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Two-component soliton model for proton transport in hydrogen-bonded molecular chains

Jesper Halding and Peter S. Lomdahl
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 16 October 1987)

We propose a two-component soliton model for proton storage and transport in hydrogen-bonded
quasi-one-dimensional chains. The model is investigated both analytically and by molecular-
dynamics simulations. At 310 K we find that in certain regions of the parameter space it is possible,
from realistic initial conditions, to excite a kink in the proton sublattice. For certain parameter
values and initial conditions the kink is excited just to be annihilated shortly after. For other pa-
rameter values the kink continues to travel for much longer times. Therefore the presented model
can explain the essential physics of proton storage as well as proton transport in hydrogen-bonded

substances.

I. INTRODUCTION

The transport of electrical charge in molecular and
biological systems has been studied extensively during the
last decades.!~!> The reason is that it is essential to un-
derstand simple transport phenomena in such systems at
the molecular level in order to gain insight in more com-
plicated life processes. The proton conductivity in
hydrogen-bonded molecules is remarkably high and in
fact certain of these materials have been called protonic
semiconductors.! A theory for proton transport in
quasi-one-dimensional hydrogen-bonded chains has ap-
plications in several biological systems: (i) a-helix pro-
teins traversing biological membranes, connecting the in-
tracellular and the extracellular regions, thereby provid-
ing a channel for proton transport through the mem-
brane, (ii) several solid-state systems showing very high
proton conductivity (see Refs. 3 and 10), (iii) icelike struc-
tures showing a proton mobility only an order of magni-
tude less than in metals.>* In Ref. 1 it was suggested that
there is an analogy between the motion of protons in a
hydrogen-bonded molecular chain and the motion of
dislocations in crystals. The hydrogen bonded system
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where the dotted-line segments indicate the hydrogen
bonds, and the A4’s symbolize some (heavy) ions with neg-
ative charge, was modeled by assuming that the protons
were connected by springs and moving between each pair
of fixed heavy ions in a symmetrical double-well poten-
tial. In the case of an external applied electrical field, it
was found that the barrier height for cooperative proton
motion was much smaller than the barrier for individual
proton motion, and it was thereby concluded that the
model qualitatively could explain the high mobility of
protons in hydrogen-bonded substances. Due to this
effective transport of protons it is not surprising that the
concept of soliton theory has been introduced in such sys-
tems.*~%°~12 In Ref. 4 another model for a slightly
different molecular geometry was proposed. The protons
were again moving in a double-well potential, but now
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also the heavy ions were allowed to move. The idea was
that a reduction of the distance between two neighbor
heavy ions induced a reduction of the barrier height in
the potential experienced by the proton between these
surrounding molecules (see Fig. 1). It turned out that in-
sertion of a traveling-wave assumption in the continuum
version of the derived equations leads to exact soliton
solutions in the proton sublattice as well as in the heavy
ion sublattice at a particular speed of the traveling wave.
So a transition region between protons being in the left
well, and protons being in the right well (kink) could
travel along the chain together with a compression in the
heavy ion sublattice without any loss of energy. Other
papers have addressed the same model from numerical
and analytical points of view taking into account addi-
tional features, e.g., effects of an applied external electri-
cal field and damping,'""!? stability of the solitons was in-
vestigated in Refs. 9 and 10. In Sec. II we describe what
the potential in which the protons move looks like, and
how it is altered when the distance between the two sur-
rounding heavy ions changes. Then in Sec. III we present
the model Hamiltonian and derive the corresponding
dynamical equations. In Sec. IV we study the continuum
limit of the derived equations and show that there exists
soliton solutions. Section V contains the details of our
molecular-dynamics calculations, and explains how we
incorporate temperature effects. Finally we conclude the
paper in Sec. V1.

II. THE HYDROGEN-BOND POTENTIAL

In this paper we report on molecular dynamics (MD)
calculations in a thermalized one-dimensional molecular
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FIG. 1. Schematic picture of the hydrogen-bonded molecular
chain and the effective potential for the proton.
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lattice, consisting of N heavy ions and N —1 protons.
The lattice constant is denoted /, and between each pair
of heavy ions, a proton is moving in a double-well poten-
tial, modeled as

Viu,)=eoll —ul/ud)?. (1

Here u, denotes the displacement of the nth proton rela-
tive to the midpoint between the two surrounding heavy
ions, g, is the barrier height, and u is the distance along
the chain from the top of the barrier to one of the minima
in the double-well potential when the distance between
the two heavy ions is the equilibrium distance (see Fig. 2).
From Ref. 1 we obtain £,=0.22 eV, u;,=0.39x 1071 m,
and  =2.76 X 107" m. Here we will use the same funda-
mental mechanism for proton transport in hydrogen-
bonded systems as in Refs. 4 and 9-12, namely, that both
the barrier height and the distance from the top of the
barrier to one of the minima in the potential change when
the relative distance p, between the two surrounding
heavy ions changes. So we write what we call the
effective potential in the following way:

Velu, ,p,)=a(p,ut+bp, ut+cip,), 2)
where

Pn=Xp 1—X, 3)
and

Veliu,,00=V(u,) . @)

In (3) x,, is the absolute position of the nth heavy ion, so
pn >0 is an elongation of the distance between the heavy
ions surrounding the nth proton, and p, <0 is a compres-
sion. The unknown functions a, b, and ¢ will be deter-
mined according to experimental data in the following.
The barrier height €(p, ) and the distance along the chain
from the top of the barrier to one of the minima u (p, ) is
easily calculated from (2). We obtain

o= | 2202 |7 (5)
¥iPn1= 2a(p,) ’
1 bip,
=— 6)
elp,) 4 a(p,) (6)
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FIG. 2. Double-well potential corresponding to equilibrium
position of the two surrounding heavy ions.
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Experimental results,'*'* show that €(p, ) can be assumed

to be second order in p, and that u (p, ) can be modeled
by a square-root expression in p,. The simplest way to
achieve this is by adopting the following expressions for a
and b:

alp,)=k,, (7)
bp,)=k,lp, +ks3), (8)

k,, k,, and k; being constants. There is evidence that
the double-well potential collapses to a single-well poten-
tial for short hydrogen bonds,'* so we put
ky=0.1x7=0.276 107 m, meaning that the double-
well potential degenerates to a single-well potential at
10% compression of the lattice spacing. Inserting (7) and
(8) in (5) and (6), and making use of u (p, =0)=uq, and
&(p, =0)=¢,, we obtain

klz'—, (9)

2e
k2:— 9

BT (10)
Figure 3 shows € and u as functions of p, as calculated
from (5) and (6). Since, obviously, c(p,)=¢(p,) the
effective potential (2) is now known as a function of the
constants €, u,, and k3, and in Fig. 4, we show how the
double well looks in the equilibrium position (as in Fig. 2)
for 5% elongation of the distance between the surround-
ing heavy ions and for 5% compression of this distance.

III. THE MODEL HAMILTONIAN

The Hamiltonian describing the system consists of
three parts: the proton part, the heavy ion part, and a
part taking into account that the double-well potential
changes with p,. Since we want to have free boundaries,
the proton part of the total Hamiltonian is

N-1
H,=3' im(a,?+V(u,)+imolu, ,—u,)?, (11

n=1
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FIG. 3. The barrier height € and the distance along the chain
from the top of the barrier to one of the minima u as a function
of the relative distance p, between the two surrounding heavy
ions.
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FIG. 4. Effective potential as a function of u,; a, 5% elonga-
tion of distance between surrounding heavy ions; b, equilibrium
distance (corresponds to Fig. 2); ¢, 5% compression of the dis-
tance between surrounding heavy ions.

and the heavy ion contribution to the total Hamiltonian
is
N
Ho= 3" IM G, P +iMQ¥x,  —x,)*. (12)
n=1
In (11) m is the mass of the proton and the last term de-
scribes the normal dispersive coupling with characteristic
frequency @, between neighboring protons. This is simi-
lar to (12), where M is the mass of each of the heavy ions.
The primes on the summation signs in (11) and (12) indi-
cates that the last terms only are summed to N —2 and
N —1, respectively. Finally the interaction Hamiltonian
is obtained by subtracting V (u,) from the effective po-
tential ¥*T(u,,p,) [we have already counted it in (11)].
This means that the effect of changing barrier height for
a proton when changing the distance between the two
surrounding heavy ions is taken into account through the
interaction Hamiltonian. With the definitions

Xy=—k,= 2:” >0, (13)
ugks
uf
Xo=op >0, (14)
X;=2k;>0, (15)

we have the following expression for the interaction
Hamiltonian:

N-—1
Hi=—X; 3 pulu2—Xylp, +X3)] . (16)

n=1

From the total Hamiltonian we can derive the following
dynamical equations:
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ae 2 4ﬁO urf
unzwl(un+,—2un+un_,)+-—2u,, l——
mug ug
2X,
+7u,,(xn+1—x,,), l<n <N —1 (17)
. , 2XX,
Xp = 1+ M (xn+l—2xn+xn—1)
Xy 2 2
——Az(u,,——u,,_l), l<n <N . (18)
At the boundaries we have
4e ul 2X
iil-——wf(uz—u,)-{———ozu, 1———; +—]u1(x2—x]),
mug ug m
(19)
" _ 2(__ ) 4'EO l_u’%‘l
Uy =l —Uy_tuy o) +——uy 2
L) Up
2X,
tun Xy =Xy 1), (20)
XX X XXX
%= |0 A142 (xz—x,)——;}% % 21
. 2X X, Xy XX X5
Xy= |0} M (xN—l'_xN)"*“”qu!%‘—l M
(22)

The system (17)-(22) constitutes the dynamical equations
we will integrate in Sec. IV.

IV. THE CONTINUUM LIMIT

Before we proceed to a numerical investigation of the
system (17)—(22), it is interesting to look at the two cou-
pled nonlinear partial differential equations, appearing in
the continuum limit and for small displacements. We ob-
tain

4¢, 2 2X
Uy — il u,, — mu(z)u ——Z—% ———;'—l—ulxy=0 , (23)
2X X X
Xy — Q%+—# szyy+2ﬁlluuy=0, (24)

where y denotes the continuous longitudinal space vari-
able. Introducing the sound speed in the proton sublat-
tice, ¢, and in the heavy ion sublattice, C,, as

ci=1%} (25)
and

201X,

0 1?2, (26)

ci= |+

and introducing a moving frame, §=(y —vt)/I, v being
the velocity of this frame, we arrive at
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1 2 2 480 uz 2X1 _
F(Cl—v )u§§+;;‘(2;u 1—-;;2)- +-——-—m ux;=0, (27
1 X,

F(vz—c%)xgg-{rZ-M“uug:O : (28)

From (28) we get (for v2¢c§ )

Xy,
7515]71?‘”2—“5)’%*?““ =0 @9
or
12 Xl 2
xé.:UZ—C% ——ﬁu +¢ |, (30)

where T, is an integration constant. This result can be
substituted back in (27) yielding

—4¢,

2x31?
3)

1, 2 2 3
—(ci—v ) ugtu -
: &% muy  mM(vi-c}

12

4e,  w?

+Cl
mu} m(vi—c?)

e =0. (31

This ¢* equation has the well-known tanh kink solu-
tion.*!! Insertion of this solution in (30) then makes it
possible to find x. We find (for v2sc3 and v?%c?)

u(§)==tugytanh(A4§) (32)
and
x(£)=Btanh(A4§) , (33)

where the constants 4 and B are given by the following
expressions:

4= 2e,l? 4 X3*u}d 12 ,
(c?—v>mud mM@w>—ci)ci—v?)
(34)
=-——1—Z—X—ﬁ—— . (35)
(v2—c3)M A

The antikink solution in the x variable means that the
space derivative is an antisoliton, i.e., the kink in the pro-
ton sublattice travels along the chain together with a
compression in the heavy ion sublattice. It is interesting
that our continuum model supports soliton solutions for
all velocities less than the sound velocities (¢; and c,),
whereas the models in Refs. 4 and 9-12 only support
such analytical solutions for one single value of this ve-
locity.

V. MOLECULAR DYNAMICS DETAILS AND RESULTS

We include temperature effects by using a standard
isokinetic MD method.!>'® The equipartition theorem!'’
states that both the heavy ion and the proton lattice have
to be in thermal equilibrium, that is,

M | X,
‘T_<Nk8 3 5 > (36)
and
m N —1 5
—d y 3’ 37
T <(N—1)k,, Eﬁ‘”) 37

where { ) indicates time average, 7 the temperature, and
kg Boltzmann’s constant.

We use a standard fifth-order Runge-Kutta scheme to
integrate the dynamical equations and rescale the molec-
ular velocities, X, and %,, at t =iAt,i =1,2, ..., subject
to the relations (36) and (37). This means that the rescal-
ing factors for X, and u#, become

) 1/2
e [T o)
M3 ()
n=1
and
) _ 172
ay= ——uxﬁ,”kT , (39)
m 3 (ah)?
n=1I
respectively.

The numerical calculations were performed in the fol-
lowing way. All the runs were with N =100 and
M =100xXm =1.67x10"% kg and in order to reduce
the number of parameters we always took Q=0.lw,.
Our Runge-Kutta scheme runs with variable step size,
but we read out the molecular velocities every
At =0.25%10"!* sec to rescale by the factors (38) and
(39). Variation of the tolerance parameter in the integra-
tor and in At did not affect our results significantly. We
subjected the dynamical equations (17)-(22) to random in-
itial conditions (the positions of all protons randomly dis-
tributed around the left minima in the potentials), and in-
tegrated the system using the rescaling technique ex-
plained above until thermal equilibrium in both lattices
was achieved. The relaxation time was always less than
10~ 13 sec. Then the system was excited by moving heavy
ion no. 1 away from no. 2 until the distance between
them was 1.1/ (10% elongation). Simultaneously proton
no. 1 was given a certain amount of kinetic energy in the
direction towards proton no. 2. Then heavy ion no. 1 was
released, and the system was allowed to move according
to the dynamical equations including the scaling factors.
We feel that this way of starting the system is more real-
istic than applying the continuum solution as initial con-
ditions.

In Fig. 5 we show results from integrating the system
(17)-(22) at 310 K from the initial conditions mentioned
above. We define the kink location as the site no. closest
to the zero crossing of u,. In Fig. 5(a) we have
©,=2.0Xx 10" Hz, and Q,=2.0x 10" Hz. When proton
no. 1 is given the kinetic energy 2.0 eV, a kink is traveling
about ten sites before it turns around and is annihilated
after approximately 0.8 psec. If the input energy is in-
creased to 3 eV, the kink is able to travel for a much
longer time; in fact it is located around site no. 10 after
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FIG. 5. Kink location as function of time after excitation for different values of w, and kinetic energy input of proton no. 1. In all
runs we have Q,=0.10,. (@) w,=2X10"“ Hz. a,2¢eV, b, 4eV,c,3eV. (b) ©,=3X 10" Hz. a,3.5¢eV,b,4¢eV,c,6¢eV,d,5eV. (¢
©;=4x10"“Hz. a,5eV,b,6¢V,c,7eV,d,8¢eV. (d) 0, =5x10" Hz. 8eV.

2.0 psec. At an input energy of 4 eV the situation is in
between. For values of the input energy above approxi-
mately 4.5 eV or below approximately 1.5 eV, it is not
possible to even excite a kink, so there seems to be a
“window” for the amount of kinetic input energy of pro-
ton no. 1 in which a kink can be excited and travel along
the chain. In Fig. 5(b) we have increased the values of
the basic frequencies of the system to w;=3.0% 10" Hz
and Q;=3.0x10"> Hz. The same features as in Fig. 5(a)
are observed, except that the input energy window now is
located at higher values of this energy. Also, we see that
the kinks are able to travel longer before they get pinned
or turn around. In Fig. 5(c) we have w,=4.0x 10" Hz
and Q,=4.0x10" Hz, and now the kinks can travel

even longer. For input energies between 7 and 8 eV we
observe an interesting behavior. After excitation the
kink moves about 70 sites along the chain without being
affected significantly by the thermal noise. ‘After having
traveled this distance in about 0.3 psec, the kink velocity
decreases to about 5% of its original value. Finally in
Fig. 5(d), where we have ,=5.0x10" Hz and
Q,=5.0% 10" Hz, we find that the input energy window
is very narrow, so we only show the result for 8 eV.
Comparing the four pictures in Fig. 5, we see that there
also is a window for the frequencies w; and Q; in which
kink formation (and movement) is ?ossible. Only in the
interval 2x10'" Hz<w,<5x10"* Hz (maintaining
Q,=0.1w,) do we see kink excitation. It is interesting
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FIG. 6. Location of the protons as function of site no. » and
time. Parameter values as in Fig. 5(c).

that the location of the interval for kink excitation com-
pares favorably with what is known about these frequen-
cies.""® Finally, in Fig. 6 we show the location of the pro-
tons as function of the site no. and time. All parameter
values are as described in Fig. S(c). It is clearly seen that
after getting excited, the kink moves with a high velocity
out to approximately site no. 70. Thereafter its velocity
decreases drastically.

VI. CONCLUDING REMARKS

We have proposed a new two-component one-
dimensional molecular model for transport and storage of
protons. We have not attempted to do a thorough pa-
rameter study, but have fixed some of these at what we
believe are physical reasonable values. At realistic tem-
perature and for realistic initial conditions, we find that
there exist regions in the two-dimensional (proton kinetic
energy input)-(w;) parameter space, where the model
shows that kink formation and propagation is possible.
In the cases where a kink starts moving and later turns
around (before the end of the chain is reached) and is an-
nihilated, the model describes storage of a proton: An
excess proton can move into the chain at ¢t =0 and be
back at the same location at a later time. What makes
the proton turn around in a real biological system could
be, for example, changes in an electrical field experienced
by the chain or changes in ion concentrations across a
membrane. If the proton does not turn around before the
end of the chain, the model describes proton transport in
a hydrogen-bonded chain.
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