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Field equation for interface propagation in an unsteady homogeneous flow Seld
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The nonlinear scalar 6eM equation governing the propagation of an unsteadily convected inter-

face is used to derive a convenient expression for the average volume Aux through such an inter-

face in a homogeneous Ao~ field. For a particular choice of the initial scalar 6eld, the average
volume Aux through any such interface is expressed as a volume-averaged functional of the evolv-

ing scalar 6eld, facilitating analysis based on renormalized perturbation theory and numerical

simulation. It is noted that this process belongs to a di6'erent universality class from the propaga-
tion model of M. Kardar, G. Parisi, and Y.-C. Zhang [Phys. Rev. Lett. 56, 889 (1986)].

A fundamental problem in combustion theory is the
determination of the burning velocity of turbulent
premixed flames in the laminar-flamelet regime, in which
burned and unburned regions are separated by a thin,
wrinkled interface. ' This interface is convected by the un-
steady flow 6eld and propagates toward the unburned re-
gion at a normal velocity uF which depends on the local
curvature of the interface as well as the local strain field.
Furthermore, volumetric expansion due to heat release at
the interface induces global as well as local distortions of
the strain field.

As a paradigm of this and other processes involving the
passage of a chemical reaction front through a stirred
medium, the following simplified problem may be con-
sidered. A surface, initially planar, is convected by an un-
steady homogeneous flow field, and the surface propagates
relative to the flow field at a constant normal velocity uF.
This Huygens propagation mechanism is assumed to be
passive in that it does not affect the fluid velocity field
v(x, t). This velocity field may be regarded as a realiza-
tion of Navier-Stokes turbulence, but this specification is
not essential here.

Several fundamental issues concerning this as well as
the more complicated processes of practical interest are as
yet unresolved. Foremost among these is the issue of the
existence of a steady-state turbulent burning velocity.
The turbulent burning velocity ur is defined in this con-
text as the volume flux through the evolving surface per
unit cross-sectional (projected) area in the direction of
propagation. It has not been established that, for a sta-
tistically steady flow field, the ensemble-average value of
uT eventually converges to a constant. Furthermore, the
dependence of uz on the rms velocity fluctuation u' (a
me~sure of turbulence intensity) and on Reynolds number
is uncertain.

Resolution of these issues for Huygens propagation of a
passive surface may provide insights relevant to the more
complicated processes of practical interest. To investigate
the simpltfied problem, it is useful to formulate the inter-
face propagation problem as an initial value problem for a
scalar field 6(x,t) whose level surfaces represent inter-

where v(x, t) is a given flow field. We briefly restate the
derivation of this equation, which is a variant of a classical
result. s The left-hand side of Eq. (1) is the convective
derivative DG/Dt. It is easily seen that the source term
on the right-hand side causes any level surface to propa-
gate with a normal velocity uF relative to a local fluid ele-
ment. For instance, consider some point xo on any level
surface 6 c at time t p In som.e neighborhood of (xp, tp),
6 can be approximated by the lowest order terms in a
Taylor expansion, namely,

G(x, t) -G(xp, tp)+(x xp) VG—(xp, tp)

86(xo, to)+ t —to
8t

In the hmit t to, the point x(t) specified by

x(t) —xo

f —
Eo

VGO
v(xp, tp) uF

i

(3)

where Gp =6(xp, to)—, is on the level surface 6 c at time
t. This follows from the de6nitions of v and uF. Namely,
a Quid element at point xo is convected by the 1oca1 Quid

velocity v, and the level surface propagates relative to the
fluid element with velocity uFn, where n —VGo/I VGo I

is the unit vector normal to the level surface. (The con-
vention is adopted that propagation is in the direction of
decreasing 6.) Therefore the right-hand side of Eq. (3) is
the velocity of the level surface at (xp, tp), so 6(x,t)
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faces. An equation governing 6 has been formulated, '

and initial value problems have been solved numerically3

for several configurations. Here it is shown that, for a
particular choice of the initial scalar field, the average
volume flux through a propagating interface convected by
an unsteady homogeneous flow field can be expressed as a
volume-averaged functional of the evolving scalar field.
This formulation is advantageous for both computational
and analytical study of the properties of uT.

The field equation which we adopt is

+v VG uF IVG I
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G(xp, tp) to first order in t —tp for the above choice of
x(t), as claimed. For this choice of x(t), Eq. (2) thus
reduces to

86p x(t) —xp .+go
8t t tp

Substitution of Eq. (3) into Eq. (4) yields Eq. (1).
Although we have specified that u~ is constant, this

derivation is valid if ut" (x, t ) is taken to be any function of
6(x,t), v(x, t) and their derivatives. In particular, the
aforementioned strain and curvature effects can be incor-
porated, as demonstrated below.

It is well known that the solutions of initial value prob-
lems for Hamilton-Jacobi-type equations such as Eq. (1)
develop discontinuities. In the present context, these
discontinuities arise when portions of the propagating
front converge on each other, thereby forming cusps.
Generalized solutions which capture these features by
means of limit processes can be de6ned, but such solutions
are not unique. It has been showni that the generalized
solution which corresponds to the propagation rocess
considered here is the so-called viscosity solution, which
is the unique solution obtained upon the addition of an
infinitesimal diff'usive term ta the right-hand side of Eq.
(1). It has also been shown7 that a broad class of finite
difference schemes for numerical solution of equations of
this type yield controlled approximations to the viscosity
solution. In particular, the numerical method adopted in
the computations described shortly has this property.
This point will be elaborated elsewhere.

In order to derive a convenient expression for uz, we
consider the time evolution of 6(x,t) viewed as an initial
value problem, based on Eq. (1) and the initial condition
G(x,O) x, where the position vector x is expressed as
x (x,y,z). Since the field equation is nonlinear, the
choice of initial condition is nontrivial. In particular, if
the initial condition is transformed out of the problem by
de6ning the alternative field H(x, t) G(x, t)-x, for
which H(x, O) 0, then substitutian into Eq. (I) gives the
field equation

+v VH+i v-u, (1+2i.VH+VH VH)'"

for the new quantity H. (Here, i denotes the unit vector
in the x direction. ) As discussed later, this is the most
useful form of the initial value problem for analytical pur-
poses. For now, we consider the initial value problem for
the quantity G.

Initially, all level surfaces of G are planes normal to i.
In the absence of convection, Eq. (1) indicates that any
level surface G c remains planar with the same orienta-
tion, but moves with velocity u) in the —i direction.

(Note that there is a length-scale normalization implicit
in the initial condition. ) Provided that mild regularity
conditions are imposed on the fluctuating velocity field,
overall propagation will also proceed in this direction in

the presence of velocity fluctuations.
Taking up to be constant and assuming that the flow

6eld is homogeneous, we derive an expression for uT as
follows. Consider a cylinder of infinitesimal cross-
sectional area dA dydz whose axis is parallel to i. (y
and z are the transverse coordinates. ) For arbitrary c, we

first seek an expression for the surface area dS(e) of the
portion of the level surface 6(x,t) e which is contained
within the cylinder. In terms of these quantities, ur can
be expressed as

(6)

where the angle brackets denote an average over the
transverse coordinates (y, z) of the cylinder axis.

This specified subset of the level surface is not in gen-
eral connected, reflecting the fact that a ray in the x direc-
tion may intersect the surface more than once. (Most for-
mulations of the propagation problem have difficulty
treating surfaces which are multiply folded in this
manner. ) Each connected pierce of this subset is treated as
locally planar with unit normal vector nj (again, adopting
the convention that it points in the direction af decreasing
G), where the index j labels the pieces. The surface area
of the jth piece is dS, dA/I i nj I. Summing over j, we
obtain

J(c, ,z)

dS(c) dA (7)
i Ii'nj

where the dependence of the number J of such pieces on c
and an the transverse location of the cylinder axis is indi-
cated explicitly. (nj is likewise dependent on c, y, and z. )

Substituting Eq. (7) into Eq. (6), we express the trans-
verse average as a normalized integral over the finite
domain y ( & y (yz, z ( & z & z2, with the in6nite-domain
limit to be taken later. The result is

Qp qy, J(, , )
ur(e)- dy dz,

(y2-yi)(z2 —z() "' "' i-( Ii. n& I

where the argument of ur indicates that this expression
for uT is based on a given, though arbitrary, value of c.

Though Eq. (8) is formally correct, a more useful ex-
pression is obtained by averaging over the parameter c,
again by a normalized integration over a finite domain
c(&c(ci, with the infinite-domain limit to be taken
later. Substituting n —VG/ I VG I, we obtain

Qp t ), ~zz J(c, ,z)
I vG I

uT . dcdydz, (9)(cz-ci)(y2-y()(zz-») "' "' "" J-i li VGI

where the index jnow denotes the jth intersection of a ray through (y,z) in the x direction with the level surface 6 c.
Equation (9) can be simplified by noting that the range of e corresponds to all x values for which c) (6 (ci along the

aforementioned ray, and that each such x value appears in the integrand exactly once. Therefore the integral over c can
be transformed into an integral over x. The Jacobian of the transformation is dc/dx I i VG I, where the absolute value
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appears because all ray increments dx as well as all dc increments make positive contributions to the total surface area.
The Jacobian cancels the denominator of the integrand, giving

QF QZ2 +f2
uT~ )VG ) dxdy dz.

(c c )(y2 y )(z z ) g g) g y) ~ c(&G(x'y'z "t)(eg

For given y, z, and t, the range of the integral over x,
specified implicitly by ci & G(x,y,z, t) & c2, is not con-
nected in general, so evaluation of the fimte-domain in-
tegral is not straightforward. However, the assumed
homogeneity of the flow field simplifies the passage to an
infinite domain. Namely, the statistics of the field G —x
are translationally invariant, so for c2 —ei much larger
than the characteristic fluctuations of G at given x, the
range of x in the integral may be approximated by
ci &x &c2. Thus in the infinite-domain limit, the nor-
malized integral in Eq. (10) reduces to the volume aver-
age of ) VG ( . Note that the reduction to this simple result
is a consequence of the assumed initial condition,
G{x,o) -x.

If uF is allowed to depend on local properties, as dis-
cussed earlier, then the derivation is unchanged except
that uF appears inside the sums and integrals rather than
as a prefactor. Therefore the most general form of the re-
sult is

ur (uF i VG i),
where the angle brackets denote a volume average.

For analytical purposes, Eq. (5) for the field H G —x
is the most useful field formulation because the H field is
homogeneous, with the simple initial condition H(x, r)

0. In terms of H, the expression for Mr becomes

flame chemistry, was taken to be 0.0125lc, where lc is the
edge length of the computational domain. This choice of
lsd corresponds to a physically interesting case, as we will

discuss elsewhere. We emphasize, however, that this illus-
trative computation should not be viewed as a fully realis-
tic combustion simulation because thermal expansion is
omitted.

The principal features of the flow 6eld simulation are as
follows. The kinematic viscosity is 0.002lguL, . To approx-
imate a statistically steady flow 6eld, the 6nite difference
scheme used previously' was modified in this simulation
to incorporate a constant energy constraint. This was im-
plemented by means of a time-dependent low-wave num-
ber forcing applied to the strain field. The length scales in
the flow field are established by the initial random selec-
tion of line vortices in each of three axis directions, with
randomly selected core sizes. The core sizes are 6, 2h,
and 4h, where 6 lc/32, with populations of 512, 64, and
8, respectively. The circulation strength is set proportion-
al to the —', power of the core size in order to mimic the
cascade of turbulent energy. Although on this small mesh
we do not expect to capture an inertial range in the energy
spectrum, the simulation does reproduce attributes of the
strain-rate tensor exhibited in Navier-Stokes simulations
on larger grids. "

As noted earlier, an important unresolved question is

QT ~(MF I 1+VH I ) ~ (12)

This expression for ur renders the field formulation tract-
able for analysis based on a stochastic representation of
the velocity field, with the volume average interpreted as
an ensemble average. Elsewhere, Yakhots analyzes Eqs.
(5) and (12) using methods of renormalized perturbation
theory analogous to those previously applied to a passive-
ly advected, diffusive scalar 6eld. For Huygens propaga-
tion in homogeneous Navier-Stokes turbulence, he obtains
a novel, closed form expression relating ur to uF and u '.

To illustrate the computational implementation of the
field formulation, we have numerically solved the initial
value problem for G in a forced Navier-Stokes flow on a
32' grid. In this calculation, uF was taken to be depen-
dent on the local strain 6eld and the local curvature of the
level surface as prescribed by laminar-flame theory, '

namely,

o
CV

0.0 3.0

tlF QL (1 /sr 1c), (13)

x —b+V a, (14)

where n —VG/( VG ), b n* e n, and e is the strain-rate
tensor. The Markstein length l~, whose value depends on

where uL, represents the laminar flame speed in the ab-
sence of strain or curvature effects. The flame stretch x is
given by

FIG. 1. Normalized volume ffux ui./uL, through a level sur-

face, estimated from a simulated realization of the field 6, as a
function of time expressed as a multiple of /I/uL. (Ig is the tur-
bulence integral scale and uL, is the propagation velocity in the
absence of strain or surface curvature. ) G was convected by a
homogeneous Navier-Stokes velocity fjeld ~ith turbulence inten-

sity u' 1.2uL, . The propagation velocity up depends on strain
and curvature cff'ects as expressed by Eqs. (13) and (14). A
time average over the period indicated by the dashed line yields
uz/uL, 1.99.
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whether ur eventually converges to a constant value. Fig-
ure 1 shows a simulated time history of uT, computed
from the numerical solution for 6 and the fiow field using
Eqs. (11), (13), and (14). The transition from an initial
rise to fiuctuations about a steady value is indicative of
convergence to a constant ensemble-average value of uz. in
this case. For this realization, u' 1.2uL, and the integral
length scale estimated from the transverse velocity corre-
lation is /t =0.1/c. Therefore the characteristic time for
large eddy turnover is z /t/u'=0. 1/c/uL. This is con-
sistent with the time scales for transient relaxation and
subsequent fiuctuations of uz, as evident in Fig. 1.

Computations have been performed for other values of
u' and /se, including /ss 0 (corresponding to Huygens
propagation), and similar features are observed. The pla-
teau value of ur increases monotonically with u' and de-
creases montonically with /st. A quantitative parameter
study, including additional details of the computations,
will be presented elsewhere.

A practical advantage of the field formulation with Eq.
(11) for ui. is that the entire computational domain con-
tributes to the estimate of ur at any epoch, in contrast to
formulations in which a single interface within an Euleri-
an computational domain is simulated. Although the con-
tributions of individual grid cells to the estimate are corre-
lated, a substantial gain in overall computational
efficiency is achieved. The gain is even greater when
strain and curvature effects are incorporated, because the
field formulation renders the computation of quantities
governing these effects particularly convenient.

To place these results in perspective, we contrast the
field formulation [e.g., Eqs. (5) and (12)], which is valid

for propagation in any homogeneous velocity field ir-
respective of its dynamical origin, with the aforemen-
tioned analytical and numerical solution procedures,
which have been applied specifically to propagation in hy-
drodynamic turbulence. Equation (5) can be regarded as
8 LI,QgCV16-tgPC CqQa, tloQ %Pith 8 IQltlpllCSt1VC VCCtOI'

noise term v(x, t) whose scaling properties determine the
scaling properties of ur. In this sense, Eq. (5) is analo-
gous to the nonlinear Langevin equation for interface
growth formulated by Kardar, Parisi, and Zhang. '2 They
analyze the evolution of the height h(y, z, t) of a growing
interface which is restricted to be a single-valued function
of the transverse coordinates y and z (a restriction not re-
quired in the present formulation). They obtain a source
term of the form ut;(1+Vh Vh)'i2, which resembles the
right-hand side of Eq. (5). Their propagation model in-
cludes a linear diffusive term and an additive noise, rather
than the multiplicative noise representing random convec-
tion. Renormalized perturbation analysis of their model
predicts power-law growth of the interface zone with time.
For the present formulation, computations (Fig. 1) and
analysis (Ref. 8) indicate relaxation to statistically steady
growth for at least one physically interesting specification
of the fiuctuating velocity field. Thus, the two formula-
tions are not in the same universality class, indicating that
propagation in a random convection field, as formulated
here, constitutes a fundamentally distinct dynamical pro-
CCSS.
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