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In the preceding comment Nornura derived a general formula for traces of products of occupa-
tion number operators over 6nite-dimensional, S-electron, and spin-adapted spaces within the
spectral-distribution rgethod of nuclear physics. %'e supplement and generalize his result by giving
recurrent relations which determine the traces in an alternative way. The relations are derived us-

ing simple techniques of atomic and molecular physics.

Nomura, in the preceding comment' (hereafter re-
ferred to as paper I) on our recent paper, shows how ap-
proaches originating from different traditions may in-
teract with each other and inspire new and more general
formulations contributing in this way to a deeper under-
standing of the theoretical models. The analysis of
Nomura„based on the spectral-distribution method of
nuclear physics (for references see paper I), results in a
closed-form expression for traces of certain products of
the occupation number operators over 6nite-dimensional
and spin-adapted many-electron spaces. Though it cov-
ers only a part of probleras met in procedures aimed at
the evaluation of matrix elements of reduced Hamiltoni-
ans, it is an important contribution to the theory. In this
paper we supplement and generalize the results of Nomu-
ra, ' presenting several recurrent formulas which deter-
mine an equivalent set of traces of products of the occu-
pation number operators. %e also give s new derivation
of the final equation of Nomura. All the considerations
are based on standard techniques of our approach.

It is convenient to define
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where symbols have the same meaning as in the previous
papers. ' Then the product calculated by Nomura' may
be expressed as
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containing n &, then writing
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we get
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with

Wo(S, N, K)=D (S,N, K),
where D(S,N, K) is the dimension of the space. ' Com-
bining Eqs. (5) and (6) we obtain two other relations:
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Since

which are particularly interesting because of their sym-
metry.
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we have

(3 —N) W' —2 W','+qW'+, '+(K ——q) W", =0,
algebra, we get

a q+' =aq+2qa q
J J j—'j

with condition

where we used the identity

(n', F'&=3(nfl'& —2(n, E'& .

Equation (11) connects traces in the same space. By
fixing either r or q it may be used as a recurrent relation
determining certain sequences of the traces.

Now a set of recurrent equations expressing traces of
products of the occupation number operators in terms of
D (i):—D(S,N 2i,E— i ) m—ay be written as follows:

Wo(0) =D(0),
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where
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Equation (14) results directly from (11) and (1). Equa-
tions (13)-(15)determine traces of all products in a com-
plete and unique way. In particular, as it results immedi-
ately from Eq. (3),

G(p, q)= Wo(r) .

Finally, D(i) may be expressed as simple functions of S,
X, and E using the Weyl-Paldus dimension formula.

The closed-form expression for Wr(0) may be obtained
from Eq. (14) in a standard way. Iterating Eq. (14) we
can observe that

Wq(0)= g ( —1)Ja'i J ' ~ 'D(j),
(N —q)!(K —j)! (17)

where aJ& is a positive integer which depends on neither N
nor K. Substituting Eq. (17) into Eq. {14), after some

a~=0 if j ~

Equation (18) implies that

a,&= (19)

In order to get the expression for Wz(r), i.e., the final
equation of Nomura [(Eq. (24) of paper I], it is enough to
replace, in Eq. (17), N by N 2r—and K by E r-

Finally, we should comment on usefulness of the re-
current relations as compared to the closed-form expres-
sion as it is given by Nomura. ' The closed-form expres-
sion is certainly the most compact way of determining
the traces. It is also most useful if the value of a specific
trace corresponding to r =0 is to be found. On the other
hand, when a set of values of the traces is needed, then
using recurrent relations is usually simpler. In particular
it is often the case when structuring computer programs.
Also, obtaining traces for r&0 is much easier using our
recurrent relation (15) than the inverted Eq. (2), i.e.,

r
Wq(0)= g 2' Wq+, , (r) .

f=0
(20)
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Recurrent relations may also be considered as a set of
identities. In our case these identities may be helpful in
studying general properties of quantities being expressible
in terms of the traces as, e.g., the spin-adapted reduced
Hamiltonian matrix elements or moments of spectral
density distribution.
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