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%e consider a system of N identical bosons which interact in one dimension via attractive pair
potentials and obey nonrelativistic quantum mechanics. This system is studied from two comple-

mentary viewpoints. The equivalent two-body method approximates the system as a collection of
(X—1) independent two-particle systems with coupling constants enhanced by the factor Xl2, and
this. yields energy lower bounds. The collective-field method approaches the problem from the

standpoint of the limit as %~ 00 and leads to energy upper bounds. %'e find that Gaussian trial

functions for the N-particie Hamiltonian and Gaussian trial densities in the collective-Seld theory
lead to precisely the same energy upper bounds. The upper bounds provided by Seld theory allow
for systematic improvement via a variational principle. Details are worked out for two exactly solu-

ble problems, namely, the harmonic oscillator and the attractive 5 potential.

I. INTRGDUCTION mrna mya X
fi (N 1) —2))1

(1.3)

The purpose of this paper is to relate two complemen-
tary views of the ground state of a system of N identical
bosons. On the one hand, the permutation symmetry of
the problem causes the system to behave some~hat like
many copies of a two-particle system; on the other hand,
it can be viewed as an in6nite system which is reached by
a limiting process in which the particle number is in-
creased without bound while the product of the coupling
constant and the particle number is kept fixed. These
complementary viewpoints provide energy lo~er bounds
and energy upper bounds valid for aB Snite N.

%e consider therefore a system of N identical bosons
which interact via pair potentials and obey nonrelativistic
quantum mechanics. Although the methods we shall use
can be extended to three or more spatial dimensions, in
this paper we study the ground-state energy of the prob-
lem in one dimension. The Hamiltonian for the N-
particle system (with the kinetic energy of the center of
mass removed) is given by

Fy()(u) Fj()(1)u2/(»+2) (1.5)

It is fortunate that we do have two exactly soluble prob-
lems at our disposal, namely the harmonic oscillator' for
which

f(x)=x

E =Fz(u) =Fz(u) =F„(v)=u '

and also the attractive 5 potential for which

f (x)= —5(x)

(1.6)

We call the graph (u, E) an energy trajectory. In the case
of pure power-law potentials with shapes f (x) given by

f(x)= ix i», q)0
scaling arguments show that the corresponding energy
trajectories are given by

E =Ft» (u) = ——1+—u
1 1

6

where m is the mass of a particle, x,- =x;—x. is a pair
distance, f (x) is the potential shape, a is a length param-
eter, and y is the coupling constant.

For attractive pair potentials, such an N-boson system
collapses in the sense that the energy per particle

~

e
~
lN

increases without bound as N increases. However, the
energy c is in general related to N and the coupling con-
stant y by an equation of the form

(1.2)

where the dimensionless energy and coupling parameters
E and U are given by

These two very different examples demonstrate the im-
portance of the functional equation (1.2): In this form,
the trajectory functions Fz vary relatively slowly with X.
For the harmonic oscillator, the trajectory functions are
actually all the same because in that case F)v(u) =u' for
all X&2.

The principal objective of this article is to study the re-
lationship between the general trajectory F~ and the ex-
treme trajectories F2 and F which is the limit of Fz as
X~ ac. This endeavor reveals some interesting relation-
ships between two earlier approaches to the X-boson
problem, namely the equivalent two-body method ' and
the collective-6eld method. ' In Secs. II and III these
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methods are described in the same framework so that the
relationship between them becomes clear.

The equivalent two-body method immediately provides
the lower trajectory bound F2(u) & F~(u }. Also, since e is
st the bottom of the spectrum of 0, by using s trial func-
tion P, we can find an upper estimate to e for a given N.
However, 1( must be translation invariant and also sym-
metric under the permutation of the particle indices. It is
difficult in general to design trial functions which have
these two symmetries and which also lead to tractable
computations. One exception to this is the Gaussian trial
function which, because of a unique factoring property,
yields an energy upper bound valid for all N & 2. Conse-
quently one obtains an upper bound FG to the trajectory
function I' „.

Meanwhile, with the aid of a trial density p, the
collective-field method also provides an upper estimate

Ft, for F„. It is interesting that if the density P is Gauss-
ian, then the upper estimate for F„which we obtain is

precisely the same FG which we find by using a Gaussian
trial function g in the Rayleigh quotient (P,Hf)/(P, g)
snd minimizing with respect to scale. However, now we
can do better than Fa because, in general, the difficulty of
solving a variational problem for the density P is easier
than that of the corresponding problem for a trial func-
tioil Q.

Our main results can therefore be summarized by the
following trajectory inequalities:

Fi(u) &F~(u) &F„(u)&F&(u) (Fa(u),
in which we have supposed that the density P is at least
as "good" as the Gaussian. In the special case of the har-
monic oscillator sll these trajectory functions coalesce
into the common curve F(u)=u'~2. All the various N
body energy estimates can be recovered from the corre-
sponding F functions by the general equation

(& )
mya N

NlQ 2'~

In Sec. IV we apply our results to the 5 potential,
which provides a useful and interesting test, since in this
case we know that, for all lV' & 2, F~(u) is given exactly by
(1.7).

IL THE EQUIVALENT T%0-BODY METHOD

The equivalent two-body method hss a history going
back to the damn of contemporary nuclear physics. 3

Soon after the neutron was discovered in 1932, %igner
and later Feenberg and others tried various ways of relat-
ing the ground-stste energy of a few-nucleon system to
that of a specially constructed two-body system with s
new mass snd coupling constant. Sometimes the relation-
ship was actually that of s variational upper bound, but it
was usually regarded at that time simply as an ad hoc ap-
proximation. The first rigorous results of this type were
given by Post in 1956, who constructed s two-particle
Hamiltonian whose lowest energy was a lo~er bound to
the energy of the X-particle system. The initial result
was found to be good for tightly bound boson systems,

1 1

~2

1 1

&X &X

0 0

where the rows 2 to X are orthogonal to the first row.
The column vectors 0 snd p of the new and old moments
are therefore related by II=[8 ']"p. The Hamiltonian
(1.1) can be rewritten in the form

H= g (p; —pj) +yf(x&/a)
i,j =1

(2.1)

If we now compute expectations with respect to
translation-invariant boson functions, we find from Eq.
(2.1) that (H ) =(&), where the reduced two-body
Hamiltonian & is given by

&=(lil —1) II2+ yf( i/2(z/a —)2' k 2
(2.2)

and the parameter A, is equal to the sum of the squares of
the elements of the second row of the matrix [8 ']r.
For fermion systems our lower-bound methods require
more than one pair-distance coordinate so that 8 cannot
be orthogonal snd in such eases X ~ 1. The parameter A,

is not quite a "coefficient of orthogonality:" More details
on this point msy be found in the Appendix to Ref. 12.
For the ground states of boson systems, however, the best
results (that is to say, the highest lower-energy bounds)
are achieved with classical Jscobi coordinates for which
8 is orthogonal and therefore the parameter A, =1. We
shall assume this value for the remainder of the present
article. Consequently the trajectory function Fz(u)
which we seek is given by the equation

FN(u}=inf (Q, Hg)
r

(2.3)

where the Hamiltonian H is defined in terms of the di-
mensionless variable

but it was less e8'ective for fermion systems. This area of
lower-bound theory hss been extended to deal with fer-
mions, atomlike systems, nonlocsl interactions, snd
also the energies of excited X-particle states. ' We shall
present here only a very brief account of the special result
which we need. A further sharpening of the bound snd
sn independent review msy be found in an article by
Hiu. "

One of the interesting points about the lower bounds is
the fact that their quality depends on the system of rela-

tive coordinates used. ' We suppose that new coordi-
nates are defined (=8x, where g= [g; ] and x = [x, ] are
column vectors of the new and old coordinates, g, is the
center-of-mass coordinate, and gz ——(1/i/2)(x, —xi) is a
pair distance. Our methods require these two coordinates
snd consequently the matrix 8 which must, of course be
invertible, has without any further loss of generality the
form
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Fz(U) &Ftt(U) &E„(U), (2.5)

provided the limit X~ 00 exists.
%e now look at variational estimates of the energy. If

we could 6nd a translation-invariant boson function with
the single-product form

t)j(g2, („.. . , gtt)=u($2)g((3, . . . ,g~) (2.6)

then, by substituting this form in the right-hand side of
Eq. (2.3), we see that an upper bound to F~(u) is given by
the Rayleigh quotient

F ( )
(uyHu)
(u, u)

(2.7)

This last expression is exactly what we would use if we
were to estimate variationally the bottom of the spectrum
of H, a one-particle (or reduced two-particle) Hamiltoni-
an. The catch in all this is that (2.6) is a strong constraint
for boson functions, and it has in fact been proved' '
that the single-product form is achieved if and only if g is
a Gaussian function. But in this case N disappears from
the calculation, and the result (which can still be mini-
mized with respect to a scale parameter) provides an
upper-trajectory bound valid for all ¹ We call this
Fa(U). We can now augment the inequalities (2.5) by
writing

x =(x, —
x2 ) la =v 2$~/a

and the operator D =d /dx by

H= —D +Uf(x),
and P is a translation-invariant X-boson function. Since
the permutation-symmetry constraint increases monoton-
ically with N it is clear that for each axed U the value of
EN(U) tncreases monotomcally with N. That N 'to say,
Ett ( u) )Est( v), N )M, and consequently we have

N N

H+K= g p;+ g yf(x, la) . "
27Fl i=1 ij =1

(3.1)

By considering translation-invariant boson functions we
see that the bottom of the spectrum of H is the same as
the bottom of the spectrum of the operator H+I(:. For
Bose systems the principal idea is to treat the large-N
limit by a special device that builds in from the outset the
necessary constraint of Bose symmetry. The most gen-
eral operator which is symmetric in the [x, ) is given for-
maBy by the expression

ian boson "trial function" g is used to estimate F„(U) via
the original Hamiltonian H. This provides an interesting
link between the two very different approaches to the
many-body problem. From this result we then recover
the well-known exact solution to the harmonic-oscillator
problem for which the potential shape is f (x)=x .

The collective-6eld method dates back to the early
6fties but recently it has been clarified and presented in a
form suitable for our needs by Jevicki and Sakita. There
may still be some unresolved problems of a mathematical
nature to do with this theory, particularly relating to the
prelimit situation when N is 6nite. However, for the pur-
poses of the present paper, our only interest is in the
claims of the theory concerning the limiting energy per
particle as N increases without bound, whilst the product
yN is held constant: It is this limit that leads to F„(U);
see also the note added in proof. %'e have already
resolved the question of the relation of this limiting ener-

gy trajectory to the corresponding trajectory for finite N
because we know from (2.8) that Ftt(u) & F„(U).

In this section we shall not use relative coordinates,
and therefore we shall work with the full Hamiltonian for
the S-boson problem including the positive center-of-
mass term K, that is to say, with the Hamiltonian

Fz(U) &Fz(U) &E„(U)&Fa(U), (2.8) p(x)= g 5(x —x;) . (3.2)

where Ea(U) is given by using u(x)=e " in (2.7) and
minimizing the resulting expression with respect to a.
The corresponding energy inequalities are recovered from
the trajectory inequalities by using (1.9).

It is now clear that the inequalities in (2.8) all collapse
into equalities if and only if the potential has the
harmonic-oscillator shape f (x)=x . The common value
obtained in this special case is simply the bottom of the
spectrum of H given in (2.4) with f (x)=x, that is to say

Fz(U) =F~(U) =F„(u)=Fa(U) = U
' (2.9)

III. THE COLLECTIVE-FIELD METHOD

%e 6rst look for a formulation of the collective-6eld
method which will allow us to 6nd the limiting trajectory
function F(u) =li mt'„Ftt(u) for a given potential
shape f (x). We obtain Eq. (3.9) in which a variational
upper bound Ft, (U) to F„(U) is provided in terms of the
positive Seld density P de6ned on I and normalized to
one. We then show that a Gaussian "trial density" P
leads to the same upper estimate as we get when a Gauss-

P(x|,xz, . . . ,xN)=4[p] . (3.4)

Consequently, the requirement that f satisfy
Schrodinger's equation implies that the functional 4
satisfy a corresponding differential equation. This equa-
tion eventually leads to the following approximate ex-
pression for the total energy as a functional of a positive
field density function p defined on R:

e[p]= f$2 [ (t) 2

8m a p(t)

+ f, f p(s)f[(s t)la]p(t)ds dt, (3.5)—

We can use p(x) to construct boson functions as in the
example

g tt(x;)= f p(x)1i(x)dx .
i=1 I

In general, boson functions can be constructed by means
of a functional of the form
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J p(t)dt =N . (3.6)

p(t/a) =ap(t)/X

and therefore

f P(t')dt'=1, t'=t/tt,
(3.7)

As X is increased, the approximation becomes better, and
the functional s[p] approaches an upper estimate to the
lowest energy of the system. Since we are interested only
in the large-X limit we now transform the problem so
that this limit can be approached. %'e define a new densi-
ty P(t) which is normalized to unity on ( —oo, ao ) and we
define F&(U) to be, essentially, the limiting energy per
particle, where from (1.3) U =mya N/2R is kept con-
stant. Thus we define

Consequently, using a Gaussian density in (3.9) or a
Gaussian wave function in (2.3) leads to precisely the
sample upper estimate for F (U). When this common
upper estimate is minimized with respect to the parame-
ter a, we call the resulting approximate trajectory func-
tion FG(U).

In the special case that f(x)=x, we therefore find
from (3.11), as we did in (2.9), that FG(U}=U

'~ . Since we

know from (2.9) that in this case, U'~ is also a lower
bound to F„(U), we again recover the result that
F„(U)= FG(u)=v' . Of course, from this point of view

of collective-field theory a/one, this still tells us nothing
definite about Fz(U), for finite X.

The advantage of the collective-field equation (3.9), in
general, is that it provides a way of systematically im-
proving on FG ( U ). We can simply explore density func-
tions variationally. This is what we do in Sec. IV in the
case of the attractive 5 potential.

F&(U)= hm
ma's[p]

AX
(3.8)

IV. THK 5 POTKNTIAI.

F„(u)&F&(U)

8 a P(t)

+U, s s —t t s t. (3.9)

In the step from (3.5) to (3.9) we have first used dimen-
sionless variables s'=s/a and t'=tla and then dropped
the primes on s and t in the final expression. All the re-
sults which we shall obtain in this section of the paper are
based on (3.9).

The next result is obtained by a simple calculation. %e
shall give enough of the details so that the calculation can
easily be verified. %e start with a normalized Gaussian
density given by

' ]/2

P(t)=ce ' ', c=2

Since (N —I }/N approaches 1 as N increases, we con-
clude from (3.5), (3.7), and (3.8) that the following func-
tional provides an upper bound to the quantity F„(U)
that we seek. Hence

Even at a time when computation has become both
cheap and comfortable, it is extremely useful to look at
cases for which all the details of a theory can be worked
out by exact analytical methods. It turns out that the
harmonic oscillator is too good because in this case the
trajectory functions all coalesce into one, and also the
equivalent two-body method and the collective-field
method yield the same results (for the large-X limit).
Fortunately, the 5 potential separates all the distinct ap-
proaches and is not uninteresting since, from the point of
view of scaling, it plays the role of an attractive Coulomb
potential in one dimension.

The N-boson problem with attractive 5 pair potentials
in one dimension is equivalent to a classical problem to
do with electromagnetic waves and a system of mirrors.
The complete solution of the problem with pair potential
shape f (x)= —5(x) has been given by McGuire. l As
with the harmonic oscillator, the ground-state wave func-
tion is a Jastrow function consisting of a product of
—,'N(N —1) functions of the pair distances. However, in-
stead of Gaussian factors one has exponential factors of—a jr,the form e " . In our terminology the exact N-body
energy is given by the trajectory formula

J P(t)dt = 1 .
(3.10)

This density is now substituted into the right-hand side of
(3.9) leading to a flllictloll E(et) of tile var latlollal paratll-
eter o.. More interestingly, we can rework the right-hand
side of (3.9) so that, by using the change of variable
x =~/2t and performing one of the potential-energy in-
tegrals, we obtain the result

(u, Hu)
(u, u)

(3.11)

u (x)=P(t) .

The energies are recovered from this (and of any other
trajectory formula) by means of (1.9). Since scaling gives
the factor U, the various trajectories for this problem are
specified, for example, by the single value F(1). The
graphs of the trajectories are shown in Fig. 1.

As we found in Sec. III, the application of a Gaussian
trial function or, in the collective-fieM method, of a
Gaussian density, leads to the same upper estimate to
F (U). If this upper bound is minimized with respect to
a scale parameter we call the resulting trajectory function
FG(U) and in the present problem we find for this trajec-
tory function
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6

2 3 4

FG(u)= — u & ——u =F„(u) .
1 2 1

2m' 6
(4 2)

%'ithout help from the collective-field method it would be
very difficult, in general, to improve on the Gaussian
upper bound (4.2).

For the 5 potential f (x)= —5(x), the variational
upper estimate (3.9) for F„(1 }becomes

FIG. 1. Energy trajectories Fz(U) for the 5 potential. The
trajectory FG(v} is the trajectory found either by using a Gauss-
ian trial wave function or by using a Gaussian density. F&(v) is
the trajectory corresponding to our best variational estimate of
the field density P.

0 3
FIG. 3. The best Gaussian density 6 and the best density P

from the class {4.4) for the 5 potential.

theory in the light of an exact analytical computation.
%e tried a variety of one-parameter trial densities but

they gave worse results than the Gaussian. Finally, the
following two-parameter density, which includes the
Gaussian as the special case q =2, gave satisfactory re-
sults

(4.4)

where b is a scale parameter and A (q) is a normalization
factor given by

(4.3) 2 1A(q)= —I (4.5)

where the positive density function P(x) satisfies the nor-
malization condition Ia P( t)dt = 1. This optimization
problem is certainly amenable to numerical methods.
However, great care would have to be taken to preserve
the bound in (4.3). Our present goal is to look at the

If we now substitute (4.4) in (4.3) and minimize the ex-
pression with respect to the scale b, we obtain b and the
energy as a function of the power parameter q, that is to
say, we obtain the expressions

q 2(1—1/q) r (4.6)

Fp(1)=E(q)

(4.7}

Equation (4.7) is consistent with the Gaussian result since
E (2)= —I /2ir. It is now safe to use computer technique,
and in Fig. 2 we exhibit the graph of E(q) from which we
conclude that the minimum is at about q =1.61. Hence
our upper bound becomes

F„(1)(F~( I ) =E(1.61) & —0. 164 868 . (4.8)

FIG. 2. The field-theoretic expression (4.3) for the energy is
first minimized with respect to scale. Shown is the final minimi-
zation with respect to the power parameter q.

This result is approximately 1% above the exact value
F„(1)= ——,'. In Fig. 3 we show the graphs of p(r) given
by (4.4) with q=1.61 and also the Gaussian density 6
with q =2.
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V. CQNCI, USIA

The permutation symmetry which is necessarily
satis6ed by the states of a system of identical bosons is a
powerful constraint. By a kind of dynamical analog of a
crystallographic principle, the X-boson system is in some
respects like (N —1) copies of an equivalent two-body

problem whose coupling constant has been strengthened
by the factor N/2. For a good general approximation,
which in the case of the harmonic oscillator yields the ex-
act energy, the equivalent two-body problem should be
constructed with the aid of orthogonal relative coordi-
nates. For other purposes, such as treating fermion sys-
tems or N-particle excited states, ' nonorthogonal rela-
tive coordinates may be required and in such eases the
mass in the equivalent two-body Hamiltonian is changed
by a factor A, g 1.

Another quite difkrent approach is to relate the lowest
energy Ez of the X-boson system to the corresponding
energy Fz of a K-boson system, where K g Sand no spe-
cial factors are introduced into the mass or the potential
energy. Bruch and Sawada'" proved, for example, that
for a wide class of Hamiltonians with attractive inter-
molecular potentials (in I ) the inequality Ez &3Ez is
valid. For a smaller class of potentials (still in I ) this in-
equality has been generalized' to

' —1
' —1

Ex

for pE & X, where the factor p & 1 depends on the class of
potentials. For potentials like

f(r)= ar '+P—ln(r)+yr,

which have the property that they are at the same time
convex functions of —r ' and concave functions of r, it
is found that p= —,', One knows, therefore, for all these
problems that EN & ,'N(N 1)Ez f—orall N—& 3.

In contrast to the above resu1ts which relate the N-

particle problem to a E-particle problem with E g N, the
collective-6eld method treats the limiting case as X in-
creases without bound. In this article we have used the
collective-field method to obtain an upper estimate Fe(u)
for the limiting trajectory function F„(U). We have also
found that using Gaussian trial functions (in orthogonal
relative coordinates) for the N-boson problem leads, via
the large-N limit (which can be computed for such func-
tions), to precisely the same trajectory function Fo(U)
which is found when a Gaussian density is used as a trial
density in the collective-field method.

Our principal result is best summarized by the follow-

ing statement: For all X & 2, the energy c of the X-boson
problem is approximated by the inequalities

(N —1)Fz
ma

2 2rn&a N
ma' ' 2g2

(5.1)

in which the function Fz(U) is found by solving the two-
boson problem and Fe(U) is obtained from the variational
equation (3.9) for the collective field P.

The collective-field method is very useful, but it is still
not completely understood from a purely mathematical
viewpoint. It is therefore interesting at this time to have
an analysis of its relation to the equivalent two-body
method along with a detailed study of two exactly soluble
problems. The variational principal (3.9) for computing
the upper trajectory estimate F&(U) provides the recipe
(5.1) for the immediate improvement of any earlier N-
boson results which were dependent on Gaussian wave
functions. For example, in the case of the linear potential
in one dimension, the ground-state energy is determined'
with error less than 0.222% for all N & 2. This last point
is perhaps more sharply emphasized by the observation
that the improvement is realized even for N =2. Thus for
the 5 potential, our results for the upper bound F&(u) to
F„(v) lead via (5.1) to a better upper estimate of the en-

ergy for N =2 than can be obtained by applying a Gauss-
ian trial function to the two-body Hamiltonian directly.
In this illustration, we get to two by 6rst passing in6nity.

Note added in proof. We have now shown' that the

upper bound (3.9) can be derived rigorously, independent-

ly of collective field theory, as an appropriate limit based
on the sequence of variational upper bounds provided
within conventional quantum mechanics by trial wave
functions of the form

The author would like to thank the Natural Sciences
and Engineering Research Council of Canada for partial
6nancial support of this work under Grant No. A3438.

4(xi, xz, . . . ,xtt) =g(xi )g(xz) g(x~) .

This wave function is applied to the Hamiltonian H given
here by (1.1), the limit N ~ oo, with U constant, is com-
puted, and the density P is then given, essentially, by
p(t) =g'(t).
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