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Scaling theory of hydrodynamic dispersion in percolation networks
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Real-space renormalization-group arguments are used to derive scaling relations for the mean

displacement (R ) and the variance ((R —(R ) ) ) of a tracer particle in a fluid flowing through a
heterogeneous material which is near a percolation threshold p, ; both small- and large-Peclet-
number regions are studied. The existence of a noninteger-power-law dependence of (R ) and

((R —(it ))~) on time and the strength af flow, which cannot be described by a convection-
di6'usion equation, is revealed. Particularly at large Peclet numbers, the variance exhibits anoma-

lously fast time dependence and an associated divergence near p, . As p ~p„ the region dominated

by convection extends prominently„while the region controlled by di6'usion shrinks.

Dispersion is a very common phenomenon in transport
through porous media and appears in many important
problems, ranging from chromatography to petroleum
engineering. ' Recently, much interest has been devoted
to this subject and it has been sho~n that the hetero-
geneity of porous materials has an important influence on
dispersion. Now, a percolation network is a good
model for the heterogeneous geometries of pore struc-
tures so it seems reasonable to study dispersion in per-
colation networks. Many recent papers have revealed
various types of anomalous dynamics of percolation sys-
tems in the vicinity of a threshold p, . The essential
feature is that the self-similarity of percolation clusters
causes nonanalytic power-law behavior and associated
scaling relations near p„as in thermal critical phenome-
na. In the case of dispersion, therefore, we can expect the
existence of similar anomalies which cannot be described
by a conventional convection-diffusion equation ap-
proach. ' The purpose of this work is to investigate hy-
drodynamic dispersion in percolation networks and to
clarify its scaling behavior near p, .

We consider the following process. The system is
modeled by a regular network of bonds and sites in which
a single fluid is flowing. We assume that the background
flow in each bond obeys Darcy's law u =ka/ri, where u

is the velocity of flow, k the permeability of bonds, g the
viscosity of a fluid, and a the pressure gradient. The
probability distribution of k is given by a binary distribu-
tion P(k)=p5(k —ko)+(1 —p)5(k), that is, a bond-
percolation problem is treated. When p is below p„no
path of bonds spans a macroscopic system. As p, is ap-
proached from below, the maximum size of regions con-
nected by bonds (clusters) diverges as g-

~
e ~, where

e=p —p„g is the correlation length, and v the correla-
tion length exponent. Just above p„macroscopic paths
for the fluid do exist, but they are extremely tortuous.
This is why a percolation network near p, is a good pro-
totype for a highly heterogeneous material. Above p„(
still has a physical significance, that of the linear size of
tortuous regions. The flow field in our problem is the
same as the current field in a corresponding random resis-

tor network. We release a tracer particle in the network
and trace the time dependence of its position. Two mech-
anisms drive dispersion: molecular diffusion and convec-
tion caused by the background flow. A dispersion
coefficient due to convection is estimated as ul, where l is
the lattice constant (length of a bond). Hence, the rela-
tive importance of the mechanisms is measured by the
Peclet number P, =ul/D, where D is the molecular
diffusion coeScient. At small-Peclet numbers, convec-
tion is negligible and the dispersion coefficient is deter-
mined by D. At large-Peclet numbers, molecular
diffusion is negligible and the particle follows the back-
ground flow completely. In this work, we discuss both
the small- and large-Peclet-number regions.

We will characterize the dispersion by the cummulant
averages C(Jt)=(R (it)), of the position of the particle
in the flow. So, C& gives the mean particle velocity and
Cz is a direct measure of the amount of dispersion. We
adopt a real-space renormalization-group (RSRG)
method to calculate the C's. The present scheme is quite
similar to that for diffusion on percolation lattices
developed before. Four parameters characterize the
problem: the lattice constant l, the percolation probabili-
ty p, the velocity u of the background flow, and the
molecular diffusion coefficient D. All physical quantities
are functions of these four parameters. Now we assume
the existence of a RSRG transformation with a. rescaling
factor b. One might think that this assumption is
justNed by the self-similarity of percolation clusters.
Recently, however, multiscaling relations have been
identified in. some geometrical properties of fractals like
the current distribution in percolation networks. It is,
nevertheless, believed that dynamical properties of frac-
tals such as diffusion and sound propagation (or
equivalently fraction modes) obey simple scaling. ' The
essential point is that in these time-dependent properties,
there exists a characteristic length scale associated with
time and the process is dominated by clusters, paths, etc.
of this length scale. In case of dispersion, therefore, we
consider that moments of the particle is governed by
characteristic paths of length of order (8 (t) ) and simple
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scaling holds. Dimensional analysis shows that the recur-
sion relations for 1, p, u, and D are of the form I'=bl,
p'=f(p, P, )=f(p), u'=g(p, P, )u, and D'=h(p, P, )D,
where a prime denotes a renormalized quantity. Here we
invoke the fact that p is a purely geometrical quantity
and independent of u and D.

First, we study the small-Peclet-number (weak-fiow) re-
gion. Dimensional analysis leads to C (I,p, u, D;t }

=1JC,'(p, P, ;t/wo), where wo=l /D. At low P„where
molecular diffusion is dominant, wo is the natural time
for the problem; it is via such arguments that we can ob-
tain different results in the different regions. In the same
spirit we expand CJ in a power series in P„

C'(p, P, ;tlwo)= g P,"CJ „(p,tlwo) .
n=0

This expansion is not expected to behave well near p, .
Our approach is to write down ihe series and then exam-
ine its convergence properties. Recursion relations are
also expanded as e'=Aze+O(e ), u'=A, „ou+O(e,P, ),
and D'=AD oD+O(e, P, ), where e p —p„A~ =df I
dp

~ p ~ 1(,o=g(pe~0)~ and j(D,o=h(p„O). These expan-

sions are always assumed to work well in RSRG calcula-
tions because of t'he analyticity of recursion relations.
The key to extracting information from the transforma-
tion, of course, is the basic RG idea that relevant physi-
cal quantitics are kept invariant under the transforma-
tion; thus 1'P,"Cj„(p',t/wo)=1'P, "C, „(p,t /w(i). Sub-
stituting the recursion relations for I,p, u, and D, and
keeping the lamest-order terms in e and P„we get a re-
cursion relation for CJ „,
Cj ('E tlwo) b (A ob/ADo) Cj (k E Ag)otlb wo)

Recursion relations for u and D also yield u(1')
=u(bl)=A, „ou(l) and D(l')=D(bl)=A~ oD(l). These
lead to u(g)a:g ' and D(g)~g ' where
= —ln(j(, „o)/1n(b) and 8o= —1n(AD o)/ln(b). We can
relate Po and 8o to the conductivity exponent p and other
known exponents for percolation. " To do this, first con-
sider that there are two factors which cause thc conduc-
tion to vanish near p, : increase of the effective length
L(g) of a channel and decrease of the effective number
(area} A (g) of channels. Here we regard the network as
composed of many channels. By dc6nition,
I(()lg '=(Tlg) V(g)/g, where I is the current, V the
voltage, and (T(g) ccrc

('~ the conductivity. Since the
current is in proportion to A(g) and the conductance of
each channel is in inverse proportion to L ( g), we obtain
I(g)/V(g) ~ A(g)IL(g). It follows that A(g)IL(g)

On the other hand, the mass M(g) of the
network obeys M(g)- A (g)L(g) 0.-p(g)g", where

p(() ~ g
~ is the density and P the percolation probabil-

ity exponent. Then we find L(g)~g'+'" ~' '. Now,
consider the fluid flow velocity u(g). Since the time
necessary to travel each channel is in proportion to L(g},
the velocity varies as"

u(g)-g/L(g} g '" ~' '-[(T(g)/p(g)]'

(R(t} ),Il =(t/wo) Go(tl~o)

(««o)Xo

2(XO & ) /Xo't (t ))ro) .

(7)

Equations (7)—(9) coincide with known results about
diffusion on percolation lattices. '

The mean displacement (R (t) )t( of a diffusing particle
on percolation lattices in the presence of an external bias
y like a uniform electric 6eld exhibits nonanalytic behav-
ior. Below a critical bias y, (in the weak bias region),
(R (t) ) tt varies as

(R(t))i( ~t 'y (t &&ro) .

Comparing with Eq. (5), we find that the critical ex-
ponent Xo for biased diffusion is different from that,
(So+1)/2, for dispersive transport, so the two processes

and thus (I}o=((((—P}/2v. The situation is the same for
all velocities, i.e., the anomalously long length L(g) gives
anomalously slow velocities with very similar scal-
ings. ' ' As for the diffusion coc%cient, Einstein's rela-
tion tells us that D(g)-o(g)/p(g) ~g'" ~' '. ' Conse-
quently, 8o = ((M —P) /v.

The recursion relation (2) together with expressions for
(()o and 8o(A.„o and ADo) show that CJ „ is a generalized
homogeneous function satisfying the scaling relation'

C, „(g,tlwo)=(t/wo) ' Fj „(tleo), (3)

2/Xo
where Xo——1/( 1+(f}o) and ro =g Ow o. We further
deduce that Fj„(x)~1 (x~0) and Fj„(x)

(2 —jXo—n )/2~x ' (x~00, j=l,2), 0 (x~oo, j&3). This
asymptotic behavior of F~ „comes from the requirement
that at t «ro, Cj „ is independent of g, and when t ))ro,
C „becomes Gaussian, i.e., C, „crt (j=1,2) and 0
(j & 3). We first derive the conditions under which
molecular difFusion dominates the dispersion. Very sim-
ply, this will be the case if the expansion in P, is rapidly
converging, i.e., P,"C „/P,"+'C „+i)&1. Inserting Eq.
(3) into this condition, we obtain (a),

—) /Xo
P, «(

or (b),

P, «1, ut/1 «P, ' .

Thus the Peclet number needed to ensure "weak" Bow, or
dominance of molecular difFusion, becomes vanishingly
small as p, is approached and g diverges. Furthermore,
we find that, at larger P, 's, which are nevertheless small
compared to unity, "weak fiow" may nevertheless be ob-
served at short times. Under these conditions,
C& -P,C, , and C2 -C20, because C& 0 ——0. Equation
(3) then directly yields the scaling relations

( R(t))/I =P,(t/wo) ' Fo(tlro) (4)

(Xo+1)/2
u (t «ro)

(Xo-"/Xo
tu (t ))ro),
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belong to difFerent universality classes. This difFerence
probably stems from the fact that in biased diffusion, the
bias is applied uniformly in the Euclidean space, whereas
in dispersion, the bias (background Row or pressure gra-
dient) is exerted only along the cluster. The bias of the
former type is less efFective than the latter and the associ-
ated critical exponent Xo is smaller than that, (Xo+ I )/2,
of dispersion. The type of bias turns out to be an impor-
tant factor in determining the universality class. Above

y, (strong bias), moreover, trapping of the particle by
dead ends or backbends of the backbond plays a crucial
role, and definite conclusions on the temporal evolution
hss not been drawn yet. Such is not the case in disper-
sion, as we shall see next.

The RSRG technique is applicable to the large-Peclet-
number (strong-liow) region in much the same way as it is
to the small-Peclet-number region. We start with
C/(l, p, u, D;t)=l'CJ'(p, P, ;t/w „),where m„=l/u; w „
is the natural time for strong How. Also, C', g, and h are
now expanded ss power series in P, ', instead of P„as

P„»g ", ut/I »P, ' .

Again, just as in the weak-Aow case, scaling relations are
derived from Eq. (14):

&R(t) }/I=(t/w „)"F„(t/r„)
~t "u " (t «r„)

(X —1)/X "tu (t »r„),
(16)

1/X
where I„=l/(1+/„) and r„=g "w„. We obtain
F „with the arguments used previously, getting

1 —JX' +n
F, „(x) + I (x ~0) and F „(x)~x " (x ~ oo,
j= 1,2), 0 (x ~ ao, j& 3). As before, we derive the con-
ditions required for strong fiow by insisting that the P,
series is rapidly converging. We find that dispersion is
dominated by convection when [(c)]

C/'(p, P, „t /w „)= g P, "C „(p,t /w „),
n=0

u'=A, „„u+O(e,P, '), and D'=AD „D+O(e,P, '),
where A,„„=g(p„ao) and A,D „——Il(p„ao ). Substitution
of these equations into the relation

&R(t) },/I =(t/w„) "G„(tlat„)
2X 2X~t u (t«r )

(2X —1)/X "tu (t »r„) . (20)

I'JP, "CJ „(p',t/w'„)=l'P, "CJ „(p,t/w„)

gives rise to

CJ „(e,t/w„)=bi(A, „„b/AD „)
)& C, „(A, e, A,„„t Ibm „) . (12)

& Z & -&1/R }~1/&R & .

Equation (12) leads to the scaling relation for C

C, „(g,t/w„)=(t/w „) " F, „(t/r„),

Critical exponents are expressed similarly. In this case„
however, particle motion is almost restricted to the back-
bone of the percolation cluster. The probability of get-
ting into dead ends is of order P, . The displacement
R 8& of the particle in the backbone is of order P„while
that, ROE, on s dead end is of order unity because it is
not carried by the fiuid. It follows that & R }nE
-P, RDE-P, and &R }aa-Ran-P, . To lowest or-—1 —1

der in P, , &R }nE is negligible in comparison with
&R }aa. This situation holds for higher-order cumulants.
Then the relevant density is not p(g) but that of the back-
bone, pll(g) ~g, where pll is the backbone probabil-
ity exponent. In place of $0 and 80, therefore, we
obtain P„=—In(A, „„)/in(b) =(p —Pa )/2v and 8„
= —ln(AD „)/In(b) =(p —Ps )/v. It should be em-

phasized that dead ends are irrelevant to cumulants of
the displacement but relevant to those of the time. Since
the time TOE spent on a dead end is of order unity and
that Tq~ in the backbone is of order P, ',
&r&,-P, r„-P, and &r&„-r„-P, . We
find that & T }DF & T }aBand

Let us now discuss our results. First notice that
1 & X„&Xo, because p & Pa & P. It should be emphasized
that the strong-Aow (convective) region [conditions (c)
and (d)] extends notably near p, as g-(p —p, ) "»1.
Especially in the long-time limit I;~m, convection is—1/X
dominant at P, » g

" and negligible only when
1/Xo

P, «g '. It should be noted that the noninteger
power-law behavior of &R(t)} and &R(t) }, in Eqs.
(4)—(9) and (15)—(20) cannot be described by a
convection-difFusion equation. Furthermore, we find that
anomalo usly fast time-dependence and an associated
divergence of & R (t) }, as p ~p, ln the strong-Bow re-
gion because X„~O. 5 at dimensions less than 6.'

Since X„ is less than unity, Eq. (16) represents anoma-
lously slow movement of a particle. These kinds of
anomalies are generally observed in particle motion on
fractals and reAect their self-similarity. A geometrical in-
terpretation is straightforward. ' The backbone of a per-
colation cluster describes not a smooth curve but a singu-
larly irregular curve. The effective contour length S of
the backbone is much longer than the distance R in the

1/X
Euclidean space and expressed as 5 ~ R ". On the oth-
er hand, there is nothing unusual about particle motion
along the backbone and S ~ tu. Even if a particle travels
S along the structure, however, we measure anomalously

X X
slow behavior R ~S "~t "u " in the Euclidean space.
This situation is the same as in other unusual dynamics of
fractals such as diffusion and wave propagation. ' Equa-
tion (5) also expresses slower-than-normal time depen-
dence because go~ l. There is a significant qualitative
difference, however. In the strong-liow region, &R(t) } is
a nonanalytic function of the strength of the bias (veloci-
ty), whereas in the weak-flow region, &R(t) } is just in
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proportion to the bias.
In contrast, (R (t) &, shows anomalously fast behav-

ior, as mentioned before. In addition, we find from Eqs.
(16) and (19) that

(& (t)), -(&(t))' (t „) . (21)

u(P)=u(g)=( "uo „ (22)

A geometrical meaning of this relation is obvious. In this
time scale, (R(t)) &&g and the system is self-similar.
The network contains many paths, at all length scales,
and a deviation of displacement in different paths of
linear size I. is of order L. Since a particle travels on
each path with a probability of same order, its variance
after passing I. on average becomes of order I. . The
anomalously large variance reflects this purely geometri-
cal nature of particle motion. Generally in fractals, the
variance of a geometrical quantity is in proportion to the
square of its average, This is a signi6cant characteristic
of self-similarity and is observed in various quantities. '

At the same time, this argument suggests that there is no
significant difFerence between longitudinal and transverse
variances (dispersion coefficient). In this length scale,
the system is isotropic and the particle cannot recognize
in which direction the ffuid is flowing as a whole. Thus
numerical coefficients may be different but scaling rela-
tions and associated critical exponents should be equal.

Hitherto, we discussed scaling relations in terms of the
flow velocity u. In most measurements, however, the
pressure gradient a, and not u, is the control parameter,
and under a constant pressure gradient u goes to zero as
p ~p, . In other words u depends on p. Since the fiuid is
fiowing only through the backbone, u is given by

where uo=koa/g. Inserting Eq. (22) and rewriting con-
ditions (a)—(d), Eqs. (4)—(9), and Eqs. (15)—(20, we have
our various criteria and scaling relations under a given
pressure gradient. Note that the meaning of the g depen-
dence of u in Eq. (22) is totally diff'erent from that used in
deriving expressions for Po and Oo or P„and 8„. Equa-
tion (22) represents the dependence of the velocity of mi-
croscopic flow at length scale I on a given percolation
probability, while those in the latter case stand for the
dependence of an effective velocity, which a particle feels,
on the length scale g.

Dispersion in the weak-fiow region and in the strong-
flow region is governed by different critical exponents Xo
and 7„. This difference originates in the existence of
dead ends at all length scales up to g. In the weak-ffow
region, a particle is distributed uniformly over the whole
cluster, whereas in the strong-fiow region a particle is
confined only to the backbone. This indicates that to in-
vestigate crossover behavior in the intermediate-flow re-
gion, careful arguments about exchange dynamics of a
particle between the backbone and dead ends are neces-
sary, as suggested by de Gennes. It is noticed that the
scaling theory developed here holds for all self-similar
systems such as Sierpinski gaskets and diff'usion-limited

aggregates, as well as percolation networks. In fractals
with no dead ends, however, processes in both the weak-
and strong-flow regions are described by the same critical
exponents.
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