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%e consider squeezed light described as an SU(1,1) coherent state interacting with a two-photon
Jaynes-Cummings model of a two-level atom. %e study the time variation of the mean photon
number and also the variance of the field quadratures with particular regard to the squeezing.

Since it is now possible to produce squeezed elec-
tromagnetic fields in the laboratory' it would seem to be
of some interest to study the interaction of this radiation
with various media. Some studies along this line have
been performed. For example, Los Terreros and Berme-
jo have shown that when squeezed single-mode light in-
teracts with a two-photon amplifier the squeezing is even-
tually revoked. A similar result was found by the present
author in a study of squeezed light described as an
SU(1,1) coherent state (CS) interacting with a nonlinear
nonabsorbing medium modeled as an anharmonic oscilla-
tor. The SU(1„1) CS's have been shown ' to be the
squeezed vacuum states that are essentially equivalent to
the two-photon coherent states of Yuen. In particular,
the prototype Hamiltonian for the production of the
two-photon states may be written in terms of the genera-
tors of SU(1,1}so it becomes clear that the vacuum state
evolves into an SU(1,1) CS. '

In this paper we study the interaction of squeezed
light, again described as an SU(1,1) CS, with a single
two-level atom. Since the squeezed light used here is of
the two-photon type we consider the two-photon general-
ization5's of the Jaynes-Cummings model (JCM), whose
interaction terms can be written in terms of the SU(1,1)
generators. Multiphoton generalizations have previously
been considered. Sukumar and Buck ' have studied the
atomic dynamics of such models interacting with
coherent light. In particular, they showed that these
models exhibit periodic decay and revival of atomic
coherence. On the other hand, Singh' has studied the
effect of the interaction on the field statistics and has
shown that the mean photon number may also exhibit
periodic decay and revival.

In the present work we study the time evolution of the
field statistics, and in particular the time evolution of the
mean photon number and the variance of the field quad-
ratures for a squeezed vacuum state, described as an

SU(1,1) CS, interacting with a two-photon Jaynes-
Cummings model of a two-level atom. (Previously,
Meystre and Zubairy" showed that coherent light in-
teracting with the one-photon JCM can become
squeezed. } For a summary of the SU(1,1) CS description
of the squeezed vacuum state we refer the reader to Refs.
5 and 6.

The Hamiltonian for the Jaynes-Cummings model of
the two-level atom generalized to include two-photon in-
teractions" is

H = ,'fuooo'&+ficoa a—+ftA,(a o +a cr+ ),
where cri, cr+ are the Pauli matrices. Since the SU(1,1)
Lie algebra for a single-mode photon system may be real-
ized as

i(ata+aa }=i(lV+
(2)

Assuming the radiation 6eld to be at resonance with
the two-level atom, coo= 2co, we may rewrite Eq. (3) as

Xo =0 'Q +0'3,

C = A, (2Kcr +K o+) .

It can be shown that'

~here N =a a is the number operator, the Hamiltonian
may be written as

H = ,'%oooo &+2Rco—(Ko——,
' )+2M(K+ cr +K o+ ) .
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FIG. 1. Mean photon number as aa function of time @&here
7.=A.t and

f ( f
=0.8.

[H, EO]=[H, C]=[NO, C]=0 .

Thus the evolution operator can e abe factored as
—t CJ Vol

U(t, O)=e

3.0"

2.4"

(b)

Evidently, the evo u ioh I t on operator in the interaction pic-
ture is

+ 1.8"

Ut(t, O) =e

In the two-dimensional subspacee of the atom this be-
comes 06

Ur(t, 0)=
cos( A, &vt)

—2iX+
sin(k&vt)

V'v

—2iX
sin(k. &v't )v'~'

eos(k~v't)

0.0
0.0

w
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=4K K and v' =4E E . Assuming thewhere v= +
e densi-atom to be initia y in e e

'
ll th excited state we have the d

ty matrix of the field as

60

5 0.

pf~~~=Tr. ~. Ur~& 0
pf(0) 0

U I't„O)0
4 0.

= cos( A, &vt )pf (O)cos( A. &vt )
2 0.

sin(A, &vt) sin(k& vt)+4K+ — p~(0)— 1.0

o

fg)=() —fP-')"" y -„, ,

' ".
,

m
m=0

to be an SUI. 1,1)CS,'- which,%e assume the initial state to e an
f r the s ueezed vacuum, is
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The states I ~

m & I are not strictly number states but ac-
tually contain even numbers of photons, i.e., 2m photons
where m =0, 1,2, . . . . The parameter g' is related to the
average photon number n = & 2EO ——,

'
& according to

t g ~

= [ n/( n+ I )]' and g= —
~

g'
(
. With the above as-

sumption

p, (0)= ~g&&g~

and we obtain the matrix elements ofpI(t) as

(12)

']j2
I"(m +—')I (m'+ —')

&m
i pI(t) i

m'& =
m!m '!

X cos[2At+(m+1)(m+-, ')]cos[2At+(m'+l)(m'+ —,')]

Pl fly

(m ——,
' )(m ' ——,

'
)

(g'g) 'sin[2' t +m (m ——,
' )]sin[2At +m '(m ' ——,

' )]

%e 6rst calculate the efFect of the field statistics on the
mean photon number. Using N =2Ko —

—,
'

n(t) =Trs, iq[NpI(t)]

= g 2mp (t), (14)
m=0

where we have used the fact that Eo is diagonal with ei-
genvalues m +—,

' and we have set p (t) = & m
~ pI(t)

~

m &.

We have considered the case for
~ g ~

=0.8 for which the
initial photon number is X(0)=1.78. In Fig. 1 we
display our results. The apparently random behavior is
reminiscent of the overlapping decays and revivals ob-
served for the atomic inversion in a field of thermal light.
In fact, the squeezed vacuum state has statistical proper-
ties similar to thermal light. From the coeScients of

~

m & in Eq. (11)one has the distribution

Pm=
1

' l (m +-,')
(15)

n+1 n+1 m!r(-,')

X, = —,'(a+a ),

X,=—.(a —a ) .1

2l

(16)

The variances for the SU(1,1}states may be written as '

(m„}2=&x, &~-,' &x, +rc (17)

The time evolution of the variances is given by

which indeed is similar to the distribution for thermal
light. However, p is the probability that there are 2m
photons in the state. The behavior of the atomic inver-
sion for a squeezed state interacting with the one-photon
JCM has been discussed by Milburn. '

We next consider the time development of the vari-
ances of the quadrature operators

(~i 2) (t) =Trs, iqlpg(t)[EOR —,'(E+ +K )] )

I(m + —,')&ni
~
pf(t) ~

m &+—,'[ &m
~
pf(t}

~

m + I &/(m+1)(m + —,
' }

m=0

+ &m
i p&(t) i

m —1&+m (m ——,')]I, (18)

~here we have used the fact that

K+ ~

m & =[(m +1)(m + —,')]'
~

m +1&,

K ~m &=[m(m ——,')]' ')m —1& .

In Fig. 2 we show results for
~ g ~

=0.4, 0.8, and 0.9 for

the X, quadrature. (The higher the
~ g ~

is, the higher
the initial squeezing. ) We notice that the squeezing
[(~,)~ & —,

' ] is initially revoked; however, squeezing
recurs at later times. The higher the initial squeezing is,
the more regular the oscillations become.

In summary, we have investigated the effects of
squeezed vacuum light on the average photon number
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and the variance of the 6eld quadratures. It is
worthwhile to point out that the generalized JCM is phe-
nomenological and, as pointed out by Alsing and Zu-
bairy, ' results based on such models ignore the dynamic
Stark efkct. This may be taken into account by consider-
ing an effective two-level atom interacting with the field

through intermediate states. %e hope to discuss this ap-
proach elsewhere.
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from the Graduate School of Saint Bonaventure Universi-
ty.
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