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Measurements-induced dynamics of a micromaser
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Repeated measurements of the atomic inversion are incorporated in the theory of the micro-
maser. Two examples of measurements-induced dynamics are presented which display (a) quantum
di6'usion above a potential barrier and (b) an instability in the form of quantum-mechanical relaxa-
tion oscillations. Implications of these results on the study of the quantum-classical interface are
brieAy discussed.

I. INTRODUCTION

It has been pointed out by Lamb that in order to study
the dynamical behavior of a quantum system, it is neces-
sary to explicitly include the effects of the measurements
that must be performed in order to monitor it. To prop-
erly do so. requires coupling the system under investiga-
tion to a meter system. The measurement process typi-
cally produces a back action on the system which
influences its future dynamics. This is quite difkrent
from the classical situation, where "any observation of
the system would involve some intervation from outside
the system, but the structure of the theory is such that
the effects of measurements can easily be ignored. '"

In this paper we analyze the influence of repeated mea-
surements on a micromaser. They lead to mea-
surements-induced dynamics and instabilities which are
not apparent when conventional ensemble average pre-
dictions are considered, i.e., when the system is prepared
to a fresh initial state after each measurement, wiping out
any memory of the past in the process.

In a micromaser, a low-density beam of two-level (Ryd-
berg) atoms is passed through a single-mode, high-Q mi-
crowave cavity at such a low rate that at most one atom
at a time is present inside the cavity. Because there is no
eScient photon detector in the microwave regime, the
atoms play a dual role of both pumps and detectors.
Monitoring the state of the two-level atoms as they exit
the cavity, e.g., by the technique of field ionization, is
used to extract information about the cavity mode. If the
state of the atoms is not measured as they exit the cavity
the field density matrix always evolves towards a unique
steady state. In contrast, we show in this paper that if
the state of the exiting atoms is monitored the density
matrix evolves in time and the system exhibits dynamics
and instabilities for arbitrarily long times (as opposed to
transients).

This paper is organized as follows. Section II reviews
the theoretical model of the micromaser and discusses the
way in which we determine representative outcomes of
repeated measurements on the system. Section III illus-
trates this procedure for the situation where the e8'ective
potential of the micromaser exhibits two minima of
equal depth. In this case, repeated measurements lead to
quantum dN'usion above the potential barrier between

the two corresponding values of the intracavity intensity.
Section IV considers the situation where the vacuum Seld
is seen by the atoms flying through the cavity as a 2nsr

pulse, n integer. Under these conditions, thermal Auctua-
tions lead to measurements-induced instabilities in the
form of quantum-mechanical relaxation oscillations. Fi-
nally, Sec. V is a summary and conclusion.

II. MICROMASER %'ITH REPEATED
MEASUREMENTS

A. Conventional approach

We consider a micromaser consisting of a single-mode
microwave cavity of extremely high quality factor,
Q = 10", in which two-level atoms are injected at such a
low rate 8 that at most one atom at a time is present in-
side the resonator. Due to the combined efkcts of the
high-Q factor and the large dipole moment tc of the Ryd-
berg atoms used in the experiments, the maser threshold
is reached for values of 8 such that the probability for an
atom to be inside the cavity at a given time is consider-
ably less than 1. Also, the cavity damping is so weak that
it is a good approximation to neglect dissipation when an
atom is present inside the cavity. ' Under these condi-
tions, the atom-field interaction can be simply described
by the Jaynes-Cummings Hamiltonian

A'=(irido/2)S&+ncaa a+Air/2(S+a+a 5 ),
where S3, 5+, and S are spin operators, a and a the
field annihilation and creation operators, [a,a ]= 1, and
we consider for simplicity exact resonance between the
cavity mode and atomic transition frequencies ~. When
atom i leaves the resonantor, the atom-field system is left
in the state described by the density matrix

p(t, +t;„,)=U(t,„,)p(t, )U (t,„,), (2)

where U{t)=exp( iAt /fi), p(—t, ) is the atom-field densi-

ty matrix at the time t, of injection of atom i and t;„, jIts

time of Right through the cavity. For simplicity, we con-
sider a monoenergetic atomic beam so that t;„, is in-

dependent of i.
If no measurement is performed on the state of the

atom, the reduced density matrix pI for the field just
after atom i is found to exit the cavity is
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pf(t;+t;„„)=T „[U(t;„,)p(t;)U (t;„,)], p„(t; +t;„,) =Nbp„, (t, )sin —,'Q„t;„, , (10b)

where Tr„denotes trace over the atomic states. The cor-
responding photon statistics p„= ( n

~ pf ~
n ) is

p„(t; + t;„, )=p„,(t; )sin —,'Q„t;„,

+p„(t; )cos —,
' Q„+&t;„, ,

where O„=x&n is the resonant "n-photon" Rabi fre-
quency and p„(t; ) is the field photon statistics just before
injection of atom i

In the interval t~ —= 1/8 between t;+ t;„, and t;+, when
the next atom enters the cavity, the field density matrix
evolves according to the standard master equation for a
damped harmonic oscillator, which reads in component
form

p„=y(nb+ 1)[(n + 1)p„+i np„—]

+) nb[np„, (n +—1)p„] .

Here nb is the average number of thermal quanta in the
reservoir and y=ai/g is the cavity damping rate. Suc-
cessive iterations of this procedure eventually lead to a
steady-state regime. Assuming that the atoms are inject-
ed inside the cavity in their excited state

~

a ) and that
the field is initially in thermal equilibrium,

1
p„(0)=

1+Fib 1+fib

yields the steady-state photon statistics3

nb ~ N,„sin (Qkt;„, /2)
rr 1+ '"

1+Ply k ) eely

N,„=R/y

is the average number of atoms that traverse the cavity
per damping time.

8. Repeated measurements

The theory of Sec. IIA implicitly assumes that the
atoms are detected as they exit the resonator, as evi-
denced by the trace in Eq. (3). If that were not this case,
we would not be justified in reducing the Hilbert space of
the total system to that of the cavity mode only after each
iteration. However, we did not ask specifically for the
state of the exiting atom. Vfe now show how to proceed
in this case, and demonstrate that such measurements
lead to totally diferent dynamics of the micromaser.

%e assume for simplicity thai the state of the atom is
determined just after it exits the cavity. After the mea-
surement, the field density matrix reduces to '

pf(t;+t;„, )=Trz[ ~s }(s
~
U(t;„, )p(t, )U (t;„,)],

and the corresponding photon statistics are

p„'(t, +t;„,)=JV,p„(t; )cos' ,'Q„+,t;„, , —

depending upon whether the atom is found in the state
s= ~a) or

~

b). The constants A, and JVb guarantee
that the Geld density matrix remains normalized after the
measurement.

To obtain a specific realization of a sequence of such
measurements we note that the probability for atom i to
exit the cavity in its upper state is

8=+N, „tt.t;„,/2 . (12)

III. QUANTUM DIFFUSION

The steady-state characteristics of the micromaser are
presented in detaiI in Ref. 3. For large enough X,„, the
expectation value of the intracavity photon number ( n )

p, (t, +t;„,)= g p„(t;)cos —,'Q„+,t;„, ,
n=0

and the outcome of a given measurement will yield (10a)
or (10b) with probabilities p, and 1 —p„respectively.
[Comparison of Eqs. (10a) and (11) shows that
JV, =p, = 1 —JVb.] For each step of the iteration (atom i),
we thus proceed by computing p, (t, +t;„,) and numeri-

cally generate a random deviate 0&r &1. If r gp„we
say that the atom is measured to be in its excited state
and the photon statistics are calculated according to Eq.
(10a), otherwise the atom is found in its lower state and
Eq. (10b) is used for the photon statistics. We can then
introduce the efFects of damping, Eq. (5), and proceed to
the next iteration.

The conditional choice of photon statistics (10a) or
(10b), depending on the outcome of the measurement, is
clear evidence of the back action of the measurement on
the state of the cavity mode, Reference 7 discusses to
which extent a "naive" interpretation of energy conserva-
tion is invalidated by such a procedure. We emphasize
that although quantum mechanics is perfectly capable of
computing the outcome of a representatiue sequence of
measurements, this procedure is not totally predictive,
since there is an element of chance attached to it. It is
highly unlikely that an experiment wi11 reproduce exactly
one of the sequences obtained numerically: Unless p, is
zero or unity, the measuring apparatus (field ionization)
will produce a diferent sequence of random numbers
than the computer, but of course, their average over a
large number of realizations will be the same.

Sections III and IV illustrate two particularly simple
examples of micromaser dynamics induced by the repeat-
ed measurements process. In both cases the cavity mode
is initially assumed to be at thermal equilibrium and de-
scribed by Eq. (6). The damping part of the micromaser
evolution is treated by numerically integraing a truncated
set of the coupled ordinary differential equations (5) over
a time t -=1/R with initial condition (10a) or (10b). The
truncation was checked by making sure that the numeri-
cal results were insensitive to further increase in the nurn-
ber of states. For these numerical studies, we
parametrize the micromaser by the variables n&,N,„,and
the pump parameter
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undergoes a series of transitions as a function of the
pump parameter 8. The first of these, at the gain = loss
condition 8=1, corresponds to the conventional maser
threshold and has the characteristics of a continuous
phase transition. A succession of first-order-like phase
transitions then follows in which the photon number in-
creases abruptly for a small positive increment in 0. In
these regions the steady-state micromaser photon statis-
tics is double peaked, with a strongly super-Poissonian
character.

Reference 3 also introduces the semiheuristic Fokker-
Planck equation for the probability p(v, r) of having
n =vX,„photons in the field at time t =w/y

p(v, r) = — [q(v)p(v, r)]
87 Clv

Here n is treated approximately as a continuous variable,

g ( v ) =sill ( +vO" ) —v

g(v)=sin (&ve)+v+2vn

This Fokker-Planck equation, and in particular the corre-
sponding efkctive potential

V(v)= —I dv
g(v)

'

provide an intuitively appealing understanding of many
of the characteristics of the micromaser, as discussed in
detail in Ref. 3. For our present purposes, it is sufBcient
to note that the photon number distribution tends to ac-
cumulate near the global minimum of the effective poten-
tial V(v), i.e., near one of the zeros vo of the function
q(v). These zeros are the solutions of

This is the maser threshold. As 8 is further increased,
the e6'ective potential V(v} acquires an increasing num-
ber of minima. This is illustrated in Fig. 1, where V(v) is
dragon for the three pump parameters 8=4, 2.116m., and
8. The intermediate value of 8 is precisely such that the
global minimum at v=0. 18 is replaced by a global
minimum at v=0.68. The micomaser exhibits a sharp
jump in the intracavity mean photon number each time a
minimum of V(v) loses its global character and is re-
placed in this role by the next one. In the vicinity of
these transitions, the photon statistics are clearly double
peaked.

These predictions, discussed in much more detail in
Ref. 3, concern only ensemble averages. %e now show
how they can be improved upon by monitoring the state
of the atoms as they exit the cavity. In particular, one
would intuitively argue that as far as a single realization
of the maser is concerned, the double-peaked photon
statistics should be interpreted in terms of transitions be-
tween the two competing minima of the potential well
due to quantum diffusion above the potential barrier. Re-
peated measurements on the system show that this is pre-
cisely what happens.

vo=slll (QvoO')

For 8 ~ 1 the (unique) minimum of V(v) is at v=O. At
8=1 the minimum vo ——0 turns into a local maximum
and the mean photon number in the cavity starts to grow.
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FIG. 1. Potential V(v}, where v=n /X, „, for three values of
the pump parameter (1}0=4, (2}8=2.116m, and (3}S=8.

FIG. 2. (a} Raw data from repeated measurements of the
states of two-level atoms exiting the micrornaser cavity. The
value "+ 1" corresponds to atoms measured in the upper state
and "—1" to atoms measured in the lower state. The vertical
lines are for visual help only; (b} average intracavity photon
number (n ) and (c) standard deviation o' inferred from the
raw measurements as a function of the number of atoms injected
and measured; (d) conventional ensemble average (n ) for the
same parameters %,„=50, 8=2.116m., nI, ——5. Figure 2(b} clear-
ly shows diffusion between the minima of the effective potential.
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Figure 2(a) gives the raw results of a typical sequence
of measurements for the case (2) of Fig. 1, i.e., N,„=50,
n& ——5„8=2.116m, for which nI ——0.184,„=9 and
n„=0.68%,„=34. They are labeled as + 1 or —1 for the
atom measured in the upper or lower state, respectively.
The vertical lines are for visual help only. In contrast to
the situation in real experiments, we assume for simplici-
ty that all atoms exiting the resonator are detected in
their state ~a & or

~

b & with 100% quantum efficiency.
For clarity, the inset of Fig. 2(a) shows the same results
on an expanded horizontal scale. From this raw data and
Eqs. (10), one can infer back the cavity mode photon
statlstlcs alld Ineall photoll lllllllbel (n & =Xnan~. This ls

precisely the strategy that would be followed in the labo-
ratory to extract information on the intracavity field from
the "clicks" at the detector(s).

The results of this reconstruction are shown in Fig.
2(b), where difFusion between the two minima of the
efFective potential becomes quite clear. Note the good
agreement between the numerical and efFective potential
predictions for nt and n„. Figure 2(c) gives the normal-
ized standard deviation o = ( (n —( n & ) &/( n & of the
photon statistics. It exhibits a broad peak during the
slow down switching of ( n & from n, to n, Th. e
upswitching, in contrast, is very fast and does not show
any significant change in standard deviation in this exam-
ple. For comparison, Fig. 2(d) gives the (ensemble-
averaged) mean photon number (n (t) & as obtained for
the same parameters from the standard approach of Sec.
II A. The difFerence between the two results is striking:
In one case, one can truly follow the dynamics of the rni-

cromaser for all times, while the other only gives the
transient approach to steady state.

This situation is illustrated in Fig. 3. Here, condition
(20) is fulfilled (N,„=5,8=—35), but nt, =10 . For the
corresponding thermal initial field, the first atom experi-
ences almost, but not exactly a 10m pulse. Consequently
the probability of measuring it in the upper state at the
exit of the resonator is almost unity. Because the initial
photon statistics is exceedingly narrow, there is almost
exact conservation of the mean photon energy and the
resonator field remains practically unchanged. But as
further atoms are injected, there is a small but finite prob-
ability that one of them will eventually be measured to
exit in its ground state. This happens first in our example
for atom —=310. In this case, the back-action on the cavi-
ty mode is particularly drastic: To a very good approxi-
mation, the average intracavity photon number is in-
creased by one, and the field becomes almost, but not ex-
actly, the number state

~

1 &.

For the parameters of this example, the probability for
the next atom to exit in the upper state is about p, =-0.98,
see Fig. 3(b), so that it is also very likely for it to be mea-
sured in that state. This is precisely what happens in the
subsequent measurements. Hence the cavity mode sim-
ply relaxes back at rate y to a situation close to thermal
equilibrium. As further atoms are injected, there is, how-
ever, a finite probability that eventually another atom will
also exit in its lower state. In Fig. 3(b) this happens next
for atom =400. The same process then starts again, re-
sulting in the dynamics of (n & shown in Fig. 3(a). This is

IV. QUANTUM RELAXATION OSCILLATIONS

For a reservoir at zero temperature, n&
——0, the steady-

state photon statistics (7) reduces to

n

p„=p, , g sin (e+n yX,„),

where po provides normalization and we have introduced
the parameters N,„and 8. A direct consequence of (18)
is that for values of the pump parameter

8=qm+X, „, q =1,2, 3 (19) 0.8—
the (ensemble average) steady state of the micromaser
photon statistics is p„=6„o, independent of the initial
conditions. That is, the cavity field is in the vacuum
state. This is because the vacuum field acts precisely as a
2qm pulse for atoms spending time t;„, inside the cavity,
as readily seen by combining Eqs. (19) and (12) to give

8IQN, „=at;„,l2=qrr . .

The vacuum state, as any number state, does not exhibit
any intensity fIuctuations and can act as a true 2qm pulse.
In most other cases, ho~ever, the inherent intensity Auc-
tuations lead to the impossibility of achieving such a
"perfect" interaction. This is the case, e.g., if the micro-
maser cavity has a finite temperature nI, ~O.

I
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FIG. 3. (a) Inferred average photon number ( n ) for %,„=5,
8=35, nI,

——10 ' as a function of the number of atoms injected
and measured; (b) probability for the corresponding atom to be
measured in the upper state at it exits the cavity.
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V. CONCLUSIONS
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FIG. 4. Same as Fig. 3, but for X,„=5, 8=34 5 nb = 10

an example of quantum-measurement-induced relaxation
oscillations.

Figure 4 shows a situation (8=34.5, nb ——10 ) where
after an atom is measured to exit in the lower state, the
probability p, for the next one to exit in the upper state is
significantly less than one [see Fig. 3(b)]. Under these
conditions, the likelihood of measuring an atom to exit in
the lower state during a cavity damping time is
significant, leading to the dynamical behavior of (n )
shown in Fig. 4(a).

The measurement-induced dynamics of Fig. 4 resemble
to some extent those of "period-2" classical motion. But
there is no justification in drawing such an analogy:
Every single measurement typically causes a strong back
action on the state of the field, see Eqs. (10). At the same
time, the probability p, for an atom to exit in the upper
state is very sensitive to both ~t;„, and to the precise pho-
ton statistics (not just the average photon number) of the
cavity mode. Hence the observed dynamics depend sensi-
tively on the outcomes of all preceding measurements.
Since every single measurement has an element of ran-
domness attached to it, as described explicitly in Sec.
IIB, the dynamics are in final ana1ysis governed by
chance, in stark contrast to the classical case. The micro-
maser illustrates particularly clearly this irreconciliable
di8'erence between classical and quantum physics. '

This paper shows how the results of repeated measure-
ments on the exiting atoms can be used to extract dynam-
ical information out of a micromaser. The observed
dynamics are both measurement-induced and mea-
surement-dependent. For instance, if we are content to
verify only that the successive atoms exit the cavity, the
micromaser reaches a unique steady state, in an ensemble
average sense. In contrast, monitoring the state of the
exiting atoms leads to complex dynamics, two cases of
which have been illustrated.

These considerations carry beyond the specific example
considered here. There is considerable present interest in
the study of the quantum-classical interface in systems
whose classical version exhibits dynamica1 instabilities
such as period doubling or chaos. ' In particular, for dis-
sipative systems one is confronted with the apparent
paradox that the quantum system density matrix typical-
ly evolves towards a unique steady state, " while the
dynamical variables of its classical counterpart need not.
In its conventional form quantum mechanics yields pre-
dictions for a large ensemble of identical systems,
whereas classically the dynamics are interpreted in terms
of single realizations. Even in the classical case, oscilla-
tions would not be evident on averaging over an ensemble
unless the phase of the oscillations was fixed absolutely,
which is not generically the case. We therefore claim
that the paradox is only apparent, What should be con-
sidered is the quantum dynamics of a single representa-
tive system, which obviously is only apparent. What
should be considered is the quantum dynamics of a single
representative system, which obviously requires including
the repeated measurements performed to monitor it. '

We do not suggest that measuring the evolution of a
quantum dynamical variable will make it behave in a
classical fashion, but rather that in a single realization
the dynamics of the system will become evident. In con-
trast to what is generally assumed in classical dynamics,
the observed quantum "trajectories" are measurement in-
duced and measurement dependent. Whether it is possi-
ble to obtain a classical or semiclassical behavior by per-
forming an appropriate measurement on a quantum
dynamical variable is a separate issue that goes beyond
the scope of this paper.
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