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Potts-glass models of neural networks
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The theory of neural networks is extended to include discrete neurons with more than two
discrete states. The dynamics of such systems are studied. The maximum number of storage pat-
terns is found to be proportional to Nq(q —1), where q is the number of Potts states and 1V is the
size of the network. The properties of the Potts neural network are compared with the Ising case,
and the similarity between the Potts neural network and a diluted multineuron interacting
Hopaeld model is discussed.

Neural networks which exhibit features of learning and
associative memory can be modeled' by a system of Is-
ing spins with an energy function

0 ——,
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The two states S; +'1, represent the two main levels of
activity of the ith neuron, and N is the total number of
neurons. The bonds J;J are the synaptic efficacies of a pair
of neurons. They are assumed to be modified by learning
in a manner which ensures the dynamic stability of certain
configurations. In the Hebb learning rules9 the accumu-
lated effect of learning on the synaptic connection between
the pair (i,j ) can be represented by a matrix

J.. ~ gPgP
1w„-t'''

The p patterns lgf j constitute the embedded memories.
They are assumed to be random, with equal probabilities
for g; ~ 1. The changes AJ; induced by the addition of
a new pattern has a fixed magnitude MJ g; (J/N-+ I/X.

The statistical mechanics of Hopfield's model fEqs. (1)
and (2)J have been recently studied3 in the limit of
N ~. Three classes of metastable states have been
found. Retrieval states, each of which has a large overlap
with a signal pattern, exist when a~@/N &ac=0.14.
These states are the most important ones for retrieval of
memory. The overlap of each state with the correspond-
ing pattern is 8 W 'g;g,"S;. Its value at maximum
capacity (and zero temperature) is 8=0.97. The slight
reduction of R from unity is due to the small internal stat-
ic noise which is generated by the random overlaps among
the patterns. For a finite a there are also spin-glass states
that have overlaps which are of O(1/JN) with the pat-
terns. In addition, at sufficiently smail a, mixture states
exist, which have 6nite overlaps with a small number of
patterns.

In this paper, ~e consider a generalization of the Ising
neural network, arith only two-state neurons, to the Potts
neural network. In this model each neuron cr; is viewed as
a Potts spin' with q possible discrete states: Each state
may represent a color or shade of grey of each pixel in the
pattern. The state of the network of W such neurons is
defined as the instantaneous configuration of all the spin

1't, —~~ J~J rtt, ,km, ,t,kl
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where m, , is an operator which obeys the Potts symme-
try constraints and is given by

(4)

q is the number of Potts states and cr; is a q-state Potts
variable, which could be in q different states ts; 1,2,
. . . ,q. From Eq. (3) it is clear that the potential of the
postsynaptic neuron i depends both on the state of neuron
i and its neighbors and on their synaptic efficacies.

The dynamics of the Potts neural network is very
different from the Ising case. In the Ising case, the state
of the neuron in the next time step and at zero tempera-
ture is equal to the sign of the induced local 6eld, which is
calculated by the neuron itself. In the Potts case, by using
heat bath dynamics, " each neuron makes a more compli-
cated decision. It first calculates the induced local field
for each of the q Potts states fh j. At zero temperature
the state of the neuron in the next time step is 6xed to be
the state which minimized the induced local field. There-
fore, the dynamics in the Potts case is more complicated
and slower due to the calculation of q induced local fields
and their minima.

The stable states of the system will be those configura-
tions in which every Potts spin variable o;. is in a Potts
state which gives a minimum value to jh,.j.

It will be assumed throu~bout this paper that the J;l's
are symmetric, i.e., J;J' JJ;. In such a case the above
mentioned stability' condition is equivalent to the re-
quirement that the con6gurations fo;j by local minima
(i.e., stable to single-spin fiips) of the anisotropic Potts
Hamiltonian

W
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variables at a given time. The dynamic evolution of the
system, in the phase space of pN states, is determined by
the interactions among the neurons. The neurons are in-
terconnected by a synaptic matrix of strength J;J which
determines the contribution of the jth presynaptic neuron
to the potential of the postsynaptic neuron i The .poten-
tial It, on neuron i, which is in state cr;, is the sum of all
postsynaptic potentials delivered to it in an integrating
period of time, i.e.,



In the presence of noise there is a finite probability of hav-

ing configurations other than the local minima. This can
be taken into account by introducing an effective tempera-
ture I/P, characterizing the level of noise in the system.
The probabiHty of neuron i to be in the next step in state—Ph(cr, }o, is given by e e"t /Tr e

For the network to have a capacity for learning and
memory, its stable configurations must be correlated with
certain configurations, which are determined by the learn-
ing process. This is achieved by choosing the interactions
to be given by

parameter, and the ground-state energy are given by

R„-(&m„, ,»,
E —R /2, (io)

where cro is the cr which maximizes the term (g rnk„+„).
It is easy to show from Eqs. (9) and (10) that
R2 ~ (R2) '1, which implies that R is less than (q —1)
for any states except the Mattis states. To study the sym-
metric solutions in which all l nonzero components are
equal in magnitude near T 0, we use Eqs. (9) and (10)
to obtain

J,"'r' (n N) f rnkk kmk( r (6)

The p sets of {kfj are certain configurations of the net-
work which were fixed by the learning process. The kf
are taken to be quenched random variables, assuming the
values 1,2, . . . , q, with equal probability.

There are two reasons for the choice of randomly aniso-
tropic interactions. First, the gauge symmetry in (5) en-
sures the absence of a ferromagnetic order, ' ' which
means that all spins are occupied by the same Potts state.
Second, in order to achieve a higher capacity, except the
Potts symmetry, it seems that it is preferrable to choose
more complicated interactions and not just a higher num-
ber of spin states. This result is due to the fact that the in-
formation is embedded in the synaptic strength.

The model (3)-(6) will have the capacity of storage
and retrieval of information if indeed the Monte Carlo dy-
namics yield stable con6gurations {cr;l which are correlat-
ed with the learned memory {kfJ. This question is the
main point of this paper.

The ftrst ease to be discussed here is the case of finite p,
and we will concentrate the discussion mostly on the limit
T 0. Extending the method of Ref. 3, one can show
that the ensemble averaged free-energy density is given by

1f- ,' Rr —— ln Trexp—((ZRkmk,, ), (7)
.4)

where P=—1/T. The notation ((. . . » stands for the aver-
age over the distribution of {kgb. The order parameter R
is determined by the saddle-point equations Bf/8R„O
and gives

R„-&( &mk, »&,

where (. . . ) stands for thermal average. The order pa-
rameter R„defines the overlap with the pattern p. In a
random con6guration R„O and when cr; kf (t 1,
. . . ,1V), R q

—l. In the low-temperature limit the order

k&(
k".k" k" k" k"

)) (14)

where Z, =exp(P+~mk, ,RI) One sh. ould notice that in
the symmetric solutions there is a finite probability that
b(p: —P. Therefore all the symmetric solutions, except the
Mattis solution, are unstable in the limit T 0. In the
same way one can show that any solution which has two or
more equal overlaps is unstable at low temperature.
These results indicate that, unlike the Ising case, in the
Potts neural network any stable solution must have only
one dominant macroscopic overlap. Another difference
between the Ising and the Potts neural network is that in
the Potts system there are only p Mattis states for the ab-
sence of inversion symmetry in the system.

The second ease is a finite a~p/N. The average free-
energy per spin f —((lnTrexp( —PH)» /WP of the
Hamiltonian (3)-(6) is calculated by the replica method.
Our discussion will be within the replica symmetric
theory'5 and will concentrate on the most important fer-
romagnetic solutions, which are characterized by only one
macroscopic overlap with a single pattern. Extending the
method of Ref. 4, one can show that the free energy of the
Mattis state in the replica symmetric theory is given by

Et —
2 /Rt

The local stability of the saddle points of f [Eq. (7)] is
determined by the eigenvalues of the matrix A"e=—8 f/
8R„BRe. The matrix A has three groups of eigenvalues

y, &(,2 y+(l —1)b, and A, 3 y
—b where the quanti-

ties y and b are given by
p

e'

i/2
—P (nTrexp (( gr ZmrZr+P(km k, ))„,x, , ,
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where the symbol ((. . . » stands for average over k~ and over q Gaussian variables ZI with zero mean and unity vari-
ance. The free-energy equation (15) is a function of three order parameters. The macroscopic overlap with one of the
patterns R N 'pm k„ the Edwards-Anderson order parameter' Q (%q) 'g; t (m, ~), and the total mean-
square random overlap with p —1 rest patterns r a 'g„(((R„) ». From Eq. (15) one can see that the local field con-
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sists of two parts. A ferromagnetic part Rm k„resulting from the condensed overlap, and a spin-glass part
[Qr(q —1)/q] 'i generated by the random overlap with the rest of the p —1 patterns.

In the zero-temperature limit the saddle-point equations for the order parameters are

r 'q —1dz, I+erf(z+Rdq/2«)
~ OO 2

R q(1 —c)
' q

—
12q, ~ 1+erf(z+R Jq/2ra) 1+erf(z) 1+erf(z —Rv q/2ra)

nra "— 2 2

where c=P(q —1)(l -Q). The saddle point equations
(16)-(18)always have the solution R 0. This is a spin-
glass solution that has no macroscopic overalps with any
of the patterns.

Numerical solution of Eqs. (18)-(20) gives the follow-
ing results. The maximum capacity for q 3, 4, 5, and 9
is given by a, (q) 0.415, 0.82, 1.37, and 4.8. The re-
trieval R R/(q —1) at the maximum capacity is given,
respectively, by 0.956, 0.941, 0.93, 0.92. One can notice
that the maximum capacity is very close to the formula

') o.i38,
2

and the retrieval at the maximum capacity is a decreasing
function of q. (The maximum capacity in the Ising case
and within the replica symmetry solution is ac 0.138.4)
A more exact way to estimate the error in the retrieval
state is the generalization of the Shanon formula'7 to the
Potts case

l'

S-——[i+ (q —1)R]inl 1+(q —1)R
1 —R

+ln[q/(1 —R)1 .

Equation (20) gi~es for q 2, 3, 4, 5, and 9 at the max-
imum storage S 0.084, 0.15, 0.23, 0.28, and 0.40, re-
spectively. This result indicates that the retrieval of infor-
mation is a decreasing function of q. The solution in the

large q limit is still unknown. Therefore, it is still un-
known if the retrieval decreases to zero or to a finite value
in the large q limit.

The higher capacity in the Potts case, compared to the
Ising case, is partially due to the fact that in the Potts
neural network each synapse contains more information.
From Eq. (6) each s napse between a pair of neurons is a
matrix containing q elements. For each of the patterns,
the embedded information between a pair of neurons (i,j)
is fixed together by the variables k; and kl, which have q

2

different possibilities. This explanation shows that each
synapse contains q bits, which makes the results of Eq.
(19)more logical.

Another aspect which increases the capacity is the fact
that each pattern in the Potts case contains Nlog2q bits.
The reason that logzq does not appear in Eq. (19) is
perhaps due to the fact that the "Hebb's learning rule" in
the case of the Potts neural netw'ork is iLJ;l. (q —1),—(q —1), 1 which must be represented also by log2q bits.

Another aspect of the Potts neural network is the map-
ping between this model and a corresponding highly dilut-
ed network with multineuron interactions. Each Potts
neuron a;., which could be in p 2" states, n 1,2, . . . ,
should be replaced by a block of n Ising neurons,
S,S;2, . . . , S;". For the cases where 2" '&p &2" one
should replace a Potts neuron by a block of n Ising neu-
rons, and add constraints or field in order to avoid the for-
bidden states. ' Using the identity that b,„,—= (1+s;sl )/2,
one can rewrite the interaction between the pair (i,j ) in
the following form:

r

g Jk,'m. km. . l - g Q (p/g+ i)/2 —i g (p,'g,'+1)/2 —
1

{pi-+ l I 1

Pf P!

Q (p/S/+1)/2 —1 Q (p,'S,'+1)/2 —
1

I—1 I 1

where g is a random number which could be + 1 with
equal probability, and the summation is over 2 possibili-
ties of the p's. It is obvious that only terms which contain
an even number of each of the p's remain after the sum-
mation. These terms have the form of multineuron in-
teractions of order 2,3, . . . , 21og2q. Each term must con-
tain at least one two-state neuron from each of the two

blocks of n neurons. For the case p 4, for example, the
remaining terms are

SkSE(kgl SkS!Sk(kglgk SkSjSkSI(k(lgkgl

where in the second and third terms k~l. The second
term, which includes three multineuron interactions, is re-
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sponsible for the breaking of the inversion symmetry. The
first term with k equal to I is exactly an interaction of the
Hoplteld type, but this term with k~1 represents interac-
tions which prefer neurons to be parallel to the k pattern
in the ith block and to the l pattern in the jth block. Such
types of interaction may be used to represent correlations
between different parts of the pattern.

In the representation of the Potts neural network as a
network of highly-diluted multineuron interactions, the
capacity per bond is proportional to log2q. This huge
capacity (compared to the fully connected case's) is due
to the fact that the number of synapses in the system is
proportional to N2q2, but on the other hand, the number
of retrieval bits is proportional to N q log2q. The huge

capacity per synapse is perhaps due to the fact that most
of the synapses are of the log2q multineuron type. The
slower dynamics in the multineuron representation is due
to the calculation of the induced local Iield, which is most-

ly a summation of log2q multineuron synapses.
The nature of the Potts neural network in the full phase

space and the solution in the large q limit are still open
questions. The relevance of such dynamics in biological
systems is still unclear.
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