352
—1.167 158

—0.003 719
—0.005 904
—0.005 891(4)

—0.000 164(5}
—0.000 335{10)
—0.000 341{10)

Z=5
0.000069
0.000092
0.000044

—0.000018
—0.000016
—0.000015

0.000069
0;000033
0.000033

—1.393 889(5)
—1.173482(10)
—1.173 328(11)

S

p'
p

—2.365 898
—2.068 823
—2.068 242

—0.004276
—0.007 278
—0.007 254(5)

—0.000 161{6)
—0.000 341{12)
—0.000 347(12)

Z=6
0.000 143
0.000215
0.000 101

—0.000030
—0.000031
—0.000028

0.000 108
0.000049
0.000049

—2.370 114(6)
—2.076 209(12)
—2.075 721(13)

S

p'
p

—3.592 973
—3.222 506
—3.221 143

—0.004 681
—0.008 280(1)
—0.008244(5)

—0.000 154(6)
—0.000 330(12}
—0.000 336(12)

Z=7
0.000255
0.000410
0.000 192

—0.000046
—0.000051
—0.000046

0.000 141
0.000062
0.000062

—3.597 458(6)
—3.230 695(12)
—3.229 515(13)

S

p
p

S

p
p

—5.071 312
—4.627 921
—4.625 184

—6.801084
—6.284 988
—6.280043

—0.004988
—0.009 039(1)
—0.008 989(6)

—0.005 229
—0.009 635(1)
—0.009 567(6)

—0.000 146(6)
—0.000 313(12)
—0.000 318(12)

—0.000 136(5)
—0.000 296(12)
—0.000 301(12)

Z=8
0.000414
0.000696
0.000 325

Z=9
0.000628
0.001087
0.000506

—0.000065
—0.000076
—0.000068

—0.000087
—0.000 105
—0.000094(1)

0.000 174
0.000075
0.000075

0.000 196
0.000083
0.000083

—5.075 923(6)
—4.636 578(12)
—4.634 159(13)

—6.805 712(5)
—6.293 854(12}
—6.289 416(12)

—8.7&2 576
—8.193839
—8.185 571

—11.016 162
—10.354738
—10.341 711

—0.005 424
—0.010 117(1)
—0.010029(6}

—0.005 585
—0.010516(1)
—0.010405(6)

—0.000 127(5)
—0.000 277(10)
—0.000 281(10)

—0.000 119(5)
—0.000 262(10)
—0.000 266(10)

Z= 10
0.000904
0.001 601
0.000743

Z=11
0.001 250
0.002 254
0.001 044

—0.000 111
—0.000 139
—0.000 124(1)

—0.000 139
—0.000 177
—0.000 159(1)

0.000241
0.000 100
0.000 100

0.000263
0.000 108
0.000 108

—8.787 093(5)
—8.202 671{10)
—8.195 162(12)

—11.020492(5)
—10.363 331{10)
—10.351 389(12)

—16.241 446
—15.434 218
—15.405 &67

—0.005 836
—0.011 144(1)
—0.010979(7)

—0.000 107(5)
—0.000 234(12)
—0.000 238(12)

Z= 13
0.002 187
0.004044
0.001 865

—0.000203
—0.000269
—0.000 239(1)

0.000 330
0.000 134
0.000 133

—16.245 075(5)
—15.441 687(12)
—15.415 325(14)

—22.4&1 209
—21.527 233
—21.472 903

—0.006024
—0.011623{1)
—0.011394(7)

—0.000097{5)
—0.000 213(11)
—0.000 215(11)

Z=15
0.003 504
0.006 591
0.003026

—0.000278
—0.000 379
—0.000 336(2)

0.000 398
0.000 160
0.000 159

—22.483 706(5)
—21.532 697(11)
—21.481 663(13)

—29.740 649
—28.638 629
—28.543 569

—0.006 172
—0.012011(1)
—0.011706(7)

—0.000088{5)
—0.000 193(10)
—0.000 194{10)

Z= 17
0.005 267
0.010030
0.004 584

—0.000 363
—0.000 S09
—0.000448(2)

0.000466
0.000 186
0.000 185

—29.741 539(5)
—28.641 126(10)
—28.551 148(12)
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TABLE I. ( Continued).

g(3) g(2) Tota1

—42.555 295
—41.228 125
—41.033 621

—0.006 347
—0.012 489(1)
—0.012048(7)

—0.000079(4)
—Q.QOO 171(9)
—0.000 172{9)

Z=20
0.008 895
0.017 162
0.007 788

—0.000 509
—0.000740
—0.000 645(3)

0.000 584
0.000231
0.000229

—42.552 751(4)
—41.224 132(9)
—41.038 469(12)

—52.392 598
—50.912 869
—50.618 1S7

—0.006443
—0.012 764{1)
—0.012 219(7)

—0.000075(4)
—0.000 161(8)
—0.000 158{8)

Z=22
0.012069
0.023 437
0.010581

—0.000620
—0.000919
—0.000 795(3)

0,000 599
0.000237
0.000233

—52.387 068(4)
—50.903 039(8)
—50.620 545(11)

S —63.274 938
—61.640 358
—61.210751

—0.006 528
—0.013019(1)
—0.012 357(7)

—0.000069(5)
—0.000 151{10)
—0.000 14S{10)

Z=24
0.015 930
0.031095
0.013963

—0.000739
—0.001 119(1)
—0.000 960{3)

0.000668
0.000264
0.000259

—63.265 676(5)
—61.623 288{10)
—61.209 994(13)

—75.211 664
—73.4196S5
—I2.812 977

—88.213 154
—86.260 934
—85.426 702

—0.006605
—0.013260(1)
—0.012470(7)

—0.006677
—0.013493(l)
—0.012 562(7)

—0.000065(5)
—0.000 142{10)
—0.000 139(10)

—0.000061(3)
—0.000 132(7)
—0.000 130(7}

Z=26
0.020 549
0.040284
0.017983

Z=28
0.026000
0.051 152
0.022 693

—0.000 868
—0.001 340(1)
—0.001 140{4)

—0.001 007
—0.001 583(1)
—0.001 333(4)

0.000737
0.000291
0.000285

0.000834
0.000329
0.000 321

—75.197916(S}
—73.393 852(10)
—72.808 458(13)

—88.194065(3)
—86.224 661(7)
—85.417 713(11)

—102.290 766
—100.175 218
—99.053 935

—0.006 745
—0.013723(1)
—0.012 638(7)

—0.000058(4)
—0.000 126{8)
—0.000 124(S}

Z= 30
0.032 359
0.063 855
0.028 139

—0.001 154(1}
—0.001 848(1)
—0.001 540{5)

0.000 877
0.000 346
0.000336

—102.265 487(4)
—100.126 714(8}
—99.039 762(12)

—125.452 560
—123.085 530
—121.399933

—0.006 842
—0.014067{1)
—0.012 72,7(7)

—0.000054(3)
—0.000 117(6)
—0.000 114(6)

Z=33
0.043 769
0.086 696
0.037 792

—O.OQ1 393{I)
—0.002 290(1)
—0.001 876(5)

0.000918
0.000363
0.000351

—125.416 162(3)
—123.014945{6)
—121.376 507(10)

S

—151.110904
—14S.483 703
—146.039376

—199.569770
196.486550

—192.226485

—360.954 305
—356.517745
—342.606 186

—724.786 626
—717.568 648
—661.623 891

—0.006 933(4)
—0.014410(8)
—0.012 780{6)

—0.007094(4)
—0.015032(9)
—0.012851{6)

—0.007 581(5)
—0.017014(10)
—0.012 886(7)

—0.008750(6)
—0.021 963{14)
—0.012664(8)

—O.OOOOSO{4)
—0.000 109{8)
—0.000 106(8)

—O.OOO 046(2)
—O.OOO 101(5)
—0.00009S{5)

—0.000038(2)
—0.000086(4)
—0.000075(4)

—0.000033(2)
—0.000078(4)
—0.000058(2)

Z=36
0.057 669
0.114575
0.049 354

Z=41
0.087 154
0.173837
0.073 230

Z= 54
0.210629
0.422942
0.165488

Z= 74
0.597 201
1.209050
0.399627

—0.001 649{4)
—0.002777(7)
—0.002 238(3)

—0.002131(4)
—0.003737(8)
—0.002908(4)

—0.003 713(7)
—0.007 164(13)
—0.004974(5)

—0.007 463(5)
—0.016294{11)
—0.008 829(3)

0.000987
0.000391
0.000375

0.001 177
0.000470
0.000445

0.001 500
0.000615
0.000 557

0.002 161
0.000943
0.000776

—151.060 880(7}
148.386033(13)

—146.004771(10)

—199.490 710(6)
196.331 113(13)

—192.168 664{9)

—360.753 508{9)
—356.118452(17)
—342.458 076{10)

—724.203 510(S)
—716.396990(18)
—661.245 039(9)

—1209.744 297
—1199.179 877
—1043.794 272

—0.010720(10)
—0.030672(19)
—0.012246(10)

—0.000032(2)
—0.000081(4)
—0.000048(2}

Z= 92
1.287 925
2.638 944
0.690 718

—0.013489(18)
—0.032 206{35)
—0.012616(11)

0.002 788
0.001 317
0.000959

—1208.477 83{2)
—1196.602 58(4)
—1043.127 51(2)
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second column of Table I, we present the Hartree-Fock
energies E' ' for the states of interest here, 2s)~2, 2p, ~2,
and 2@3&&. The third column of the table gives the
second-order energy E' ' calculated from Eq. (3). This
quantity is Accessarily approximate, owing to thc finite
size of the basis set and the need to truncate the partial-
wave expansions. The error from the former is small
since we use a large basis set involving 40 positive-energy
states. To estimate the error from the latter, the partial-
wave expansion was extended from 1=0 through 8.
After the l =2 term, a smooth pattern of convergence
was observed. The error quoted is the difFerence between
successive Aitken's extrapolations using 1=3,4, 5, 6, and
7, and 1=4, 5, 6, 7, and 8. This error could be reduced
by including more partial waves.

Wc plot in Fig. 6 the second-order energies of the three
n =2 states along the lithium isoelectronic sequence. In
the nonrelativistic 1/Z approximation these energies are
constants. The clearly nonconstant behavior of our cal-
culated results comes from two effects. The differences at
low Z arise because we evaluate E' ' in a Hartree-Fock
potential, which is significantly difFerent from the
Coulomb potential. For larger Z, however, the two po-
tentials are similar and the deviation from constancy,
which is particularly pronounced for the j=-,' states, is a
relativistic effect refiecting the fact that the coefficient of
the Zo term in the 1/Z expansion is a function of Za,
analogous to the function F(Za) in Eq. (2).

As mentioned in Sec. II, the third-order energy E' ',
given in the fourth column of Table I, was much more
computationally demanding, and is therefore less accu-
rately known. The most time-consuming term to evalu-
ate was the sixth term in Eq. (5). This term involves a
quadruple sum over excited states. While any one angu-
lar momentum channel in this term can be evaluated in a
few seconds on a CRAY X-MP/48, as higher I values in
the partial-wave expansions of the Coulomb integrals are
included, the number of channels increases very rapidly.
By using a relatively small basis set of 20 positive-energy
functions we were able to sum terms up to 1=4 in about
5 min per state. The error estimates for the third-order
energy given in Table I, which range from 3% to 5%, are
conservative, and could easily be reduced to under 1%
with suScient computer time, about 45 min per state.
Because the third-order energy is significantly smaller
than the second-order energy, our conclusions are not
afFected by the relatively large error. A plot of E' ' along
the isoelectronic sequence is shown in Fig. 7. In a 1/Z
expansion, E~ ~ decreases as 1/Z; the deviations from
this 1/Z behavior in Fig. 7 have the same origins as the
deviations discussed in connection with Fig. 6.

The Nth column of Table I gives the contributions of
the 6rst-order transverse interaction 8 derived from
Eq. (1), with retardation included exactly. In Fig. 8 we
plot 8' "/Z (in solid lines) together with the usual Breit
interaction (in dashed hnes); in a 1/Z expansion the Breit
interaction is expected to be proportional to Z . The
sixth column of Table I gives the effect of terms linear in

b;Jk( in the second-order energy 8' '. This term also in-
volves a partial-wave-expansion, and its error is evaluated
in the same manner as described above for the second-

32—

l6-
Lal 8-

0
0 20 40 60 80 lOO

FIG. 7. The third-order Coulomb contribution to the valence
electron energy E'3' plotted against nuclear charge Z.

0
0 20 40 80 ( 00

FIG. 8. The first-order transverse photon contribution to the
valence electron energy 8"' plotted against nuclear charge Z.

order Coulomb energy. A plot of 8' ' is presented in Fig.
9. In the nonrelativistic 1/Z approximation this term is
proportional to Z; deviations from this behavior occur
for the reasons discussed above. Next, in the column la-
beled R.M. , the combination of the Hughes-Eckart for-
mula, Eq. (6), together with the correction from the re-
duced mass Rydberg is given. The final column in Table
I gives the sum of all of the preceding terms.

AB of the calculations described above were done as-
suming a Fermi distribution for the nuclear charge. The
thickness parameter in the Fermi distribution was taken
to be t„„,=2.3 fm. ; the corresponding 50% density ra-
dius, c„„„is listed in Table II for the ions considered in
Table I. Also given in Table II are values of the functions
F(Za) for the n =2 states of one-electron atoms that are
used in Tables III and IV.

While valence energies can be accurately measured for
low values of Z, better data exist along the isoelectronic
sequence for the energy differences. In Tables III and IV
we compare our results for energy difFerences with exper-
iment. We use experimental data compiled by Edlen and
supplemented by recent measurements by Denne and
Hinnov. ' Our results for the 2s, &2-2pi&2 energy inter-
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TABLE II. Nuclear charge distribution parameters c„„,and
Coulomb 6eld Lamb-shift values I'„I (Za) for Li-like ions.

Cl
I

2
Cd

I—
Q3

I

20 6O 80 IOO

vals are presented in Table III and results for the 2p 6ne-
structure splittings are given in Table IV. Since we have
not included the QED corrections, we compare the
difference between our theoretical values and experiment
to the one-electron Lamb shift given in Eq. (2). From
these comparisons one can see that the bulk of the
difFerence is indeed accounted for by Eq. (2) but that sys-
tematic discrepancies remain. Because of the pattern of
convergence shown in Table I it is clear that the

FIQ. 9. The second-order transverse photon contribution to

the valence electron energy 8' ' plotted against nuclear charge

z.

3
4
5

6
7

9
10
11
13
15
17
20
22
24
26
28
30
33
36
41

74
92

9
11
12
14
16
19
20
23
27
31
35
40
48
52
56
58
64
75
84
93

132
184
238

~nuc

1.800
2.067
1.810
1.935
2.127
2.438
2.777
2.989
2.885
3.017
3.275
3.497
3.719
3.275
3.929
4.118
4.178
4.445
4.665
4.849
4.977
5.702
6.446
6.987

7.4759
6.7674
6.2284
5.7981
5.4409
5.1375
4.8752
4.6451
4.4409
4.0931
3.8062
3.5645
3.2650
3.0971
2.9494
2.8183
2.7013
2.5962
2.4576
2.3381
2.1728
1.8821
1.6738
1.6436

—0.1247
—0.1238
—0.1225
—0.1211
—0.1197
—0.1181
—0.1164
—0.1146
—0.1128
—0.1089
—0.1047
—0.1004
—0.0934
—0.0884
—0.0834
—0.0781
—0.0727
—0.0672
—0.0554
—0.0494
—0.0336

0.0126
0.1041
0.2240

F
~3/2

0.1241
0.1247
0.1254
0.1261
0.1270
0.1279
0.1289
0.1300
0.1311
0.1335
0.1360
0.13S8
0.1431
0.1462
0.1494
0.1528
0.1561
0.1597
0.1651
0.1707
0.1803
0.2068
0.2506
0.2916

TABLE III. Di8'erences between theory and experiment for the 2p&/2-2s&/2 energy interval (a.u. ) in
Li-like ions are compared with one-electron Lamb-shift calculations.

3

5
6
7
8
9

10
11
13
15
17
20
22
24
26
28
30
33
36
41
54
74
92

Theory

0.067 928(4)
0.145 54(1)
0.220 41(1)
0.293 91(1)
0,366 76(1)
0.439 34(1)
0.511 86(1)
0.584 42(1}
0.657 16(1)
0.803 39(1)
0.951 01{1}
1.10041(1)
1.328 62(1)
1.484 03(1)
1.642 39(1)
1.804 06(1)
1.96940(1)
2.13877(1)
2.401 22(1)
2.674 85(1)
3.15960(1)
4.635 06(2)
7.806 52{2)

11.875 25(5)

Experiment

0.067 906
0.145 48
0.220 34
0.293 81
0.36662
0.439 12
0.511 50(1)
O.S83 90(1}
0.65640(1)
0.801 97(2)
0.94S 49(5)
1.096 52{5)
1.321 56(4)
1.474 20(4)
1.6290(1)
1.7861(1)
1.9460(4)

2.6181(4)

Difference

0.000022(4)
0.00006(1)
0.000 07{1)
0.000 10(1)
0.000 14{1)
0.000 22(1)
0.000 36(2)
0.000 52(1)
0.000 76(2)
0.001 42(2)
0.002 52(6)
0.003 89(6)
0.007 06(4)
0.009 83(4)
0.0134(1)
0.01SO(1)
0.0234(4)

0.0568(4)

Negative
Lamb shift'

0.000010
0.00003
0.00006
0.000 12
0.00021
0.000 33
0.000 51
0.000 74
0.00103
0.00186
0.003 06
0.004 73
0.008 31
0.011 54
0.015 56
0.02046
0.026 36
0.033 36
0.04608
0.062 00
0.09640
0.2458
0.7278
1.5724

'Numbers in parentheses give the error in the last digit.
Reference 15.

'Reference 8.
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TABLE IV. Difkrences between experiment and theory for the 2p3&2-2p&z~ fine-structure interval
(a.u. ) in Li-like ions are compared with the one-electron Lamb shift.

3

8
9

10
11
13
15
17
20
22
24
26
28
30
33
36
41
54
74
92

0.000 002(4)
0.000 03(1)
0.000 15{1)
0.000 49(2)
0.001 18(2)
0.002 42(2)
0.004 44(2)
0.007 51(2)
0.01194(2)
0.026 36(2)
0.051 03(2)
0.089 98(2)
0.185 66(1)
0.282 49(1)
0.413 29(2)
0.585 39(2)
0.806 95(1)
1.086 95(1)
1.638 44(1)
2.38126(2)
4.162 45(2)

13.660 38(2)
55.15195(2)

153.475 07(4)

Experiment

0.000002
0.00003
0.000 16
0.00049
0.001 18
0.00242
0.004 45(1)
0.007 51{1)
0.01199{2)
0.026 41(2)
0.051 27(7)
0.09008(7)
0.186 13(4)
0.283 16(4)
0.4142(1)
0.5867(1)
0.8088(9)

2.3855{12)

Difkrence

0.000 000(4)
0.000 00(1)
0.000 01(2)
0.000 00(2)
0.000 00(2)
0.00000(2)
0.000 01{2)
0.00000(2)
0.000 05(3)
0.000 05(3)
0.000 24{7)
0.000 10(7)
0.000 47(S)
0.000 67(4)
0.0009(1)
0.0013(1)
0.0018(9)

0.0042(12)

Lamb shift'

0.000000
0.00000
0.00000
0.00001
0.00001
0.00002
0.00002
0.00004
0.00006
0.000 11
0.000 19
0.000 31
0.000 59
0.000 85
0.001 19
0.001 63
0.002 17
0.002 84
0.00404
0.005 72
0.009 35
0.025 53
0.067 92
0,074 88

'Numbers in parentheses give the error in the last digit.

discrepancies cannot be accounted for by atomic struc-
ture uncertainties, but instead are QED effects„which we
now discuss.

IV. INTERPRETATION IN TERMS OF QED EFFECTS

Comparison of theory and experiment for the
2s, &2-2p, &2 splitting and fine structure clearly shows an
effect that is of the order of the one-electron Lamb shift,
but that is systematically smaller. Both Grant' and Des-
claux' account for the Lamb shift in their Hartree-Fock
codes by replacing Z by a slightly reduced value Z' in the
one-electron formula, Eq. (2). However, there is neces-
sarily some arbitrariness in the procedure for choosing
Z', snd any remaining discrepancy with theory could be
attributed to the choice of Z' even if a real breakdown of
QED were present. A more fundamental approach to the
problem is to evaluate the contributions from QED that
have not yet been considered. These are associated with
the Fcynman graphs of Figs. 2, 3, and 4, which we dis-
cuss in turn.

The self-energy and vacuum-polarization graphs of
Fig. 2 have been extensively treated in the case of a
Coulomb field. One possible approach that would elimi-
nate the need for further discussion of these terms would
be to reformulate the entire calculation described in Sec.
II using a nuclear Coulomb potential instead of the
Hartree-Fock potential; then the results of Ref. 8 could
be taken over directly. However, in that case the present
calculation would have to be redone using a Coulomb po-
tential, and a significantly larger number of graphs would

have to be computed. Since the extra graphs generally
require significantly less computer time to evaluate, we
consider this an attractive possibility. An attendant ad-
vantage of dealing with the local Coulomb potential is
that the simpler Feynman gauge is known to give results
identical to those that arise from the rather complex
Coulomb gauge expressions.

If the Hartree-Pock potential is used, thc graphs of
Fig. 2 must be evaluated in that potential for a theoreti-
cally consistent calculation. This means that the entire
Lamb-shift calculation must be redone. While this is a
large-scale e8ort, a similar calculation has been carried
out by Desiderio and Johnson' for the case of a local
Hsrtree-Fock-Sister potential. %e are presently investi-
gating the question of whether the use of the same finite
basis set techniques as used to evaluate E' ', E' ', and
8' ' can facilitate a Lamb-shift calculation for the
Hartree-Fock potential.

The next calculation that mould need to be performed
is the complete evaluation of the box graphs of Fig. 4.
%e have, of course, evaluated the dominant parts of these
graphs already by computing E' ' and 8' '. However,
there are extra terms that will contribute to the screening
of the Lamb shift. As discussed in Ref. 6, Eq. (3) can be
derived from the full QED expression corresponding to
Fig. 4 only after a contour integration has been per-
formed. Along with positive-energy terms, terms in
which both electrons have negative energy arise, and
these terms have not been included in our analysis. They
are, ho~ever, entirely trivial to evaluate, involving only a
rearrangement of the sums over intermediate states in
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our computer codes. A less trivial effect arises from the
pole structure of transverse photons. While Coulomb
photons have no pole structure, the contour integration
will include photon poles when one or two transverse
photons are present, and these will lead to a new kind of
structure in which a photon energy integration is present
in addition to the sums over intermediate electron states.
These new terms could either be directly evaluated, or as
an alternative the contour integration could be done
differently. It is possible to rotate the contour of integra-
tion parallel to the imaginary axis, being careful to avoid
poles and cuts in the complex plane, instead of encircling
poles and eliminating an integration via Cauchy's
theorem. This method was used by Lakdawala and
Mohr' in similar work on the hyperfine structure of
muonic helium. Even more so than with the Lamb shift
it seems likely that finite basis set techniques will simplify
the complete evaluation of Fig. 4.

The last contribution that we expect to be important at
the level of the Lamb-shift screening comes from the
graphs of Fig. 3. While these graphs have ultraviolet
divergences, they are somewhat simpler than those of the
Lamb shift, and cancel with other graphs of the same
class because of the Ward identity. Mohr has recently
presented formulas for these terms for helium. While
complicated to work out exactly, it may be an accurate
approximation to replace the vertex and self-energy terms
by their free-space values, which in Coulomb gauge have
recently been presented by Adkins. ' Once again, finite
basis set techniques may prove valuable in the complete
evaluation of these terms.

%bile a great deal of work clearly remains to be done
to understand the spectra of the n=2 terms along the
lithium isoelectronic sequence at the level of experimen-
tal uncertainty, the point that we wish to stress is that the
remaining uncalculated terms are all QED effects. These
effects are particularly interesting aspects of QED be-
cause they test not only the interaction of an electron
with the radiation field, but also the interaction of an
electron with the radiation field in the presence of other
electrons. If indeed QED is the underlying theory of
many-electron as well as one-electron atoms, such effects
should be calculable and agree with experiment. Howev-
er, before QED can be tested, it is important to be sure
that one has control of traditional atomic structure
e8'ects. %e believe that, by including the terms calculat-
ed in this paper, these e8'ects are uncertain by much less
than the screening of the Lamb shift. This is based on
the behavior shown in Table I: the Hartree-Fock energy
grows roughly as Z, the second-order energy is roughly
constant, and the third-order energy falls for high Z
roughly as 1/Z. %'e can also examine a subset of
fourth-order corrections formed by "chaining" two
second-order energies, that is, by replacing the valence
states U occurring in the ket position in E' ' by their
Brueckner orbital corrections. Qn energy denominator
grounds, this is likely to be a numerically important sub-
set of the total fourth-order energy. At Z=28, for
example, the resulting fourth-order corrections to the 2s
state are only —5.6g 10,0.002% of the 2s Lamb shift.
Similarly, the first-order Coulomb corrections to the
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APPENDIX A: VECTOR SPHERICAL HARMONICS

Evaluation of Coulomb integrals with Dirac wave
functions leads to the basic angular integral

IJM ( Ky mb, K ill )

= J d&X„, ,(0,$)&J~(e,p)X„(&,p), (Al)

where the solution of the Dirac equation is taken to be

ig(r ) X„(8,$)
P„~(r)=- (A

The spherical spinors 7 are defined as

1

X„(8,$):— 0 I;,q2(8, $}(lm,—,
'

—,
'

~
jm )

0
+ 1

F( +ig2(llll,
~
JM )

Breit interaction is smaller than the lowest-order Breit in-
teraction by a factor of Z so that further corrections
should again be entirely negligible at the level of interest.
Of course, for smaller values of Z, the full complexity of
the many-body problem comes into play, and higher-
order terms must be considered. Even at Z =3, however
we have found that after including the subset of fourth-
order terms mentioned above, the removal energies for
the three states agree with calculation at the few ppm lev-

el, so that even for low Z going to the next order of
MBPT may reduce atomic structure uncertainties to the
level of QED effects.

In summary, the n =2 states along the lithium isoelec-
tronic sequence have been treated in the framework of
MBPT. By going to third order in the Coulomb interac-
tion and second order in the Breit plus Coulomb interac-
tion, the most important non-QED atomic structure con-
tributions have been included. Comparison with experi-
ment shows systematic deviations from the one-electron
Lamb shift, illustrating the need for a full QED calcula-
tion of this radiative correction in a many-electron atom.
The relevant diagrams have been identified and discussed.
It is our feeling that because of this, precision studies of
the spectrum of the lithium isoelectronic sequence are of
fundamental importance, on par with the studies that
have been made of the helium isoelectronic sequence.
Completion of the screening calculations listed above, to-
gether with accurate experiments for high values of Z,
will not only test QED in intense nuclear Coulomb fields,
but will also test our understanding of the relativistic
atomic many-body problem.
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where if j=/+ ,',—K=—1 —/, and if j=/ ——,', K=/. These
obey the basic rules

cr„X„(8,$)= X—„(8,$),
o"I.X„(8,$)= —(1+K)X„(8,$),
io"(rXI )X„(8,$)=(1+K)X „(8,$) . (A4c)

The integral IJM in Eq. (Al) is related to the reduced ma-
trix element of the normalized spherical harmonics
CJM ='IJ4n l(2J+1)FJM by

d~YJLM(8&0) YJ'L'M'(8&4) ~JJ'~LL'~MM

if we expand Eq. (A7) as

X„, ,(8,$ )crX„(8,p )

CJLM(Kbmb, K, m, )YJLM(8, $),
J,L,M

then the coem1lcients CJ&M can be written as

CJLM(Kbmb, K, m, )=(Kbmb
l YJLM o

l K, m, &

(K Ill
l
o YJIM l ICbmb

(A 10)

(A 1 1)

(A12)

where

=&(2J+ 1)/4Ir( —1 }Ib b

X{KbllCJIIK. &,

X li(/„/b, J),

—mg M

Ja J Jb

. 2 2.

where the second line follows because CJLM is real. Now,
it follows from Eqs. (A4a)-(A4c) that

( K&&m&& l
CT r FJM l

ICb mb & IJM( K&& m&&, Kblllb )

(A13)

m, I
cr I.1'JM .I Kbmb&={Iamb K )IJM(K m„KI mb»

(A14)

(K&m+ l
Vcr'VYJM

l Kbmb & =(Kb+K )IJM( —K m, lcbmb ) .

1 if /, +/b+J is even
II(/, /, J = '"b' '0 if/, +/b+J is odd

(A6)
(A15)

It is now easy to solve, using Eqs. (A9) and (A12), for the
basic coeScients CJLM,

%hen considering the Breit interaction one encounters
the expression

X„, ,(8,$)o'X„(8,$} . (A7)

CJ J+1M

' 1/2J+1 Ka+Kb

2J+1 + J+11+

XIJM( —K~mg&Kbmb ) &

In order to deal with such structures, we introduce vector
spherical harmonics, which are de6ned in a manner
analogous to spherical spinors,

Y (8,$):—g F (8,$) (L, lq
l
JM &, (As)

m, q

CJJ—1M

Ka
IJM(K&&m&&, Kbmb )J(J+1)

' 1/2J Kg +Kg

2J+1 + J—1+

(A16b)

where eo=z, e, —:—~2(x+iy), and e 1=+,'(x iy)——
It is straightforward to show that these quantities are re-
lated to the following basic vector operations on the
spherical harmonics:

X IJM( —K~ mg & Kb mb ) (A16c)

APPENDIX 8: APPLICATIONS TO THE SREIT
INTERACTION

I.
v&'J(J+ 1 )

JM JJMY =Y
' 1/2

rY +JJ+1M

(A9a)

For small values of Z, the transverse interaction given
in Eq. (1) can be expressed as a two-particle matrix ele-
ment of the Breit interaction, s

~a1 a2 (a1 a2 a1 r12a2 r12)l .
~12

' 1/2

rV J
&J(J+1) 2J +1

+JJ—1M (A9c)

This expression arises when the phase factor ko is omit-
ted in Eq. (1) and is valid when (kor, 2) is small compared
to 1, as it is for low-Z atoms.

As an illustration of the utility of the developments in
Appendix A, consider the evaluation of the integral

m, b,d
—=—,g„(r)ag„(r) P„(r')

X al/I„, ,(r'), (B2)

Since the vector spherical harmonics obey the ortho-
gonality condition

which is an off-diagonal matrix element of the Srst term
in the Breit interaction. First we notice that
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(r)ag„(r)

;[g, (r )f,(r )X„(Q)crX „(Q)
—f,(r)g, (r)X „(Q)a'X„(Q)].

CaeJJ—1M

{83)
where me have de5ned

1/2

IJsr(K, m„K, m, )P„(r),

(85c}

Using Eqs. (A16a)-(A16c) we introduce the following
decomposition for Eq. (83):

Ka —Ke
P„(r ) = U„+ V„,

with

~ac~JJ+1M—

X JLN(Q)~JLM(r } ~

J,L,M

1/2

IJsr(K, m„K,m, )Q„(r),J+1
2J+1 .

{85a)

K —K
Q„(r)=—U„+ V„,J+1
U„=g,(r )f,(r ) f,(r )g—,(r ),
V„=g,(r)f, (r)+f, (r)g, (r) .

(86b)

(86d)

K, +K,
IqM( K, m„—K, m, )V„(r),[J'J+"]'"

(Bsb)

Inserting this expansion into Eq. (82) and carrying out
the partial-wave decomposition of 1/

~

r —r'
~

then leads
to

I

I m + J L,hl) J2,L2.Mi r)
y f dQYq L sr (Q)Fi (Q) f dQ'Yi' (Q')YJ I ~ (Q') .

Carrying out the angular integration leads to the expression

rL
m ad = X f d" d" Cztw(r)CJLsr(r ) .abed r)

(87)

(88)

For each J there are contributions from three possible I. values, each of which involves a radial integral and an angular
factor that can be treated with the same techniques as those applied to the Coulomb interaction. One obtains

m, &,d ——g JJ(abed )[M&(abed )+NJ(abed )],
J

(89)

Jq(abed)= g( —1) '
M a e

ib

-mb -M md
(810)

xJ+'
Mz(abed)=( —1)~C~(ac)CJ(bd) f dx f dy z z Q„(x)gbd(y)2J+3 0 0 g +

~J—1

+ f dx f dy P(x)Pbd(y)2J —1 0 0
(Bl 1)

(K~ +K~ )(Kb+Kd ) ~ ~ x
NJ(abed)=( —1) +'CJ( —ac)C~( bd)—J(J+1) o o x I+'dx dy, V„(x ) Vbd (y ) .

In Eq (811) the quantities Cz(ab }are the reduced matrix elements defined in Eq. (A6), while the quantity C ( —ab ) in
Eq (81&) is just C~(ab ) with K, replaced by —K„a change that modi5es the parity selection rule only.

The ex«nsion « the abov«reatment to include the second term in the Breit interaction, Eq. (81), is straightforward
but lengthy; details can b found in Ref. 8. The result for second term in the Brelt interaction matrix element is

r s d
—g J~(abed }0~{abed), (813)
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~ J+1
Oz(abed)=( —1) +'C~(ac)Cz(bd) f dx f dy ~ 2Q„(x)Q~(y)2J+3 2J+1 0 o «~+2

J2 J—1

+ f dx f dy z I'„{x)P~(y)

xJ-' xJ+'

2 2J+1 0 0 «~ «~+'i

~J—1 ~J+1

The entire Breit interaction is given by the sum of these two parts

b.b „=mab „+ra (B15)

APPENDIX C: ANGULAR REDUCTION OF E' '

To facilitate the angular reduction of E' ', we introduce antisymmetrized Coulomb matrix elements g,b,d defined by

fabed gobcd gbacd '

Then in analogy to the standard radial reduction for g, i d,

g,i ~= QXL (abed }JL{abed ),

(C 1)

r

j +j +L —m —m —N Ja JcJ ( bd)=g( —1)'
M a c

Jb I. jg

XL {abed) =( —1)~CL (ac )Cz (bd )Rz (abed ),
r~

Rz(abed )= f dridr2 & i [g,(ri )g, (r, )+f,(ri )f,(ri )][g&(rz)gz(rz)+ f&(r2)fd(r2)],pL+1

(C2)

where Cz (ab ) is defined in Appendix A, we find a corresponding reduction for g,&d,

g,i d ——QZz(abed)JL(abed),

Jb Jd
ZL(abed)=XI (abed)+[L] g ' . . L, 'XL.(bacd },

Ja Jc

(C3)

where [L ]=2L+ 1. In deriving (C3) we have made use of the identity

Jb Jd
Jz (bacd ) = —g [L'] ' . . L 'JL (abed ),

Ja A

which follows from an application of a theorem due to Jucys, Levinson, and Vanagas.
The sums over magnetic quantum numbers in E' ' can now be performed using standard techniques. We find

y y (
1)&a+&t+&e+&m+jr+&u+~

m, r, a, b, c I.

Zr (curu)ZL (muba )Zl (rbcm )

[j„][L]~(s„+e —s, —s&)(s„+s„—e, —s, )

a, c, n, m, r

~a +~e +~m +~n +jr +~I +~ 1 ZI (arne)Zz (curm)Zz {mnua )

[j„][L]2(s +e„—s, —s„)(s„+s —e, —s„)

~ )~a+&m+&I+&~+~Z+
n, m, a, b, c I.&,L2

ZI (acmn)XI (nmba)ZL (ubcu)

[ji,][j„][L,] ' ' (e„+e —e, sb)(s„+e —e, —s—, }
fiUs j, }

a, b, m, n, r L, &,L, 2

( 1 )&a +~b +&rt +&ll+ 2
Z~ (abrn)XL (nmba)ZL (urmu)

[j,]lj.][Li] ' ' (e.+e —s.—e, )(e,+s„—s.—s, )
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L3 I.) L2 L3 XL (bade)ZL (dcun)XL (unba)

[j„] Ja Ju Jn jb Jd Ju (C„+C„—C, —Cb)(C„+C„—C, —Cd)X X

I2 L3 L)

a, n, m, r, s I.&, L&,L3

~ )Ja+Jb+ Ju+Jn+Jr+Ju+L+2
n, r, o, b, c L

L3 L, L2 ZI (avsr)XL (nmua}XL (rsnm }
1 3

Ju Jn Jr (c,„+c —c, —c„)(c,+c,—c, —c„)

Zz (acnr )Zz (nuab )ZL (rbcu )

[j„][L] (c„+c„—c —cb )(c +c„—c —c )

Out, NuMuf

g( —1) ' ZL (carm )ZL(nmua )ZI (urnc )

[j„][L] (c +c„—c, —c, )(c„+c —c, —c, )

f, MuOuCu4f L ( uL2

m, r, s,a,c L&,L2

( 1 )
c a r u 2

( '1)c r s u 2

Zl (dcrm)Zz (mvua)XL (radc)

[ja ][Ju ][LI ] (cm —ca }(cr+ cm —cu —cd }
Rj„j )

ZL (casr}ZL (muua}Xz (rsmc)

[j.][j.][Li] " (c —c.}(c,+c,—c, —c.}
&(j„j )

r

L2 L3
X X

a, b, s, m, r L&,L2, L3 [Ju ] Jy Js

L] L~+'&&[]j.J,n, m, a, c,d L&,L&,L3

L] L3

JI Jr

L3 L~

Jm Jd

Lz L& ZL (basr)XL (rsmv)XL (umba)

Ja Jm (Cu+Cm —Ca —Cb )(C„+Cs—Ca —Cb )

L3 L, Z~ (cdmn)Xz (nmua)XL (uadc)

Jn Ju (C»+Cm ca —cu )(c»+em —cu —ce )
(C5)

An alternative approach is to multiply out the parentheses in Eq. (6), giving 56 distinct terms, and to perform an an-
gular separation for each term separately. As a cross check, we have also developed codes based on this approach, and
obtain precise agreement with codes based on Eq. (C5). The angular factors in Eq. (C5) were determined with the aid of
a program written in the symbolic language REDUCE. 23
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