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Wire pertnrbations in the Sal'man-Taylor problem
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Zocchi, Shaw, Libchaber, and Kadano6' recently discovered that when two wires are symmetri-

cally placed along the center of a Hele-Shaw cell, symmetric but narro~ fingers of dimensionless

width X, & 7 develop. A, decreases as the pushing velocity increases, but at a certain critical finger

width the finger suddenly undergoes a transition to the asymmetrical state. We present a simple

theory to predict this critical finger width as a function of D, the dimensionless distance between

two ~ires, by assuming that the finger opens up a negative angle at the contact point.

In a recent experiment conducted by Zocchi, Shaw,
Libchaber, and Kadanoff, ' new experimental findings
were reported for asymmetric Saffman-Taylor fingers2
in a Hele-Shaw cell. They discovered that a wire in a
channel produces a local deformation on the finger sur-
face, and it results in a dramatic change in a finger shape
as well as in a finger width. When the wire is placed at
the center of the channel, an asymmetrical finger is ob-
served with a substantial reduction in a finger width.
Moreover, when they place two wires symmetrically along
the center line, they observe a transition from symmetric
to asymmetric finger state as a pushing velocity increases.
A sharp transition occurs at a critical finger width A,„
below which asymmetric fingers show up. This new
discovery is reminiscent of a recent experiment conducted
by Couder and his collaborators. They 6rst injected a
small bubble along the center of the channel. When the
tip of the 6nger touched the bubble, the bubble became
trapped; and after a transient period, a new finger with a
narrow width developed. In this case, however, the finger
was always symmetric.

The questions to be addressed in this paper are the fol-
lowing, First, why does an asymmetric finger show up
with a wire at the center of the channel'? Second, why
does a transition from symmetric to asymmetric finger
state occur when two wires are placed in parallel along the
center? How can one predict a critical 6nger width'?

In a previous report, a simple model was proposed to
explain Couder's experiment. In this purely phenemelogi-
cal picture, the bubble was replaced by a cusp, and the
effective opening angle due to this cusp, estimated within
a linear theory, was positive. Several predictions were
made based on this simple picture, and these predictions
appear to be in excellent agreement with the experiment.

Therefore, it seems quite natural to try to understand
the experiment of Zocchi et al. along this direction. As in
Couder's experiment, we are not interested in the modified
fiow field produced by the wire. Rather, we again assume
that at the contact point made by the wire, the finger al-
lows a cusp. The effective opening angle at the contact
point, ho~ever, is not positive, because ~e never observe a
symmetric 6nger with the wire at the center. The propo-
sal in this paper is that the ~ire is opening up a negative
angle. "
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FIG. 1. Schematic pictures of fingers with positive and nega-
tive opening angles on the SaA'man-Taylor's zero surface tension
pro61e. (a) Cusp appears above the pro61e and the mismatch
angle due to this cusp defined in (1) is positive. (b) Couder's

finger with a bubble at the tip. Cusp appears at the joining
points of both sides of the finger, and the mismatch angle is posi-
tive. (c) Cusp created by a wire in the experiment of Zocchi

equal.

Cusp appears under the finger profile, and the mismatch

angle defined in (1) is negative.

In Fig. 1 are schematic pictures which show how the
fingers with positive [Figs. 1(a) and 1(b)] or negative
[Fig. 1(c)l opening angle look. Figure 1(a) shows a finger
with a positive opening angle and Fig. 1(b) is Couder's
finger with a bubble at the tip. Note that the bubble is
creating a smooth valley, and we interpret this valley as
opening up a positive angle by joining both sides of the
finger The cusp appears in this picture at the joining
point, and it is above the smooth finger. The strength of
the cusp is measured by the discontinuity of the tangential
slope, he, defined as
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Suppose now that the cusp appears at rip with the
mismatch angle 58(rio). A simple way of determining r/0

as well as 58(ris), within a linear approximation, will be
to write an equation of motion for 8 (Ref. 6) in the form 9

+Ql( )8( )+—P d '

dt12 lr ' -" ri-ri'

R (11)+58(rip)f(rio) b(ri rip), (3—)
dr/

where P denotes the principle value and
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with and without surface tension and + and —refer to
the limit approaching from left and right, respectively.
Conventionally, h8 is called a mismatch angle, and it is
positive in Figs. 1(a) and 1(b). However, when we care-
fully examine the photograph of a finger with wire, we
find that the contact point is slightly pushed backward
creating a sharp cusp at that point. This cusp is beneath
the smooth finger and, by definition (1), the mismatch an-
gle due to this cusp, will, therefore, be negative.

In Ref. 9, a simple and elegant way was developed to es-
timate 68 at the tip. The strategy in this paper is to ex-
plore the analysis further to the case where a cusp appears
not at the tip but at an arbitrary point on the 6nger sur-
face. This paper focuses entirely on the symmetric case.

We start our analysis by defining the relevant physical
parameters. The system of interest is an effectively two-
dimensional channel of width 2W and thickness b(&$'
along which a fluid of viscosity p is being pushed by an
immiscible second fluid of relatively negligible viscosity.
Both fluids are incompressible. We also denote the sur-
face tension, speed of the second fluid, and the width of
the asymptotic finger as y, U, 2A, W, respectively. The an-
gle made by the normal vector against the x axis is denot-
ed as 8 80+v8l, where 80 is the zero-surface-tension
solution and 8l is the first-order correction. In what fol-
lows, we use a variable ri, which is the slope of the zero-
surface-tension Saffman-Taylor solution. If we assume
that the shape correction due the surface tension is small,
then the relation between ri and the real variable x defined
lrl Flg. 1 ls given by

1-k xx
~ ""2~

Without a delta-function term in the right-hand side,
Eq. (3) describes the equation of motion for 8l. Note that
(3) describes the half profile of symmetric finger and thus
when the cusp appears at ri it is assumed that at —

r/ is
also a cusp. The true solution of (3) is a smooth finger
everywhere except right at rio. At rio we expect a finger to
open up an angle, either positive or negative, of magnitude
68(rio). Here we are not interested in solving (3). In-
stead, we ask how the new term modifies the solvability
condition. " 's Note that the null eigenvectors to (3)
remain unaffected by this new term; and since we are
dealing with a second-order differential equation, we ex-
pect to find two independent null eigenvectors and thus
two solvability conditions. Since the experiment only con-
cerns fingers of X & 2, here we also focus on the narrow
fingers of 1t. & 2 . For the most stable 6nger profile with
the smallest A,, these two solvability conditions can be, in
the limit of small v and small r/0, approximately written
as"

~ &/2

r/0 2 1=tan- go (Sa)
2 8 I —

A,

a8(rio) = —exp—1 1
d,8(0), (Sb)8 1-k 2
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where we have defined a new parameter 8 v(1-X) /lr

and h8(0) is the positive opening angle at the tip, which

opens up when we relax the tip but impose a correct
boundary condition at the tail. 58(0) is given in Ref. 9
[see Eq. (3.3)1. Note that the mismatch angle given by
(Sb) is negative

For given 8, we substitute A, and rin, which are the solu-
tions of (Sa) into (Sb). In Fig. 2, h8(till)/N is plotted
against tin for various values of 8, where N =2.008 is the
multiplicative constant. 68(r/o) does have different values
for different 8. But the dependence on 8 seems to be rela-
tively weak, and we ignore this dependence in this work
and assume that 58(rio) only depends on r/0.

Let us now examine carefully what is happening on the
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FIG. 2. The mismatch angle, /38/N, evaluated by (Sb) for
different values of 8. d 8/N is weakly dependent on 8 and ap-
pears to be a strong function of q, the tangential slope of zero-
surface-tension solution.
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finger surface when the two wires are symmetrically
placed along the center. Since the wires are at fixed posi-
tions and the finger width A, decreases as the pushing ve-

locity increases, the contact angle made by the wire on the
finger surface will also increase. Now the sudden jump to
the asymmetric finger at a certain critical finger width im-

plies that there is a maximum for the contact angle al-
lowed by the system, above which the 6nger is no longer
stable. If we assume that the contact angle is only a func-
tion of the slope, then the tip of the finger should shift
after the contact angle reaches the maximum, so that the
slope at the contact point becomes smaller, thus making
the contact angle again less than the allowed value, This
is, indeed, what was observed by Zocchi er al. After the
jump to the asymmetric state, the tip of the 6nger shifts
either to the right or left, and it was reported that the
selection of the symmetric state is determined by the wire
nearest to the tip. We thus make the following model:
The mismatch angle created by the wire on the finger sur-
face is negative. Its absolute value mainly depends on the
geometry of the 6nger shape and is a monotonically in-

creasing function of rIo, the tangential slope of Saff'mann-
Taylor's zero-surface-tension solution. When the absolute
value of the mismatch angle is greater than Ae,„ the
finger is unstable and undergoes transition to the asym-
metric state. Here d,8~,„ is the upper bound for the
mismatch angle created by the wire at the finger surface.
Note that the mismatch angle is not the same as the con-
tact angle made by the wire. It is too small to be literally
interpreted as an observable contact angle. The lack of
precise relation between the mismatch angle and the con-
tact angle, however, does not nullify our assumption that
there is an upper bound for 68 as long as the contact angle
is proportional to the mismatch angle. Since the absolute
value of b,e(rlo) is monotonically increasing as we go down
over the finger surface and we assume he(tin) mainly de-
pends on tlo, there will be tl, in rjo space at which the
mismatch angle hits the maximum allowed by the system,
above which the symmetric finger is no longer stable and,
therefore, should undergo a transition to the asymmetric
state in order to make the absolute value of the mismatch
angle smaller. Thus, our prediction will be that as long as
two wires are placed in tl space at 0 & rI & rI„ the 6nger
assumes a symmetric shape but will jump to an asym-
metric state when the tl, ~ rIo, where —he(tl, ) d,e~,„.

Determining ti, theoretically requires knowledge of d,e,„
and is beyond the scope of the present approach. In this
paper, we set tl, or, equivalently, 48 „,as a free parame-
ter and fix it by the experimental data.

The relation between tin and x is given by (2). For 6xed
x, as tin decreases A, increases. Since the symmetric solu-
tions exist with negative opening angle for 0( tin~ rI„
the prediction will be that when two wires are placed
symmetrically along the center, a dimensionless distance
D apart, symmetric solutions exist only for k, ~ A, ~ —,',
where A,,(D) and rk satisfy

I —Z, (D)
),(D) 4),(D)

Zocchi et al. placed two wires, a distance D 6.64 mm
apart, symmetrically along the center of the channel with
8' 5 cm. They observed a transition to the asymmetric
finger at A,,=0.41. Substituting the dimensionless D

6.64l50 0.1328 to (6), we find

rl, =0.374 .

The number rI„however, can be adjusted to best fit the
experimental data. Once rI, is determined, (6) gives the
desired relation between D and )L,,(D).

For D 0.0944, Zocchi er al. observed a transition at
A,,=0.35, while (6) with rI, 0.374 predicts A,, 0.357.
More data are needed to check our prediction (6).
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