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New theoretical results for the Lebmann eff'ect in cholesteric liquid crystals
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%e point out for the 6rst time that the classical Lehmann effect, which arises when a tempera-
ture gradient is applied parallel to the helical axis of a cholesteric droplet, is not only due to a dy-
namic cross-coupling between director orientation and temperature, but has also a static contribu-
tion. In addition it is demonstrated that the analogous effect in an external homogeneous electric
6eld is purely dynamic, in an external concentration gradient it is a mixture of a static and a dy-
namic contribution, whereas in a density gradient there are only static cross-couplings involved.
The latter possibility has apparently never been discussed before.

One of the first experiments ever reported in liquid crys-
tals was the Lehmann effect a rotation of constant angu-
lar velocity is observed, when a temperature difference is
applied parallel to the helical axis of a droplet of a
cholesteric liquid crystal.

In a cholesteric liquid crystal the typically rodlike mole-
cules are arranged in a helical fashion, but are otherwise
free to move as in a liquid. Since 1900, no one has sup-
plied an experimental confirmation of Lehmann's early
observation. Only very recently, Madhusudana and Pra-
tibha2 described an analogous effect with the temperature
gradient replaced by a dc electric field.

A theoretical interpretation of the Lehmann effect as a
phenomenon of a purely dynamic coupling between direc-
tor orientation and external force has been given by
several authors (compare Refs. 3 and 4, and references
cited therein). Here we point out for the first time that
only in the case of an external electric field is the Leh-
mann effect purely dynamic, whereas for an external tem-
perature gradient as well as for an external concentration
gradient (in mixtures) the Lehmann effect has a dynamic
as well as a static coupling contribution. Finally, for a
density gradient there is only a static cross-coupling. The
static contributions discussed here have never been inves-
tigated in connection with Lehmann-type effects.

As the authors in Refs. 3-5 we adopt the local approach
to cholesteric liquid crystals; that is, we take as macro-
scopic variables characterizing the additional long-lived
degrees of freedom the deviations bn of the director from
its equilibrium value n, which can be taken to be
n (cosp, sin&, 0) with p qoz+const for a helix with an
axis parallel to z and where qo is the wave vector of the
helix. For a strictly hydrodynamic description valid for
length scales large compared to the pitch of the helix and
using the displacement along the helical axis as a hydro-
dynamic variable we refer to Refs. 6-8. Since a helix is
different from its mirror image, it is possible to associate
with it a pseudoscalar quantity, which is a scalar except
for its si n change under parity. It is introduced via

qn —(fi curifi ) and its presence allows for a number
of cross-couplings absent in nematic liquid crystals. '

Here we focus on the statics and the dissipative dynamics,
especially on the cross-couplings between the director
variations and the other variables. Reversible dynamic
effects will be discussed in detail in a forthcoming publica-
tion,

Using as macroscopic variables variations of density bp,
of entropy density bo, of the direction bn, and the density
of linear momentum g, we find for the generalized free en-

c:rSY

F F„, ,+K2qn(fi curln+qn) —r~n(n curlfi+qo)bcr

—r~o(n curln+qo) bp,
where F„, , contains all terms already present in nematic
liquid crystals, including flexo- and dielectric contribu-
tions. 3 If necessary (e.g., in mixtures), the concentration
can be used as an additional variable. It enters Eq. (1)
analogously to the entropy density. As we well see below,

and r~ are the static cross-couplings between bn and
b~t, bp, which enter as static contributions into the
Lehmann-type effects. We have given these terms very
recently for compensated cholesterics and we will present
a detailed comparison with the other local approaches to
cholesterics elsewhere. '

The Gibbs relation and the balance equations are set up
in the usual way (compare, for example, Refs. 6 and 11).
In the same way as the thermodynamic forces can be de-
rived by taking variational derivatives of the generalized
free energy with respect to the variables, the same can be
done for the dissipative contributions by taking variational
derivatives of the dissipation function with respect to the
thermodynamic forces. We have for the dissipation func-
tion

~„, ,+~rqnP'T (fi xh)+ysq. nE. (n xh),

where 1trT and tltE are the dissipative dynamic couplings
associated with Lehmann-type efl'ects (called v/yt in Ref.
3) and h= —(b/bn) fFdV. For a mixture the chemical
potential difference enters Eq. (2) analogously to the tem-
pcr8tllrC.
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To see how the static and the dissipative dynamic con-
tributions enter the Lehmann and/or the Lehmann-type
effects we proceed along the lines discussed in detail in
Ref. 3. Taking an external temperature gradient along
the helical axis, it is easily veri6ed that the complete hy-
drodynamic equations allow for the solution v 0, i.e.,
there is no flow. The dynamics of the orientation of the
director in the plane perpendicular to the helical axis is
then given by

n x ~ $1(+2—
q jt~CVTO ) I/~$p

temperature, it is obvious that an external gradient in the
chemical potential difference leads to a Lehmann-type
effect, which has a static and a dynamic component as in
the temperature gradient case. However, the actual for-
mula for the rotation velocity due to a chemical potential
gradient [and Eq. (4) for mixtures' is rather complex, be-
cause of the additional cross-couplings between the con-
centration and the other degrees of freedom.

To get an upper bound of this velocity we make use of
the requirement of thermostatic stability, and thus obtain
from the generalized free energy the inequality

2

rpq$ & JC2
8~F

8p
(7)

N Q'Ol//E (5)

This is the configuration studied by Madhusudana and
Pratibha, thus providing directly from experiment a
value for the dissipative cross-coupling yrE

Finally, we come to the case of an external density gra-
dient (at constant temperature), for which there is no dis-
sipative dynamic cross-coupling. We obtain

9041 (rp rcrCY TO P)

where P—=8T/8p. Equation (6) represents a rather intri-
guing prediction, since it says that a small pressure gra-
dient applied to a freely suspended cholesteric droplet will
also produce a constant rotation velocity of the director
(in which case also the dynamic cross-coupling yT enters
the expression for the rotation velocity).

Since the concentration and the chemical potential
difference in mixtures enter the free energy and the dissi-
pation function analogously to the entropy density and the

where bp denotes the angle between the director and a
fixed direction in the plane perpendicular to the helical
axis, and where (1 is the director friction coeflicient
(= I/yi) and CV is the specific heat at constant density.
Whether or not a uniform rotation arises as a consequence
of Eq. (3) depends on the boundary conditions at the lim-
iting surfaces. As shown, for example, in Ref. 3, free sur-
faces (freely suspended films) lead to a uniform rotation
and we find for the rotation velocity of the director orien-
tation, keeping both the dynamic and the static contribu-
tion

r0 =bp g (0g 1 rCy To + lpT )

As we read off immediately from Eq. (4), both the static
contribution (r, ) and the dissipative contribution (yr)
enter and cannot be separated experimentally by the Leh-
mann experiment.

For an external homogeneous electric field parallel to
the helical axis, the situation changes since there is only a
dissipative dynamic and no static contribution, because
neither the flexoelectric effect nor the dielectric effect
influence the orientation of n in the plane normal to the
field. The latter effect could, however, force fi out of the
normal plane, if e, & 0 (tensor components defined as in
nematics), a possibility we will not investigate further.
Then we get in this case instead of Eq. (4)

In the same spirit, one can estimate the static contribu-
tions induced by temperature variations

r~$ &KzTOCy ' .

Similarly, we get from the positivity of the entropy pro-
duction the following upper bounds for the dynamic
coefficients:

YTgf & («i 1lfE$$ & ko'i

where x~ and o& are the perpendicular components (in
nematic notation) of the heat conduction and the electric
conduction, respectively. Unfortunately, lower bounds—even approximate ones —require extensive microscopic
calculations.

Clearly, the prediction of a constant rotation velocity of
the orientation of the molecules, as a consequence of an
applied density or pressure gradient, is experimentally the
most challenging one. Although this experiment might
not be easily done in cholesteric liquid crystals, for which
it is close to impossible to produce stable thick freely
suspended films, there seems to be a way out. Everything
we have said above for the cross-couplings of the director
in cholesterics to variations in density, concentration, tem-
perature, and to an external homogeneous electric field

applied equally well to the in-plane director in chiral
smectic C* showing a helix. Provided that the coupling to
bond-orientational order is weak, the same can be expect-
ed to hold for the other chiral smectic phases showing a
helical structure, namely, F and I (cf. Ref. 12 for a
macroscopic description of these phases). It is well known
that in chiral smectics perfectly stable, thick freely
suspended films can be produced fairly easily. ' And it
should be possible to apply to such a film a pressure
gradient —e.g., by blowing air at the film statically or at a
small frequency. Then the only problem left to be over-
come to observe visually the rotation of the in-plane direc-
tor would be to find a chiral smectic liquid crystal with a
fairly large pitch (of order 10 pm or more) or, alternative-
ly, to choose a material which has a weakly first order
C -cholesteric transition, in which case the chiral smectic
helix is known to unwind as the phase-transition tempera-
ture is approached. It seems more difficult experimental-
ly, but not impossible, to apply gradients of temperature
or chemical potential to chiral smectic films, which would
also show under these conditions Lehmann-type effects.



In conclusion, we have discussed the Lehmann effect
originally observed for a temperature gradient applied
along the helical axis of a cholesteric droplet and we have
pointed out that static contributions are as important as
dissipative dynamic ones for the understanding of this
effect. Generalizations of this analysis to other external
forces such as homogeneous electric 6elds and gradients of
density and concentration on one hand as well as to other
types of liquid crystals, namely chiral smectics, have been
given and a number of novel predictions has been made.
Finally, we point out that the same effects will arise in

cholesterics II, '4 the cholesteric phase, which is locally bi-
axial nematiclike.
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