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Renormalization-group theory for the eddy viscosity in subgrid modeling
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Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes tur-
bulence so as to eliminate unresolvable small scales. The renormalized Wavier-Stokes equation now
includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative
agreement with the test-6eld model results of Kraichnan. For the cusp behavior to arise, not only is
the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term.
The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap
exists between the large and small scales.

I. IM'RODUCTION

For fully developed turbulence, excitations of spatial
scales arise that exceed the resolution possible in current
and foreseeable computer simulations. This classic prob-
lem has resulted in many (usually ad hoc) attempts at
modeling these small (so called "subgrid") scales and
their effect on the resolvable large (so called "supergrid")
scales. Recently, however, the technique of
renormalization-group theory (RNG) has attracted con-
siderable attention as a systematic attempt at subgrid
scale modeling. There are, at present, basically two dis-
tinct RNG approaches being utilized, each with some-
what different objectives in mind.

(i) In the e-expansion method, ' one invariably intro-
duces a zero-mean Gaussian random forcing term into
the Navier-Stokes equation. This white-noise forcing
term is determined by its correlation function, which is
assumed to obey a subgrid wave-number power-law spec-
trum. A small parameter e is introduced appropriately
into the exponent of this power law. One now calculates
the effect on the Navier-Stokes equation of removing a
small subgrid wave-number shell. One of the resulting
effects is to introduce higher-order nonlinearities into the
renormalized equation. By recourse to the small t. expan-

sion, it can be shown that these higher-order nonlineari-
ties are, in proper RNG jargon, " "irrelevant. " Unfor-
tunately, to recover the K.olmorogov energy spectrum
one is forced to choose @=4. In this extension from
e gal to a=4, it is tacitly assumed that the higher-order
nonlinearities can still be neglected. Under some postu-
lated equivalence, and without any experimentally adjust-
able parameters, Yakhot and Orszag, find numerical
values for important constants of turbulent llows {e.g. ,
the Kolmogorov constant for the inertial range spectrum,
the Batchelor constant, the turbulent Prandtl number,
etc.}, as well as the scaling of the eddy viscosity in the
lnertlal I ange.

(ii) In this RNG approach, ' ' and this is the ap-

proach utilized here, one proceeds by successive elimina-
tion of subgrid wave-number shells, which leads to an
integro-difference recursion relation for the eddy viscosi-
ty in the supergrid range. RNG is then applied to this re-
cursion relation, which on iteration tends to a fixed
point —the required (wavenumber dependent) eddy
viscosity. Now unlike the e-expansion procedure (i), both
free decay (with given Kolmogorov energy spectrum) and
forced turbulence (with spectral forcing chosen to repro-
duce the Kolmogorov energy spectrum) can be handled
and there is no introduction of a small e parameter. Of
course, this leads to the problem of closure —but it must
also be remembered that the e-expansion procedure must
face this closure problem as well when e is set to its re-
quired finite value (@=4).

In this paper we shall apply the difference recursion
RNG technique (originally applied to the linear problem
of passive scalar diffusion' ) to Navier-Stokes turbulence,
taking proper account of symmetries. The RNG pro-
cedure by which the subgrid shells are removed iterative-
ly is outlined in Sec. II (with details presented in Appen-
dix A). In Sec. III the renormalized viscosity is calculat-
ed numerically and compared both to that found by the
iterative averaging RNG procedure of Mccomb'
(which by some technique, not properly understood by
us, does not introduce triple-order nonlinearities) and to
the closure models of Kraichnan' and Chollet and
Lesieur. ' It is shown that not only is the triple non-
linearity necessary for the RNG eddy viscosity to exhibit
a cusp behavior near the subgrid or supergrid wave-
number cutofF', but also the presence of the pressure in
the Navier-Stokes equation is required. %'e summarize
our results in Sec. IV. In Appendix 8 it is shown that the
presence of a spectral gap between the subgrid and super-
grid scales will eliminate the triple nonlinearity in the re-
normalized Navier-Stokes equation. Thus, without this
triple nonlinearity, the resulting spectral gap RNG eddy
viscosity will not exhibit a cusp behavior. Fina1ly, in Ap-
pendix C, a linearized model calculation (following a
similar model discussed by Rose' } is introduced to exam-
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ine the direct e8'ect of the triple nonlinearity in the renor-
mallzcd Navler-Stokes equation.

II. NA VIER-STOKES TURBUI.KNCK
AND RKNORMALIXATION-GROUP PROCEDURE

%e consider incompressible turbulence, and the
Navier-Stokes equation in wave-number space (utilizing
the summation convention over repeated subscripts},

(a/at +v,k')u. (I,t)

d jM ~~ k u& j, t u~ k —j,t . 1

The incompressibility condition

ktiutt(it, t) =0

has been employed to eliminate the pressure gradient

V' p= —a'(u utt)/ax axti,

resulting in the quadratic nonlinear coupling coefticient
M &z given by

M t3„()t)=[kpD r(k}+krD,tt(k)]/2i,

bers k gk, . It will be shown that the modifications to
the Navier-Stokes equation are (a) a renormalized viscosi-
ty coefficient and (b) a triple nonlinearity in the fiuid ve-
locity. One then proceeds iteratively, removing at the ith
step the subgrid shell k, g k ~ k, , until one reaches the
actual resolvable scales at the Xth step. Since we are
dealing with free decay, it is assumed that in the subgrid
scales the inertial energy spectrum E(k) obeys some
given power law

E(k)=k™for k~ &
~

It
~

&ko . (5)

Q (k ) =E (k)/4@k

Theoretically one can proceed with an arbitrary value for
the power-law exponent m, but when we present our nu-
merical results for the renormalized eddy viscosity we
shall employ the Kolmogorov exponent m =+—,'. For iso-

tropic, stationary turbulence in the subgrid scales, the
equal time velocity covariance is

(u (It, t)u&(k', t) ) =D &(k}5(it+It')g(
~

k
~

)

for k~ (
~

k ~, ~

It'
[ & ko, (6)

where Q(
~

k
~

) is related to the energy spectrum E(k) by

D.r(k) =o.y k.kr /k'-—. (4) 8. Removal of the Arst subgrid shell

vo is the molecular viscosity. Note the symmetry relation
M tt

——M, tt, with k M &r(k) =0.

A. RNG Procedure

In the RNG method one partitions the unresolvable
subgrid scales into shells, characterized by a scale factor
f, 0 &f & 1.. The spectrum is partitioned by the wave-
number set [k, =—k~:f ko, k~—, =f 'ko, . . . ,

k, =fko, koI—. ko is typically chosen to be on the order
of the Kolmogorov dissipation wave number, while kz is

the wave number which separates the actual resolvable
scales (k &k~) from the unresolvable scales
(kz & k & ko). The RNG iterative procedure consists of
erst eliminating the highest wave-number subgrid shell

k, &k &ko from Eq. (1) to leave a modified Navier-
Stokes equation for the remaining supergrid wave num-

u ~ (It, t) for
~

it
~
«k, (8a)

(gb)

and to introduce an ensemble average over the particular
subgrid shell modes under consideration,

(u ~ (kt)) —=0,
(u '(It, t))—:u (k, t) .

For k in the first subgrid shell, Eq. (1) becomes

%e now consider the efFect of removing the first
subgrid shell k, gk gko from the Navier-Stokes equa-
tion (1) in the RNG procedure. It is convenient to intro-
duce the notation

(a/at+vs )u (I,t)=M, (I) f d j[ug(j, t)+u, (j,t)][u (I —j,t)+u (I —j,t)] for k, & (I
~

&ko,

while for those k in the supergrid range,

(a/at+vok )u (k, t)=M
& (It) f d'j [utt (g, t)+utt (g, t)][ur (It —j,t)+u (It —j,t)] for

~

k
~

&k, .

(10)

[It should be noted that the right-hand sides of Eqs. (10) and (11) are very different, not only because of the It range but
also in the ranges ofj integrations. ]

Following Rose' and McComb, ' ' we assume that in every realization, u ~ evolves faster than the supergrid veloc-
ity field u ~, so that au ~ /at can be neglected in Eq. (10}. Thus, from Eq. (10),

u& (j,t)=(l/voj )M&tt, (j) f d'j'[utt. (j', t)+u& (j', t)][u~. (j—j', t)+u~. (j j', t))for k—, &
~ j ~

&ko . (12)

We now substitute Eq. (12}into (11), taking care of symmetries, and perform the subgrid shell ensemble average of Eq.
(9}to obtain, for

~

k
~

& k, ,
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[8/Bt+v, (k)k ]u '(k, t)=M p (k) f d'j up (j, t)u '(k —j, t)

+2M Pr(k) f 1jd j'(voj ) MPtrr (j)utr (j—j', t)u ~ (j', t)ur'(k —j,t) .

(For details, see Appendix A. ) Thus the effect of removing the first subgrid sheH on the Navier-Stokes can be seen to do
the following two things.

(i) Renormalize the molecular viscosity vo to

vi(k) =vo+Svo(k)

6vo(k)=2 f d j Q( I
k —j I )Lij/(voj k ),

with the coefficient Lkj defined by

LkJ —— 2—M pr(k)Mppr (k)Dpr(k j—)Dr (k. )

= —kj(1 —p )[p(k +j ) kj(1+—2p )]/(k +j 2kjp)—, (16)

k.j=kjp with p =—cos8. The integration limits in Eq. (15) are @i &
I
k —) I

& ko and k, &
I J I

& ko.
(ii) Include a triple nonlinearity u ~u ~u ~. This is a typical biproduct of RNG. (See, for example, RNG for the

two-dimensional Ising spin Hamiltonian. One finds that after the first spin decimation, not only is there the original
nearest-neighbor interaction but also a diagonal nearest neighbor and four-spin-coupling interactions. These new in-
teractions are weaker than the original interaction. Moreover, %ilson neglects the four-spin-coupling interactions in
his RNG and still obtains a very good approximation to the universal critical exponents —although it must be noted
that the Ising model is in equilibrium while we are interested in fiuid turbulence. )

C. Removal of the nth subgrid shell

Thus after removing the first subgrid shell, the Navier-Stokes equation (1) is modified to Eq. (13),

[8/Bt+vi(k)k ]u (k, t)=M pr(k) J d j up(j, t)ur(k —j, t)

+2M p„(k) f d'j d j '(vrd' ) 'Mpp. (j)up (j j', t)ur. (j—', t)ur(k j,t), —

where there is now no need for the superscript g notation on the velocity field since the wave numbers are all restricted
to Ogk &k, .

To remove the second subgrid shell, we denote the (current) subgrid modes by

u =u~(k t) if k, &k&k,

and the supergrid modes by

u =u '(k, t) if k &k2,

and proceed as in Sec. II 8 but now realize that the triple nonlinearity uuu in Eq. (17) will also contribute in the renor-
malization procedure. We find that the renormalized Navier-Stokes equation is now given by

[8/Bt+vz(k)k ]u '(k, t)=M pr(k) f d j ug (j,t)u„'(k —j, t)

+2M pr(k) f d'j d'j '(vji') 'Mptrr(j )utr'(j —j', t)u '(j', t)u '(k —j,t) (20}

for k &kz, with the eddy viscosity

v2(k) =v, (k)+5v, (k), (21)

1

»2(k)=2 g f d'j Q( Ik —j I )L~, /[v;(i)J'k') .

In Eq. (22), k2 & I
k —j I

& k, and k;+, &
I j I

& k, for i =0 or 1. Notice that the i =1 term in Eq. (22) is due to the tri-
ple nonlinearity in Eq. (17).

Proceeding iteratively, it can be seen that after removing the (n +1)th subgrid shell the Navier-Stokes equation be-
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[t)/Bt+v„+, (k)k ]u (k, t)=M tt (k) f d j ug(j, t)u '(k —j, t)

+2M ii,, (k) g fd j d j'Mtttt, (j )l[v, (j)J ]utr (j j—', t)u,;(j', t)u '(k —j, t)

with
~

k
~ &k„+, . (23)

v„+,(k) =v„(k)+6v„(k),

where

n

v„(k)=2 g f d'J La, Q( I
k —j I )[v, (i)J'k'1

i=0

(24)

The integration limits in Eq. (25) are k„+, & [ k —j ~

& k„
and k;+, &

~ ) ~

& k, for i =0, 1, . . . , n.
RNG transformation for the (n +1)th subgrid shell is

In the ith term of the summation g,, the limitations on
the j and j' integrations are

~
j'~,

~ j—j'[, ~k —j ~

& k„+» but k„,&
~ g ~

&k„;,, i =0, 1, . . . , n —1.
The eddy viscosity recursion relation is given by

In Figs. 1 and 2 we plot the k dependence of the renor-
malized eddy viscosity (for various choices of the parame-
ter f) and compare our results with those of
McComb' ' and Kraichnan. ' The parameter f defines
the coarseness of the subgrid shell partition. For the finer
subgrid partition of f =0.7 (Fig. 1), we see that the
RNG eddy viscosity exhibits a mild cusp behavior for k
close to the subgrid-supergrid cuto6' —in qualitative
agreement with the test-field model of Kraichnan, ' the
eddy damped quasinormal approximation of Chollet and
Lesieur, ' as well with the recent direct numerical simula-
tion results of Domaradzki et al. but in contrast to the
iterative-averaging RNG results of McComb. '

k ~k„+]k, (26)

ve (k ) Itm+ i t/2[v@(yk )+yves(yk )] (28)

with the renormalized viscosity v„' defined by

v„'(k)=Ck„++, " v„(k„+,k) for k &1

for some constant C. Thus the renormalized eddy viscos-
ity recursion relation becomes

—TFM of Kraichnan
—-RNG model of McCornb

D Qur model
b Our model without triple

nonl incor it y

with

5v„'(k )

n

2 y y
i(m+1—)f2 f d3 L g

&&(
I
k —j I )~[v.';(f'i)k 'J ']

and integration hmits (k & 1)

1& ik —ji &f

1&
~
f~j~ &f ', i=O I, . . . , n . (30)

It should be noted that the i =0 contribution to 5v„* in

Eq. (29) arises from the usual Navier-Stokes quadratic
nonlinearity, while i & 1 terms arise from the triple non-
linearity introduced by the RNG transformations.

III. RKNORMAI. IZED EDDY VISCOSITY

The renormalized eddy viscosity is defined as the fixed
point (nac) of the recursion relation (28) and (29).
This recursion relation has been solved numerically, and
we find that a fixed point exists for each k, and that this
fixed point is independent of the initial value of the
molecular viscosity vo—as is intuitively expected for the
case of strong turbulence.
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FIG. 1. Scaled renormalized eddy viscosity as a function of
the scaled wave number for a relatively 6ne subgrid partition
(f =0.7). The unmarked curve, exhibiting the cusp behavior
for k =1, is the test-6eld model result of Kraichnan while the
curve marked with U is our result. The curve marked with 8, is
the v (k ) if all triple nonlinear term eft'ects are dropped. More-
over, this curve is also appropriate if the pressure forces in the
Navier-Stokes equation are neglected or if in the RNG theory a
spectral gap is assumed to exist between the subgrid and super-
grid scales. McComb*s RNG result |which is claimed to be able
to somehow avoid the triple nonlinearity) is sho~n by ———..
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In fact, Mccomb's recursion relation is essentially Eqs.
(28) and (29) but without the 2 factor in the 5v„* equation
(which also has only i =0 contributing).

However, the appearance of the triple nonlinearity in
the eddy viscosity recursion relation is not suScient for
the appearance of the cusp near the supergrid-subgrid
cutoff. If the effect of the pressure gradient is dropped
from the incompressible Navier-Stokes equation it can be
shown that no cusp appears even though triple nonlinear-
ities are generated in the RNG procedure. Indeed, with
the neglect of the pressure force the problem will reduce
to that of advection of a vector field by a solenoidal veloc-
ity 6eld, ' and this is also closely related to the problem
originally treated by Rose. ' Explicitly, the e8'ect of the
pressure can be immediately seen in the nonlinear cou-
pling coefficient L„,, Eq. (16). For the full Navier-Stokes
system,

0P I

0.001
a a a aaaaal

0.010 0.100 l.000

Nave Number

a a a a a aaal a a a a a aaat

while for the passive advection problem (no pressure
term) the coupling coeffacient reduces to

FIG. 2. Scaled renormalized eddy viscosity for a coarser
subgrid partition (f=0.6) chosen so that now only one memory
term I,'arising from the triple nonlinearity) contributes to v .
There is no cusp behavior exhibited —curves are labeled as in

Fig. I.

Lk~ =k j (1 —p )I
~

k —j ~

&0 . (32)

(33)

Since both
~

k —j ~

and j belong to the subgrid shell, the
angle 8 is restricted to p =—cos8 g 0 for k near the cutoff.
This ensures that

A. Cusp behavior of eddy viscosity near
w ave-number cutofF

We will first consider the RNG eddy viscosity. If one
totally neglects the contribution of the triple nonlinearity
to the eddy viscosity [i.e., retains only the i =0 term in

g,. in Eq. (29)] then the RNG viscosity does not exhibit

any cusp behavior. This is shown in Figs. 1 and 2 by the
solid curves with symbol h. Since the McComb'
iterative-averaging technique is claimed to result in a re-
normalized Navier-Stokes equation without a triple non-
linearity, the McComb eddy viscosity also does not exhib-
it any cusp behavior (the dashed curve in Figs. 1 and 2).

Moreover, L) k can become negative in certain regions of
j space for k near this cutoff. It is this cancellation effect
in the two terms of L„, in Eq. (31) that causes the cusp
behavior in this wave-number region for Wavier-Stokes
turbulence. This can be somewhat related to the cancel-
lation effect that Kraichnan' finds in his test-field eddy
viscosity calculation and which leads to the cusp behav-
ior near the wave-number cutoff (see also Appendix A).

B. The renormalized Navier-Stokes equation

Having considered the effect of the triple nonlinearity
on the RNG eddy vlscosaty, v (k), we now brlefiy consid-
er the direct effect of the triple nonlinearity on the final
renormahzation Navier-Stokes equation (on dropping the

notation),

[8idt+v*(k)k ]u (k, t)=M ttr(k) f d j u&(j, t)ur(k —j, t)

+2M~ta„(k) g J d jd j 'Mtatrr (j)1[v'(fj'j))up(j j', t)ur (j', t)u (k——j, t) . (34)

Unlike the quadratic nonlinearity in Eq. (34), which is
energy conserving, the triple nonlinearity is readily
shown to be nonenergy conserving. In Appendix C, fol-
lowing Rose, ' we consider a linearized driven model of
Eq. (34) to examine the effect of the triple nonlinearity in
Eq. (34). It is shown that the contribution of the pressure
force to the triple nonlinearity will lead to a decay of the
velocity field that is slower than the velocity decay if the

pressure force was absent. Thus one can see that the
RNG eddy viscosity for the full Navier-Stokes equation
could exhibit a cusp behavior near the subgrid-supergrid
cutoft'„while such a cusp behavior need not appear if the
pressure force is absent. Indeed, this is just what is found
in the full numerical solution of Eqs. (27)—(29). This also
may account for the somewhat weaker RNG cusp behav-
ior found in Fig. 1, and for the absence of the cusp for the
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coarser grid partition parameter of f =0.6 (Fig. 2). A
direct numerical solution of Eq. (34) has not been at-
tempted.

By applying RNG procedures to eliminate the subgrid
scales, we have found that the renormalized Navier-
Stokes equation now involves triple nonlinear interac-
tions. Moreover, it has been shown that this triple non-
linearity (with the inclusion of pressure) makes an essen-
tial contribution to the renormalized eddy viscosity. Nu-
merical solution of the RNG recursion relation shows
that this eddy viscosity now exhibits a cusplike behavior
for wave numbers near the supergrid-subgrid cutoft'. This
is in qualitative agreement with Kraichnan s test-field
model, ' with Chollet and Lesieur's eddy damped quasi-
normal approximation, ' and with the recent direct nu-
merical simulation results of Domaradzki et a1. In Ap-
pendix A it is shown that this triple nonlinearity results
from ihe interaction between subgrid and supergrid ve-

locity fields. This interaction bears some similarity to
that needed by Kraichnan' to achieve his cusp behavior
in the test-6eld eddy viscosity calculation.

It also appears that the McComb eddy viscosity calcu-
lation is inconsistent with the previous eddy viscosity re-
sults. ' ' ' Indeed, in the iterative technique of
McComb, it is claimed that no closure problem arises and
no triple nonlinearities are generated. Thus in
McComb's calculation, the eddy viscosity can not exhibit
any cusp behavior near the subgrid-supergrid cutofF.
Now the calculations of Kraichnan, ' Chollet and
Lesieur, ' and Domaradzki et al are al.so all based
directly on the quadratically nonlinear Navier-Stokes
equation, but yet all obtain cusp behavior in the viscosity.
Now the passive advection of a velocity field will, in the
RNG technique, generate triple nonlinearities, but the
RNG eddy viscosity does not exhibit a cusp behavior.
The argument, basically given by Rose' and in the model
calculation in Appendix C, is that the triple nonlinearity
in the renormalized Navier-Stokes equation will itself
contribute to yield extra damping near the wave-number
cutoff. This extra damping, together with the RNG
viscosity, can be argued to be somewhat equivalent to the
cusp eddy viscosity of Chollet and Lesieur. ' However,
in our case, the triple nonlinearity in the renormalized
Navier-Stokes equation contributes less damping than the
similar term for the passive advection problem. This
could account for the appearance of the mild cusp behav-
ior in our calculation (as seen in Fig. 1).

Further, we find that if a spectral gap is assumed to ex-
ist between the subgrid and supergrid velocity fields then
the RNG eddy viscosity will not exhibit a cusp behavior.
It is shown that the spectral gap prevents the appearance
of the triple nonlinearity. However, we have also found
that the appearance of the triple nonlinearity is not
sufficient for the cusp behavior —the pressure force is
necessary.
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APPENDIX A: DETAILS OF THK
RKNORMALIZATION-GROUP METHOD

FOR THK REMOVAL OF SUBGRID SHELLS

In this appendix we outline the RNG procedure in re-
moving the first subgrid shell k-, gk &ko, which results
in Eq. (13). It is convenient to proceed using a diagram-
matic approach. In the removal of the first subgrid shell,
we denote the supergrid propagator by

(an't)t+ 0)t~)

and the subgrid propagator by

(Al)

o. (A2)

The nonlinear (vertex) interaction is denoted by

Xofdk' Mnyy
(A3)

(o)
while for the subgrid modes,

CU=: +2

(c)

(A5)

(0) (b) (c)
Equation (A5) is substituted into Eq. (A4) and then an
average is performed over the subgrid scales, keeping
terms only to 0 (A,o).

1. Effect on term (1) in Eq. (A4)

We now consider, term by term, the e6'ect of substitut-
ing Eq. (AS) into Eq. (A4).

The efFect of term (a) in Eq. (A5) is to produce

J.l
This is the new triple nonlinearity introduced in Eq. (13).

The effect of term (b) in Eq. (A5) produces

with A,o an ordering parameter which is eventually set to
unity.

Diagrammatically, Eq. (11)can be represented as

(A4)
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which becomes zero on performing the subgrid scale
averaging, since ( U ) =0.

Term (c) in Eq. (AS) yields
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Again, this term is zero on averaging over the homogene-

ous subgrid scales since the U» and U» are connected by

the same vertex. This can be seen algebraically since for

p in the subgrid shell this term equals, on subgrid averag-
ing:

f dp dp'( U'(p —p') U'(p') U'(k —p) )

= f dpdp'Q(p —p')5(p)U'(k —p)

since p is in the subgrid, and so it cannot satisfy
I p I

=0.

2. Effec on term (c) in Eq. (A4}

Working only to 0(Ao) the substitution of term (a) in

Eq. (A5) into term (c) of Eq. (A4) yields

Under subgrid scale averaging this term vanishes, since

On substituting term (b) of Eq. (A5), we obtain

which on subgrid scale averaging yields the renormaliza-
tion of the response function ( U ~ U ~ ) U «.

As is usually done in RNG theories in Quid turbulence,
we neglect the effect of substituting term (c) in Eq. (A5)
since this yields

UgU

Neglecting this term is basically a closure approximation.
An analogous procedure is performed for removal of the
nth subgrid shell. Note that term (A7) will yield a contri-
bution to ihe renormalized viscosity.

Also note that the term (A6), the new triple nonlineari-
ty, results from the interaction between subgrid and su-

pergrid velocity fields [see Eq. (A4), term (b)]. Moreover,
it is shown in this paper that this triple nonlinearity is
essential for us to obtain a cusp behavior in the eddy
viscosity around the supergrid-subgrid cutoff'. It is in-
teresting to note that Kraichnan, ' in his test-field theory,
also requires the interaction between subgrid and super-
grid velocities to achieve the cusp behavior in the eddy
viscosity.

APPENDIX 8: THK EFFECT GF A SPKCTRAI.
GAP QN THE EDDY VISCOSITY

In this appendix we shall consider the application of
RNG to Navier-Stokes turbulencc with a spectral gap be-
tween the large scales and the subgrid scales. This is
of interest also because of the recent spectral gap calcu-
lations of Biskamp and Welter, Biskamp, and
MontgolTlery and co"workers. ' NcvcIthclcss, lt should
be noted that computational results indicate that any

spectral gap will be rapidly filled in within a few eddy
turnover times.

For subgrid wave numbers, the existence of a spectral
gap implies that the only wave-number couplings allowed
wi11 result in the subgrid scale equation

(8/Bt+vok )u ~ (k, t)

[8/Bt+vok']u '(k, t)

=M tir(k) f d j [uti«(j, t)u (k —j, t)

+utt (j,t)u '(k —j, t)] .

On substituting Eq. (82} into (Bl), and performing the
analogous RNG procedure as in Sec. II, we obtain

[3/Bt +vi(k)k ]u «(k, t)

=M~ti„(k}f d j utt (j, t)ur (k —j,t), (83)

where the eddy viscosity

v, (k) =vo+5vo(k),

with

»o(k) =2 f d'j Q( I
k —j I )Lkj /(Vol'

(84}

(85)

Since the spectral gap exists at each iteration, we can
immediately generalize to obtain

[8/Bt+v„+~(k)k ]u «(k, t)

=M
& (k) f d j ug (j, t)ur«(k —j,t), (86)

where the eddy viscosity

v„+,(k) =v„(k)+5V„(k),

with

»„(k)=2 f d J Q( I
k —j I )Lk /[V„(j)j k ]

(87)

(8&)

Equation (88) should be compared to Eq. (25). We see
that the effect of the spectral gap on the eddy viscosity is
exactly the same as the effect of neglecting the inhuence
of the pressure force on the eddy viscosity. In both of
these cases there is no triple nonlinearity induced into the
renormalized Navier-Stokes equation, and the resulting
RNG eddy viscosity does not show a cusp behavior for
wave numbers near the supergrid-sub grid cutoff'. It
should also be noted that the presence of a spectral gap
yields a closed sct of equations without the need of invok-
1ng a closure approx1IDatlon.

APPENDIX C: THK DIRECT EFFECT QF THE
TRIPI.K NONI. INKARITV IN THE RKNORMAI. IZED

NA VIER-STOKES EQUATION

In this appendix we follow Rose in his calculation' for
the passive scalar advcction to estimate the cff'cct of the

d j2M & k u&» j, tuZ» k —j, t . (81

For the supergrid wave numbers, the Navier-Stokes equa-
tion becomes
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triple nonlinearity in the renormalized Navier-Stokes
equation (34).

To be able-to proceed analytically, we lineanze the
Navier-Stokes equation by separating the velocity field
into an advecting part (u) and an advected part (u) so
that

(a/at+ v, k') u. (1, t)
= I d'j M p„(k)utt(j, t)ur(lt —j,t), (Cl)

where u is a prescribed random variable. %e again
proceed as in Appendix A to obtain the renormalized
equation

[8/Bt+v(k~)k ]u (k, t)=M &r(lt) I d'j uti(j, t)ur(lt —j, t)

+M tie(k)[v(kz)ktt ] ' I d j d j'M&& (jj)u&(j j', t)u—(j', t)u (lt j,t)—.

Following Rose, ' we have also taken the simplifying lim-
it that the partition grid parameter f~1. k, —:k„ is the
wave number separating the supergrid and subgrid wave
numbers.

—2Ak' k' /(k' +k' )

in the decay of u», Eq. (C5), arise from the pressure effect
present in the coupling coefficient M & (k).

1. KSect of the pressure term

We now specify the advecting velocity field (in Carte-
sian coordinates)

u„(j)=V[5(j» —k,')+5(j +k' )i]5(j„)5(j,),
Qy =0=Qz

(C3)

where wave number k2 «k, . It is convenient to intro-
duce a time-independent source term 5,

S(j ) So[5(j,—k—', )+5(j„+k', )]5(j )5(j, ), (C4)

u„(k', , 0,0)=SO /v(k„)k',

u, (k'„0,0)=So /[9(k, )k i + Ak i ],

(C5)

(C6)

[So +2AkIk2/9(k', +k2 )]
u»(k', ,0,0)=

IM'i +Aki [1—2k2 /(ki +kq )]I

A =V /4v(k, )k„(k', +k' )'

It should be noted that the terms

2Ak', k~/v(k, )(k', +k2 )

for some amplitude So and wave number k ', «k, . More-
over, we are interested in wave number k& near the
supergrid-subgrid cutoff k, so that (k', +k2 )'~ y k, .
Hence the two supergrid modes u~(+k', ,0,0) are coupled
to the other modes only through the triple nonlinearity.
Explicitly evaluating Eq. (C2), we find, after some
straightforward algebra,

2. Case when the pressure term yields no contribution

To examine the overall eft'ect of the pressure in the de-
cay of the source term, Eq. (C4), we now consider an ad-
vecting velocity field with

u„(j)=v[5(j„—k2)+5(j„+k'2)]5(j» )5(j, ),
Qy O Qz

(C9)

Since the wave-number dependence of the source and ad-
vecting velocity are parallel, the pressure term in M

&
will have no e6'ect on the decay of u . Proceeding as be-
fore, we readily find now that

u„(k', ,0,0)=SO /v(k, )k', (C10)

u, (k', , 0,0)=SO /[v(k, )ki +Aki ],

u»(kI, O, O)=SO /[0(k, )k'i + Ak'i ],

(C 1 1)

(C12)

where A is given by Eq. (C8).
Hence, in the case when the pressure term has no ex-

plicit e8'ect in the triple nonlinearity, we find that the de-
cay of the source is enhanced by the presence of the triple
nonlinearity in the renormalized Navier-Stokes equation:
9k& 0k& + Ak', . Thus one could argue that the "pre-
sureless" eddy viscosity near the cutoff k, —:kz need not
show significant wave-number cusp dependence since the
triple nonlinearity present in the Navier-Stokes equation
could itself account for the needed extra dissipation at-
tested to by the Kraichnan test-field model.

However, on comparing Eq. lC7) with (C12), we see
that the pressure e8'ect is to reduce the decay of the
source term for wave numbers near the cutofF k, . Thus
if one is to reproduce the test-field eddy viscosity results
of Kraichnan, one might expect the presence of cusplike
behavior in the renormalized viscosity, as we have found
in Fig. 1.
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