PHYSICAL REVIEW A

VOLUME 37, NUMBER 1

JANUARY 1, 1988

Isolated polymer molecule in a random environment

D. Thirumalai
Department of Chemistry and Biochemistry, Institute for Physical Science and Technology,
University of Maryland, College Park, Maryland 20742
(Received 13 April 1987; revised manuscript received 21 August 1987)

The shape of a polymer molecule in the presence of randomly distributed stationary impurities
is investigated using the path-integral formulation. The polymer molecule is assumed to be de-
scribed by the Edwards minimal model. Calculation of the mean-square end-to-end displacement
(R?) shows that at a critical density of the scatterers the polymer molecule makes a transition
from a swollen state (chain with excluded-volume interactions) to a disordered, random coiled
state (a Gaussian chain). At this density there is a crossover in the value of the exponent v (in
three dimensions), characterizing the scaling of (R?), with the length of the polymer from about
0.6 (corresponding to the excluded-volume regime) to 0.5 (corresponding to the coiled state). For
densities below the critical density, the exponent v is well described by the Flory value.

I. INTRODUCTION

The excluded-volume problem for an isolated polymer
molecule, introduced by Flory, has been extensively
solved by both analytical as well as numerical methods.!
Recently, there has been considerable effort in under-
standing the behavior of the self-avoiding random walk
on randomly diluted lattices.2~® These studies address
the question of the effect of quenched randomness on the
polymer molecule. In this paper, however, we consider
the problem of the shape of an isolated polymer mole-
cule in the presence of random scatterers in equilibrium
with the polymer. Thus calculations can be done with
the averaged partition function (or equivalently the ob-
servables can be calculated using averaged propagators)
and thus we are explicitly dealing with an annealed sys-
tem. The initial motivation for this came from experi-
ments on DNA molecules, which showed that the DNA
molecule can undergo a collapse transition when a criti-
cal amount of salt solution (or a smaller polymer mole-
cule) is added.”~!' These systems are annealed in the
sense that the added polymer, whose density fluctuations
are assumed to provide the randomness, is in equilibrium
with the DNA molecule. Thus, it is of interest to con-
sider the effect of annealed randomness on the shape of
polymers. Although the model sketched here does not
have any obvious relevance to the aforementioned class
of experiments, we feel that the theory provided here
may be general enough to attempt a microscopic calcula-
tion of the collapse transition.

The extremely idealized model we study is the follow-
ing. An isolated polymer molecule is allowed to interact
with stationary impurities which are distributed at ran-
dom. The interaction potential between the polymer
segment (a bead-spring model is assumed) and the im-
purities is taken to be short-ranged and weak. The ques-
tion of interest is the effect of the random scatterers on
the shape of the polymer molecule as the density of im-
purities is changed. One can anticipate the answer to
this question by generalizing the well-known intuitive ar-
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gument of Lifshitz'? in the context of the calculation of
the density of states in electronically disordered sys-
tems.'>'* This argument for the present problem can be
summarized as follows. The polymer molecule would
rather be in a region free of the random scatterers.
When the density of scatterers is sufficiently low, this is
indeed possible and any occasional cost in energy due to
the overlap of the polymer segment with the impurities
is easily compensated by the gain in avoiding the in-
tramolecular contact. The probability of finding a re-
gion, Q=(47/3)(R?)%"2, is proportional to e "*%. As p
increases, however, this probability becomes smaller and
the segments of the polymers overlap considerably with
the scatterers. This suggests that there should exist a
critical density where the potential of interaction be-
tween the polymer and the scatterers is not compensated
by the intramolecular interaction. At this critical densi-
ty the polymer undergoes a transition from the swollen
state to a random coiled state. From these plausible ar-
guments it appears that this transition is entropically
driven. Unlike the case of the calculation of electronic
energy levels in disordered systems, where the Lifshitz
arguments can be used to obtain the functional form of
the density of low-lying energy levels, it does not appear
easy to compute the critical density in terms of the fun-
damental parameters of the Hamiltonian. This can,
however, be accomplished by using path-integral
methods and this is the major purpose of this paper. In
particular, we use a self-consistent first-order perturba-
tion theory to calculate the value of the critical density
in terms of the basic parameters of the Edwards minimal
model. Some of the analytical results can be obtained
without performing the calculations in a manner
presented here. The main advantage of doing this is that
the structure of the theory becomes more transparent
and the extension to higher orders can be carried out us-
ing the results presented in the Appendix.

The organization of the paper is as follows. In Sec. II
the model is described in detail. The calculation of
(R?) is also given in Sec. II. Section III is devoted to
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the calculation of distribution of the end-to-end vectors,
P(R,L), and the changes in this function at the critical
density are described. The paper is concluded in Sec. IV
with a discussion and some speculations concerning the
possibility of observing similar behavior in tethered sur-
faces. The relevant formulas that have been utilized in
obtaining the results are derived in the Appendix.

II. THEORY

A. The model

We will use the continuum model for the polymer,
which not only proves to be convenient for the analysis
but is also quite accurate in predicting certain static
properties. The dimensionless ‘“Hamiltonian” for the
isolated polymer molecule is assumed to be of the form,

first proposed by Edwards,'*!> namely,
_3 (L.
H(r(s))= 27 o F(s)ds

L L, ,
to [ ds [ Cds'8(ris)—r(s')) . @.1)
The conformation of the polymer is given by the con-
tinuous curve r(s) in d dimensions and is parametrized
by the variable s. When w=0, the Hamiltonian corre-
sponds to a completely flexible Gaussian chain with / the
Kuhn length. The mean-square end-to-end distance
(R?) for such a chain is easily obtained and it is given
by

(R2?)=LI . (2.2)

When o (the strength of the excluded-volume interac-
tion) is nonzero, the calculation of (R?) can only be
done by approximate methods. The approximate

theories all yield the result
(R*)~L?, (2.3)

|

(Z)imp= fD(r(s))exp

3 rL, L L., ,
—57 J, FH9)ds—o [“ds ["ds'8[r(s)—r(s)]

where v~3/(d +2).

To describe the effect of the random scatterers we
consider the discrete version of the Gaussian chain.
This can be written as

Hy=-L f; (Fy =1 (2.4)
D 2IL “~ i+1 i ’ -
and this describes a set of beads interacting by a har-
monic potential with the appropriate spring constant.
We assume that the interaction potential between the
polymer molecule and the random scatterers can be writ-
ten as

P N
ul{r,},{R}]1=3 3 v(r,—R;), (2.5)
t=1i=1
where R; is the coordinate of the ith scatterer. In the
continuum limit the contribution to the action arising
from Eq. (2.5) becomes
N L
ulr(s),(R;}]1=3 fo v[r(s)—R,ds . (2.6)
i=1
Thus, the total dimensionless action for a given realiza-
tion of the environment is

3 L, L L ’ '
H=§ fo FUs)ds +o fo ds fo ds' 8(r(s)—r(s'))

N
+3 foLv[r(s)—R,-]ds . 2.7)

i=1

Thus, for each arrangement of the scatterers one can
evaluate any observable which becomes a random vari-
able, and the average value of the observable is obtained
by integrating the value over the probability distribution
of the random stationary scatterers. In particular, the
average “partition function” may be obtained as

<exp— [ utro) R, ]ds) .8

imp

The impurities are assumed to be uniformly distributed and thus the indicated averaging can be easily done. This
yields in the limit N — 0, ¥— o, and N /V =p=const (where V is the volume of the system and p is the density of

scatterers),

1

dR,
<exp—fOLu[r(s),{Ri}]ds>=jIZII /+ [exp_foLu[rm-R,.]ds]——V—’

= [1— d—I;' {l—exp [—foLv[r(s)—R,-]ds] ] ]N

=exp[—p deS [l—exp [—foLv[r(s)—Rs]dsH ] .

(2.9)
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The above formula was obtained in the context of the
path-integral formulation of an electron in the presence
of random scatterers.'>'® Substituting Eq. (2.9) into (2.8)
enables one to define the effective action for the problem
as

(Z(w,p,L))=f D(r(s))e ~Strtsn | (2.10a)

_3 rt.2
S(r(s))= 57 o Fe(s)ds
+o des des'S(r(s)——r(s'))
0 0

+p de, [l—exp [-—fOLds v[r(s)—R;] ” .
(2.10b)

It should be noted that the problem of an electron in a
random potential is usually described in terms of the ac-
tion in Eq. (2.10b) with @=0. In fact, using the result-
ing action as a model for electronically disordered sys-
tems, Friedburg and Luttinger!> were able to calculate
the Lifshitz tail (as well as the first corrections) by
evaluating (Z(w=0,0,L - o)) and then performing
the required inverse Laplace transform. This completes
the description of the action to be considered in this arti-
cle and we will calculate average properties like the
mean-square end-to-end displacement (R?) and the
shape of the distribution function P(R,L). All averages
are obtained with respect to the action S,

fD(r(s))fe —Stris)

(f)=
f fD(r(s))e —S(r(s))

(2.11)

So far the precise form for v(r —R;) has not been
specified. For the present problem, we assume that
v(r —R;) is given by a contact potential of the form

v(r—R;)=Pvod(r—R,)/I . (2.12)

We have divided v(r —R;) by the Kuhn length [ for di-
mensional purposes. Such a factor would not exist if the
length of the polymer were described by the number of
monomer units instead of L. If one wants to capture the
qualitative physics of the situations discussed in the In-
troduction (like the collapse transition in DNA), one has
to consider other more realistic forms for v(r —R;).
These will be pursued elsewhere.

i

B. Mean-square end-to-end distance

For the polymer molecules described by the action
given by Eq. (2.10b), with the potential of interaction be-
tween the segment of the polymer given by Eq. (2.12), we
calculate the mean-square end-to-end distance (R?)
given by

[ D(r(s)) | r(L)—r(0) | 2exp[ —S(r(s))]

(R?)=
f D(r(s))exp[ —S(r(s))]

(2.13)

In order to evaluate the above path integral, we employ
the self-consistent variational approach introduced by
Edwards and Singh.!”!® Their procedure lies in choos-
ing an effective reference action with an appropriately
renormalized step length I, such that (R?)=LI,. The
quantity /, satisfies a self-consistent equation, and for
the model considered here /, is a function of /, w, p, and
L. The equation satisfied by /, is obtained by insisting
that all corrections to the relation (R2)=LI, be identi-
cally zero. Thus, following Edwards and Singh, we
choose the reference action to be'’

3 (Eixgds,

So=2 44

(2.14)

and this implies that (R2)=LI,. The action for our
problem may be written as

(RY)=LI, +[{B){ | r(L)r(0)|2)—(B | r(L)—r(0)|2)]

+

(%2— Ir(L)—r(O) 12>_(B Y{B |r(L)—r(0)] 2)_<B72>< | F(L)—r(0) | 2)

S=So+S—‘SO
3 [k
=% J #ods+B, (2.15a)
where B=B,;+B, +B; and
3|1 L
Bi== |——— | [7#2
=317 jfor (s)ds , (2.15b)
L L
By=o [“ds [ ds'8[r(s)r(s)], (2.15¢)
By=p [ dr, [1—exp [~ [“olrs)-R,1|| . @150
With this (R?) becomes
SRR (2.16)

The averages indicated in Eq. (2.18) are with respect to the reference action S,.
Thus, if 7, is chosen such that {R?) =LI,, then to first order in B, a self-consistent equation for /, is obtained from

the equation

fB exp[ —So(r(s))1D(r(s)) f | r(L)—r(0) | 2exp[ —Sy(7(5))]1D(r(s))

= [ |HL)=r(0)| 2B exp[ —So(r(sNID(r(s)) . (2.17)
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The evaluation of the path integrals appearing in the
above equation is presented in the Appendix. Using
these results the self-consistent equation for I, is seen to
satisfy

1 1 6 L37?
2|2 1 =2, —_
Lll l l] @ 11'3 11/2
Boo | [6 1" L32
-2 - | | _1} - (2.18)

Note that for p=0, Eq. (2.18) reduces to the result ob-
tained by Edwards and Singh. When the density is small

or when wL !”2—s «, then

1,~L'?, (2.19)

which, when substituted into the right-hand side of Eq.
(2.16) yields the familiar Flory result

(R¥) ~L%3 (d=3). (2.20)

Equation (2.18) also suggests the existence of a critical
density p* given by
2

) (2.21)

p*=0

Bug

at which there is a crossover for the exponent character-
izing the excluded volume limit (v=2%) to the Gaussian
or disordered, coiled limit (v=%). This is precisely the
behavior that was predicted on an intuitive basis by gen-
eralizing the familiar Lifshitz argument used in electron-
ically disordered systems. It is interesting that the cross-
over behavior should be observed regardless of the
length of the polymer. However, the very existence of
Eq. (2.18) assumes perturbation which is only valid when
one considers large polymers.

III. DISTRIBUTION FUNCTION

In this section we derive the probability distribution
function P(R,L) using the formalism outlined in Sec. II.
The distribution function P(R,L) is given by

P(R,L)=(8[R—r(L)—r(0)]) (3.1a)

and may be written as

P(R,L)=N;" (‘;;’; [ Dris)
xexp [iK- [“r5)=Srsn) |,
(3.1b)
where

No= [ D(r(sDexp{—S[r(s)]} .

The strategy used in evaluating P(R,L) is the same as
above, i.e., we use a reference action and calculate a per-
turbative correction to P(R,L) and the parameters of
the reference action are chosen so that all the correc-
tions are made to vanish. Just as in Sec. II we will
present a first-order perturbative calculation which
yields the desired self-consistent equation for /,. As in-
dicated later, the essential result of this section can be
obtained without adopting the Edwards-Singh pro-
cedure.!”!® However, the general structure of the theory
becomes transparent with this procedure. It proves con-
venient to consider'’ Q(A,L),

Q(LL)=NG" [ DirisNexpl2 [ “Hs)=S(r(sN],
32

with A real. This yields convergent quantities and the
P(K,L) can be obtained by straightforward analytic con-
tinuation.

Following exactly the steps outlined in Sec. II, we can
write Eq. (3.2) as an expansion in powers of B [cf. Eq.

(2.16)],

+ [No"'<exp [k fOLi'(u)du ]B>

Q(A,L )=N0“1<exp

A S Hwdu

—N;2<B><exp B fOLf(umum

+O(B?) . (3.3)

The indicated averages in Eq. (3.3) are done with respect
to the action given in Eq. (2.14). The evaluation of the
first term in Eq. (3.3) gives

3

ALl /6
27wIL ’

No—l<exp [}» foLi-(u)du ]>=

(3.4)

To order (B?), the self-consistent equation for / 1 is ob-

tained by setting the expression in square brackets in Eq.
(3.3) to zero, namely,

NJ‘(B exp [A foLf(u)du ])
=N0_2(B)<exp‘[7x fOLf(u)du]> . (3.5)

The averages indicated in Eq. (3.5) are quite similar to
those encountered in the Appendix. Using these aver-
ages, the desired self-consistent equation for I/, is ob-
tained from Eq. (3.5) as,
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MLL (11 3 (6 | 0L
6 |1 1, | |4 1372
3 (B |'[6 | L2
el = | K2
1 l—exp(—A%,Lo /6)
Xfo ds 5372 :

(3.6)

When the density is zero, then Eq. (3.6) reduces to
that found by Edwards and Singh. We now consider the
case when the p is less than the critical density. Follow-
ing Edwards and Singh, we consider the more interesting
case when A2LI, is large. Equation (3.6) becomes

ALLI? 36 1" . (l_e—ﬂu,axs)
g 8| | v
(3.72)
where
Bvo 2 L2
y=|o—p|= 137 (3.7b)

By letting t2=A2Ll,0 /6, in Eq. (3.7a) one can obtain an
equation for /, as

9 173 Al 172
11= ; [T] ’ (3.8a)
where
2
v
A= |o—p P% (3.8b)

As stated in the Appendix, the evaluation of the con-
tribution to the effective action from the random impuri-
ties has been considered only to second order in vy. To
this order, Eq. (3.8) suggests that the only effect is an
effective reduction in the excluded-volume interaction.
It should be emphasized that this result can be easily ob-
tained by expanding Eq. (2.15b) in powers of v, and per-
forming the resulting R, integral without resorting to
the Edwards-Singh formalism. The reason we have fol-
lowed the latter approach is to establish that the formal-
ism of Edwards and Singh can be utilized for problems
of the sort posed here. More importantly, to the order
this calculation has been carried out, it can be shown
that if one includes terms O(B?), O(B?), etc. [where B is
given by Eq. (2.15a)], then the structure of Eq. (3.9)
remains unaltered and only the numerical coefficient gets
changed. This is most clearly seen within the context of
the Edwards-Singh formalism.!’

One can immediately write Q(A) as

1/3
Q(A)=exp(A2Ll, /6)=exp |A3/? L/6

9/A
T

(3.9
Thus the probability distribution function becomes

P(R,L)~ f d Kexp[(iK)**(91A/m)’L /6 —iK-R] .

(3.10)
The K integral can be evaluated by the method of
steepest descents and this yields?®2!
32 - 5/4
18 Vi R?
P(R,L)~exp | — = = W
+O0(1/L) . (3.11)

For p less than the critical density, one sees that P(R,L)
is more sharply peaked than compared to the case
without the random scatterers. At the critical density
the self-consistent solution for /, yields exactly

L=, (3.12a)
and consequently
P(R,L)~exp( —3R2/2LI) . (3.12b)

It follows that for long polymers at the critical density
there is a crossover from the behavior given by Eq.
(3.11) to the distribution function characteristic of the
Gaussian chain. This observation could have been pre-
dicted from the results of Sec. II but an explicit calcula-
tion also demonstrates this. For the case when A2LI, is
small'” we merely quote the results. Below the critical
density the behavior of P(R,L) is also Gaussian except
that the dispersion is

0.2=(2)2/5(6/1r3)1/5w2/5L 6/512/5

and at the critical density P(R,L) remains a Gaussian
but o2 given by Eq. (3.12).

IV. CONCLUSIONS

We conclude this paper with the following remarks.

(1) In this paper we have considered the statistics of a
linear polymer in the presence of a random environment.
The randomness is assumed to be annealed and this al-
lows us to calculate observables from average propaga-
tors. We have shown, at least to within first-order per-
turbation theory, that at a critical density of the random
scatterers the exponent v characterizing the mean-square
end-to-end distance exhibits a crossover from the
excluded-volume behavior to the random coiled behav-
ior. A similar crossover is found for the probability of
the end-to-end distance distribution function. The phys-
ical arguments lead one to assert that the results should
be valid in general, even beyond perturbation theory.

(2) It appears that the predictions of this theory can
be tested by experimental measurements. It is known
that?»23 one can use cross-linking techniques to trap a
polymer molecule in a random network composed of mi-
cronodules. This has been done by using a mixture of
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two chains and cross-linking?* one at a later stage. Ap-
parently one also achieves this by adding a polymer mol-
ecule to a block copolymer. The thermodynamic condi-
tions may be adjusted to trap the polymer in a random
network. The applicability of the theory outlined here
rests on the fundamental assumption that one can per-
form annealed averages. However, it is possible these
situations may require the need to perform quenched
averages, a problem which is considerably more difficult.

(3) Recently, Kantor et al.?> have proposed that two-

J

Stran=z [ dxi ¥ +a [Fax [FaR60@—rx))+p [ dR, [1-exp [~ [Fotro-11a% ]|

Following Kantor et al. or using the procedure utilized
here, the conformations of the tethered surface for the
above theory can be calculated. This calculation will be
presented elsewhere.

(4) There is considerable theoretical interest in study-
ing the effect of quenched random impurities on the
shape of the polymer molecule.>~® There is evidently a
good deal of contradiction in these results. Based on a
Monte Carlo simulation, Kremer? suggested that the ex-
ponent v (describing the scaling of the mean-square end-
to-end distance with the number of monomer units con-
stituting the polymer molecule) is unaffected as long as
one is below the percolation threshold. At the percola-
tion threshold, it is argued that v changes to %, which is
higher than the Flory swelling exponent. Rammal
et al.® have argued that dilution should definitely affect
v at least at the percolation threshold. These results
seem to be in conflict with the Harris criteria?® and,
indeed, Harris®> has argued that quenched disorder
should be irrelevant (in the renormalization-group sense)
for the polymer problem. In particular, there should be
no modification of the exponent v and it should coincide
with the pure case value. For the continuum model
presented here the configurational average of the loga-
rithm of the generating functional can be carried using
the replica trick. A preliminary analysis?’ of the result-
ing theory suggests that it has the form found in the
mean-field theory of dilute spin glasses.??

(5) The calculations have been done by including the
effect of random impurities to second order in vy. In
fact, one can assess the effect of including higher-order
terms in v, in evaluating a; [cf. Eq. (A2c)]. It is known
that fourth- and higher-order terms in v, (which after in-
tegrating over the impurity coordinate R, act as four-
body and higher-body interaction terms) can be ignored
because the correction to {(R?2) from these terms are of
the order of L ~!/2 (Ref. 29). Thus one needs to include
only the term proportional to v3. The calculation can be
performed using the formulas given in the Appendix and
in the limit of / <<L; the self-consistent equation for /,
is

372
L 172 i

13/2 A+ 6

3
Boo , £ 4.2)

l a’

dimensional surfaces of fixed connectivity embedded in
three dimensions could be a caricature for a number of
physically interesting examples. Based on the results
presented here, it is tempting to speculate that the con-
formations of tethered surfaces in the presence of impur-
ities could undergo a considerable reduction in size, as
measured by the radius of gyration. The theory for such
a problem can be set up by generalizing the action given
in Eq. (2.1b), i.e,,

4.1)

r
where a’=1,/l is the swelling ratio A given by Eq.
(3.8b), and 4 is a numerical coefficient given by>°

3
3 1
4=2 2r | 6
1 1 1 (x—x")
X d dx' | dx" .
fo x fo * fo x [(x —x")x'—x")]*"?

(4.3)

Analysis of Eq. (4.2) proceeds along the same lines out-
lined elsewhere.”!%3®  Specifically, as long as
t=(A/6)Bvy/1 )3p is less than a critical value, the tran-
sition density given by Eq. (2.21) remains unchanged.
Furthermore, the transition from a swollen state to a
random coiled state is sharp. When ¢ is greater than a
critical value then the polymer molecule contracts
smoothly as p approaches p*. Thus, the conclusions
drawn in this paper remain valid even when higher-order
terms are considered.
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APPENDIX

In this appendix we describe the evaluation of the
path integrals occurring in Eq. (2.17). The calculation of
the other crucial equations in the rest of the paper may
be accomplished using the formulas presented here.
Since the right-hand side of Eq. (2.17) is more complicat-
ed than the left-hand side we will consider it first,

J D(r() | r(L)—r(0) | 2B exp{ —S,[r(s)]}

=a,+a+a;s, (A1)

where
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3 (1 1 L The averages in Eq. (A2) are done with respect to the ac-
e ]( | r(L)—r(0)|? f F 2(s)ds> » (A2a)  tion in Eq. (2.14). The averages (a;) and (a,) have been
! 0 already done by Edwards and Singh and for complete-

a2=w< | F(L)—r(0)] szds des'S(r(s)—r(s’))> , ness we wi.ll in_dicate the steps and quote the results.
0 0 By considering the expression

(A2b)
L
and [ D(r() | F(L)=#(0) | %exp [x J] iz(s)ds]

I(x)= )
a3=p<|r(L)—r(0)|2 * fD(r(s))exp [x foLi'z(s)ds]
x [ ar [1-exp [~ [ Folre-R1] ). (A3)

(A2c) one can write «, as

3 _l__L _ 2 L2 _
2 |77, ]fD(r(s))ir(L) r(0)| fo 7 %(s)ds exp{ —S,[r(s)]}
SR R +(RB,=L1} |~~~ | 1 (R?)B, (A%
211 x=3/21/1—-1/1))

with

B,= [ J ey [Fiksrdse 0 (AS)
Equation (A2b) may be evaluated by writing a, as

a2=6%3-fff [ D(r(s))ds ds’ d’k | r(L)—r(0) | %exp{ —So(r(s))+ik-[x(s)—r(s")]] . (A6)

The path integral in Eq. (A6) is the propagator for a free particle subject to an impulsive external potential and is
readily evaluated. The remaining integrals are computed by completing squares and the result of this straightforward
calculation yields

a,= “’<2R Jds [ast [ k2™ g g

1/2L3/2

T (A7)
1

6
3

For the choice of the interaction between the scatterer and the polymer segment given by Eq. (2.12), one can write a;
as

_l)n-H

a3=p f dR, 2

B ] [ds,---ds, [ D(rs))|r(L)—r(0)| I 8(r(s;)—R, )exp[ —S,(r(s))] .
i=1
(A8)

In order to evaluate the path integral, one needs the following propagator:

G(r rL)——fr;L)) 'D(r(s) [ T 8r(s,)—R,dexp | —

i=1

IR fOLr" X(s)ds }ds,- : (A9)

Using an integral representation of the 8 function, Eq. (A9) becomes

G(r',r L)—H f fD(r(s))exp

I )3 du

3 ks, —u) (A10)

i=1

211 fOL (u)du+tf r(u)

This is nothing but the propagator for a free particle subject to a sequence of impulses and can be easily calculated.
The normalized propagator is
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l
G(r',r;L,n)= m eXPTy ?jki'kj( |si—s; | +Sisj—2sj)]
+exp— 3 (r'—r)P+i(r'—r) Zk-(l—-is-) (A11)
2L, e ST

A special case of this formula was used in evaluating a,. If the Green’s function in Eq. (A11) is substituted in Eq.
(A8) and the R, integral is performed one gets the condition that 8(3,k; ), implying that the total momentum is con-
served at each vertex in the scattering process. The resulting expression for a; can indeed be represented in terms of
Feynman diagrams for each n. Here we evaluate a; to second order, i.e., only terms up to n =2 (or of the order of v3

are retained). The resulting expressions are somewhat tedious but can be easily calculated, leading to

BuoL 1 {Bv, |’ d’k
0 2y 1 [ 200 Ak. —
ay=p | —— (R == | ] fds,dsz(zﬂ)s/(k, k) (Al12a)
where
~ I3k? 1,k?
Ak,—k)= |LI,— exp | ——¢ |s;—s2] |- (A12b)
In a similar fashion, the evaluation of (B ){R?) can be calculated. Here, we simply quote the results.
2
(B)R2)=(RM(B)+ 2B [ as as,an ke -w1s-r1ve
2
BvoL 1 | By ds\ds,d’k _j k2|5, -5, | /6
2 —_— | — _ 1 1 2 A
+p{(R?) ] > ] f 2y e , (A13)

where (B, ) is given by Eq. (A5). Equating Eq. (A13) to the sum of a;, a,, and a; readily leads to the self-consistent

equation for I/, [see Eq. (2.18)] to first order in B.
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