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Analytic and numerical solutions are obtained for the equations describing the propagation of
several pulses of different frequencies through a Raman medium. The transient case is treated, and

the analysis includes Stokes, pump, and anti-Stokes frequency components. The e8'ect of phase

mismatch Ak between these waves is investigated. An analytic solution is found that describes the

phenomenon of transient Stokes-anti-Stokes gain suppression in the limit 6k=0. For nonzero

values of hk, the behavior of the transient gain coefficient is found to follow a scaling rule that is the

analog of a similar result known from the steady-state limit. Calculations are performed to identify

conditions that enhance conversion to anti-Stokes radiation. It is found that there is an optimum

strength of the Stokes seed, and that proper phase matching of the initial waves is essential.

I. INTRODUCTIQN

Raman scattering and frequency conversion in the
propagation of laser pulses have been the subject of
several recent theoretical papers. ' Much of the work
was stimulated by the observation of eScient conversion
in H2 of 560-nm pulses to higher-order anti-Stokes radia-
tion. Other recent experiments have revealed evidence
of solitons in Raman scattering, and this has led to a
search for corresponding analytic solutions to the basic
equations or Raman scattering in the extreme transient
limit. A previous paper by the present authors, denoted
I, focused on the development of a theoretical approach
that could handle higher-order frequency components
and pulses strong enough to induce substantial excited-
state molecular populations. This paper generalizes the
investigation begun in I. The additional efkct considered
is the phase mismatch between different frequency com-
ponents due to dispersion.

This paper examines several situations %'here this
phase mismatch is important. The emphasis is on cases
in which only Stokes, pump, and anti-Stokes pulses are
large and the pulses are short compared to the relaxation
time of the medium. %e present several important new
results. First, we have considered the phenomenon of
gain suppression, and have found an analytic solution
for an important limiting case of the general equations
that gives considerable insight into this process. Second,
we have investigated the transient gain of small Stokes
seed pulses as a function of the momentum mismatch.
%'e find that we can describe a wide range of numerical
results using a scaling ru1e that is completely analogous
to one determined several years ago for the steady-state
case by Bloembergen. Finally, we have explored situa-
tions leading to a large conversion of energy to the first
anti-Stokes pulse.

Section II presents the genera1 form of our working
equations. The analytic and numerical solutions we have

obtained for a variety of situations are presented and dis-
cussed in Sec. III. Section IV contains concluding re-
marks.

IL GENERAL EQUATIONS

This section presents the equations describing the
copropagation of pulses at several different frequencies
through a Raman medium. As in I, we let the complex
field envelope for the wave at frequency co„=no+ neo+ be
V„(z,t). Negative, zero, and positive integers n refer to
the corresponding orders of Stokes, pump, and anti-
Stokes waves, and t is the retarded time t =t~,b

—z/c.
Coupled equations for the V„are then

av„
i b,k„—V„+ [(U i u ) V„+, —

—(U +iu) V„,],
~here u, v, and w are the solutions to the Bloch equa-
tions,

Bv v=Au — —Q~ w,
Bt T&

Q=Q„+i Qt = g V„V„'

n
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E~(z, t)ab ) =exp( —t kkqz)exp[tcoq( tu b
—z/c)]

=exp '
/ N„f] b— +b,k„z

C

This result shows that the uncoupled waves would have
wave vectors whose z components were k„cos8=(co„/
c)+bk„, as shown in Fig. 1. The values of k„are deter-
mined by assuming that the index of refraction of the
medium does not change when the pulse excites some of
the molecules. Then

5 includes possible detuning and the ac Stark shift. The
coupling constants o.;~ are as defined in I.

Equations (1)—(4) differ shghtly from the correspond-
ing Eqs. (16)—(19) and (22) in I. The phase factor
exp( i—8) in I has been eliminated by the coordinate ro-
tation (u +iu) (this paper) =exp( i8—)[(u+iu)] (paper
I). The»gle»s defned by

I
fl

I
exp(«)=&~+ i&1.

The rotation modifies the detuning 5, which in this paper
does not include the term 88/Br as it did in I.

Equation (1) also generalizes Eq. (22) of I by including
the momentum mismatch terms hk„, which are defined
in Fig. 1. %'e effectively consider the z components of
waves propagating in directions k„, and neglect trans-
verse derivatives in the Maxwell wave equation. This ap-
proximation should be reasonable for small cone angles

8„, as long as there is good spatial overlap between the
interacting waves. In the absence of coupling between
the waves (a,2

——0) a solution to Eq. (1) for V„ is

exp( i hk—„z ), corresponding to a physical field given by

~p& ~2, -i~„,z,
n+[ —~ 0 n —

&

C

where the complex variable

q =exp[i (Ako —Ak, )z](U +iu)

is the solution to a set of Bloch equations, and 6„ is a
composite momentum mismatch given by

b,„=b,k„—hk„, —(hko —hk, ) . (10)

%e can recover a simple form of the equations of Raman
scattering by considering only n = —1,0, 1 (Stokes, pump,
and anti-Stokes waves), assuming that very few atoms are
excited by the laser pulses, and solving the Bloch equa-
tions analytically for the limit m =- —1,

BE ] SPAZ )2N
q 'Eo,

C

'dF gapa co.
(&

—i(hk)z «F
Bz c

time steps are used. The number of time steps and the
number of fields together determine the size of the pro-
gram.

It is illustrative to transform Eqs. (1) and (2} to a forin
that more clearly exhibits the role of the momentum
mismatch terms Ak„. If we define

F„(z, t) =e xp(i b,k„)V„(z,t)

then the E„satisfies the following coupled equations:

k„= (1+4mpa„)' ',
C

(6)
i +p i 2~ I

Fo ~

Bz c

where p is the molecular number density and the square-
root factor is the index of refraction.

Equations (1) and (2), our current working equations,
are solved directly. Arbitrary values of the momentum
mismatches Ak„may be selected. The maximum orders
of Stokes and anti-Stokes fields are limited by storage ca-
pability. %e have routinely handled nine wave calcula-
tions (n = —4, —3, . . . , +4). The numerical technique
is to solve a larger set of coupled, z-dependent, first-order
ordinary differential equations for the real and imaginary
parts of V„(z,t }at a set of times t . Typically, 100—400

FIG. 1. The momentum mismatch Ak„=k„cos8„—u„ /c
arises because the z component of the wave vector k„dift'ers
from the value k„=~„jethat characterizes propagation on axis
in a dispersionless medium. The diagram is not to scale. For
the situations considered in this paper, k„ is larger than k„by a
few parts in 1000, and the H„are a few milliradians.

where

q = exp — (e ' "'*F F'+F F' )dt'
iz
2A -- T,

(12)

k =~I=~kt —2~ko+~k

%e can perform the calculations for arbitrary values
b,k„, but our model does not specify these values. For
the case of three coupled waves, only the composite
momentum mismatch hk is important, and we have ex-
plored the effect of a range of values of this parameter.
For calculations involving higher-order waves, we have
adopted a method derived from the work of Brink and
Proch' to specify the hk„. The angles 8

&
and 8& may

be determined for perfect phase matching (h, =5k =0)
by considering Fig. 2. One can then work upward
through the anti-Stokes waves (n & 1) by assuming 8„
is known, and then choosing 8„ to minimize

~
hk„~,

where

(14)

The result is
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FIG. 2. Vector coupling diagram used for the determination
of the angles for perfect phase matching of pump (A:0), Stokes
(k I ), and anti-Stokes (A:& ) wave vectors.

k )sint9 )+k„sine„
tan8„ k, cos8 ) +k„eos8„—ko

(16}

The z component of the right-hand side of Eq. (14) is
exactly the composite momentum mismatch obtained in
Eq. (10). Another possible prescription would be to
choose the cone angles 8„ to minimize the z component
of b,k„. For the present application, the cone angles are
a few milliradians, and the difkrence is negligible. How-
ever, in general, further study is needed to resolve the
point.

III. ANALYTIC AND NUMERICAL SOLUTIONS

A. Analytic solution for transient
Stokes-anti-Stokes gain suppression

Let us consider the form of Eqs. (11) and (12) for the
special case of negligible pump depletion [F0=F0(t)].
Then we may write

aF,
Bz

cpu)2u
q'Fo

C

k ) sln8 ) +k~ )sing~
tan L9„=

kp +k„ icos8„1—k i cos8

Similarly, one can work downward (n & —1). Assuming
8„ is known, 8„& is chosen to minimize

~
leak„,

~

. The
result is

F,(0, t)=yFO(t},

the analytic solution of Carman et al. " is

F )(z t)=&FO(t)IO(2 i/K)K2zr)

where

(19)

(20)

r(t) = f F,(t')'dt' . (21)

We have found that Eq. (17) may be solved analytically
for b, k =0 and for I =0, if Fo(t) is real and if Eq. (19) is
assumed. In this case F, , F„and q =ig are real, and
the substitution G =F&+F

~
transforms Eq. (17) to

6
()Z

i~~(1 —c—o, /co, )g Fo,

Qg Q

i3t
=i x)GFo

This is exactly the same form as Eq. (18) for I =0, with
the exception that the factor (1—co, /co, ) is negative.
Therefore, the solution is

Carman et a/. " recovered. In Sec. III 8 a scaling formu-
la will be determined numerically that gives the approxi-
mate behavior of the solution for intermediate values of
Ak in terms of reduced variables.

%e erst quickly review the solution of Carman et al. "
for b,k ~~. If we make the substitutions l~, =a,2/(2'),
az ——gapa, 2', /c, I =1/T2, and i—g*=q' and set the
rapidly oscillating exponentials to zero, Eq. (17) becomes

BF = —t ICzg Fo
az

(18)

t}t
= —I Q'+i~(F, FO

In the extreme transient limit (I =0) and for the case
that the seed Stokes pulse has the same shape as the
pump pulse,

r)F t

Bz

'fTPcx i2'�) e' 'qro,
C

(17}
6 (z, t }=yFO(t)J,[p(z, t)],

where

(23)

Bq O') 2q + (
i (hk)zF Fe—+F F )o o

The momentum mismatch Ak depends on the relative an-
gles of propagation of the pump, Stokes, and anti-Stokes
pulses. In an experiment in which a seed Stokes beam
crosses a pump beam the relative angle of k, and ko is
determined, and there is a correspondence between hk
and k, , the cone angle at which the anti-Stokes light is
generated. Recently, Duncan et aI. have performed
such an experiment. They have measured the intensity of
anti-Stokes generation as a function of cone angle, and
can correlate a rninirnum in this intensity with the direc-
tion of k) corresponding to gain suppression for hk =0.

The behavior of solutions to Eq. (17) depends critically
on the value of hk. %e present in this section an analytic
solution for the case hk =0. For the other limiting value
dk~ao the terms involving the rapidly oscillating ex-
ponential may be neglected and the analytic solution of

f/') T
Q*(z, t)= J, (p(z, t)) .

z, t

Furthermore, the explicit solution for the fields is

(25)

63)F, (z, t) =yFO(t)
2Mg

1 — Jo(P(z, t ) )

(26)

F, (z, t)= yFO(t) [1—Jo(p(z, t)—)] .
26)g

This analytic solution gives considerable insight into
the phenomenom of gain suppression. It is illustrative to
consider the behavior of Eq. (26) in the limits of smaH

P(z, t) =2[ [(to, /co, ) —1]tt,~zzr j
'

We have used the general relation' that Io(ix)=JO(x)
By using analytic formulas for integrals over Bessel func-
tions' it is easily shown that
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and large z. For z~0, we use the behavior of the Bessel
function for small arguments (Ref. 12), Jc(x)=-1—x /4,
to obtain

F,(z, t}=F,(O, t)[1+x,air(t)z+ . ],
(27)

This result clearly shows the initial behavior of the Stokes
and anti-Stokes pulses. The Stokes pulse starts at the
seed value, and grows. The anti-Stokes pulse is initially
zero, and grows out of phase with the Stokes pulse. This
phase difference is a crucial part of gain suppression. It
leads to the decrease in the two-photon excitation rate.

As z ~ ce, JO~O and the Stokes and anti-Stokes pulses
approach limiting values for which the two fields are
equal in magnitude and have opposite phase. The two-
photon excitation rate is then zero. From Eq. (26) it is
clear that the total final energy in each pulse is a factor
[co&/(2&os )] greater than the energy in the initial Stokes
seed pulse. This is exactly the same behavior that is ob-
served in the steady-state case.

We have therefore found contrasting behavior in two
analytic solutions describing Stokes-anti-Stokes coupling
in the transient regime. For perfect phase matching,
bk =0, the seed Stokes pulse initially grows, but the
growth is cut off as the anti-Stokes pulse is generated. As
z~ on, both pulses approach a limiting form that is in-
dependent of z. For the opposite case that the anti-
Stokes wave vector does not couple to the Stokes, the
Stokes grows rapidly. %'e will illustrate these limiting
cases, and intermediate situations, with numerical exam-
ple in Sec. III B.

B. Stokes —anti-Stokes coupling

This section reports a series of calculations of the be-
havior of the Stokes and anti-Stokes pulses according to
Eqs. (11)—(13). [Recall that the equations actually solved
are the equivalent Eqs. (1) and (2).] We will consider
Gaussian pulses that are short compared to the relaxa-
tion times Tz of the medium, corresponding to the tran-
sient limit, although the numerical solutions nevertheless
include the elect of 6nite T2. %e first present the results
for specific values of the parameters chosen to correspond
to typical laboratory experiments. Then we present a
method for systematically representing the calculated be-
havior as a function of Lk, taking advantage of the be-
havior in the two limiting cases hk =0 and hk =Oc
known analytically. The result of this analysis is a nu-
merically determined scaling function that is the analog
of a similar function determined earlier by Bloembergen
in the steady-state limit.

%'e now present specific ca1culations illustrating the
eA'ect of the momentum mismatch Ak on the growth of
the Stokes and anti-Stokes waves. The Raman medium is
taken to be H2 at 10 amagat. For this example the pump
(coo) has a wavelength of 193 nm, and the Raman transi-
tion is between the 0 and 1 vibrational levels (4155
cm ' ). The initial pump and seed pulse envelopes
Fo(O, t) and F,(O, t) are proportional to exp[ (r/to} ]„—

The conversion eSciency to the nth frequency com-
ponent is

U„(z)

g U„(0)
(29)

The numerical calculations account for the energy left
behind the pulse in the form of excited molecules.
Neglecting this term, which is very small for the intensi-
ties considered here, the conversion eSciencies for each
wave correspond to the fraction of the total field energy
in that wave.

The first panel of Fig. 3 shows the results when the
anti-Stokes pulse is omitted from the calculation. The
growth of the Stokes pulse is rapid until pump depletion
occurs. The second panel shows the results for Stokes,
pump, and anti-Stokes waves with perfect phase match-
ing, b,k =0. This calculation illustrates the phenomenon
of gain suppression, which has been analyzed in the
steady-state limit by Bloembergen. We 6nd the same
qualitative behavior in the transient regime. The Stokes
pulse is initially amplified, and the anti-Stokes pulse is
generated. As the anti-Stokes pulse becomes larger, the
growth of the Stokes pulse is suppressed. Asymptotical-
ly, both approach the same limiting, constant value.

The remaining panels of Fig. 3 show the numerical re-
sults for three wave calculations (Stokes, pump, and anti-
Stokes) for successively larger values of b,k. As b,k in-
creases, the long term growth of the Stokes pulse occurs
more rapidly. For the largest values of hk, the anti-
Stokes pulse has little effect, and the behavior of the
Stokes pulse is the same as if the anti-Stokes wave were
completely neglected. This result confirms the assertion
in Sec. IIIA that the rapidly varying exponential term
exp[t (b,k)z) could be replaced by its average value, zero.

It is naturally of interest to try to predict the rate of
growth of the Stokes (or anti-Stokes) pulse for a
prescribed hk. We address this question by noting that
Carman's analytic solution for the two-wave case
(b.kazoo }, summarized in Sec. IIIA, gives the rate of
growth of the energy in the Stokes pulse in the extreme
transient limit ( T2 ~ oo ). The result is

U, (z)=U, (0)[IO(P,„(z))'—I,(P,„(z)) ], (30)

where Io and I, are modified Bessel functions and

with to=0 1.00 ns, corresponding to a full width at half
maximum (FWHM) of 0.118 ns. The pump peak intensi-
ty was 1 GW/cm, and the seed peak intensity was a fac-
tor of 10 smaller. Relaxation times of T2 ——0.6 ns and

T, =1.2 ns were used.
%e present our numerical results in terms of the con-

version e%ciency as a function of the distance propagated
through the medium. The energy in the pulse of frequen-
cy ~„ is

U„(z)= I iF„(z,r) i
dt .
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fmgg EO t t e (32)

From the properties of Bessel functions' it can be shown
that asx~oo

}2 I ( )2 exp(2x )

2~x'

and therefore

2 exp[(z/zo)'i ]
U i(z)=U )(0)—

(z/zo)

Zo

81TpCL )2')
~F,(r) ~'dr . (35}

I I T I i I t I l t l

-4

1 l 1 l 1 l l 1 I I 1 I l I l I I

I 1 I I I t I I t I l l

I I I i l l I 1

t

F
t / I I f t I t I

This result suggests that we could characterize the
growth of the Stokes pulse for an arbitrary b,k in terms of
a transient gain coefficient g (b,k), defined such that

U &(z}cc —exp[(g(hk)z)' ] .

Clearly, in the limit b, k =oo, g(b, k)=1/zo. Further-
more, Eq. (36) implies that ln[zU, (z)] should be a linear
function of z', with slope [g(hk)]' . We have found
that such plots of our numerical results are indeed ap-
proximately linear, permitting us to estimate the function
g(hk).

The ideal would be that g(0) =0, corresponding to the
notion thai the asymptotic behavior for perfect phase
matching (b.k =0) is zero gain. However, substituting

g =0 into Eq. (36) yields U, (z)-1/z, which is not
correct. [Eq. (26) predicts U, (z}~ constant as z~ oo.]
Fortunately, Eq. (36) does appear to be a reasonable rep-
resentation of our numerical results for rather small
values of hk, even though the actual limit does not
behave correctly. Our viewpoint is that Eq. (36) still pro-
vides a very useful approximation to the behavior of the
numerical calculations.

We have found that a useful way to represent the re-
sults of a wide variety of numerical calculations is to plot
g (b,k)/g ( oo ) as a function of b,k/g ( ao ). This "univer-
sal" curve is shown in Fig. 4. Because the quantities plot-
ted are dimensionless, the results obtained from specific
calculations may be scaled to a wide range of other values
of the parameters involved. For example, most of the re-
sults were obtained for a Stokes seed with the same shape
of the pump pulse, and 10 of the intensity. Similar re-
sults are obtained for seed intensities 10 or 10 ' of the

pump intensity. Similarly, a few calculations were tried
in which the (still Gaussian) seed pulse had a narrower
half-width than the pump, and was slightly displaced to
the leading or trailing edge of the pump pulse. In these
cases, the value of g ( oo ) must be explicity obtained from
a calculation including only the Stokes and the pump
pulse, because the analytic result g(ao )=1/zo only ap-
plies for a Stokes pulse exactly proportional to the pump
pulse.

The behavior represented in Fig. 4 presents a striking
parallel to the results obtained in the steady-state limit by
Bloembergen. Although the qualitative similarity of the

-6

I 1 I l 1 1 1 l l 1 l l I l I 1 I 1

1.0

I 1 i s ~ ~

I l l 1 1 1 1 I

0 10 20 0

OlSTANCE PROPAGATED (cm)

20

FIG. 3. The results of a series of calculations of the conver-
sion e%ciency q„(z) for di8'erent values of the momentum
mismatch h, k. In each panel, the Stokes seed has the initial
value q l(0)=10;the pump has qo(0) = 1, and the anti-Stokes
has pl(0) =0.

0.01 0.03

Ak/g (~)

FIG. 4. Numerically determined behavior of the transient

gain coeScient g ( hk) describing the large-z behavior of calcula-
tions of the type presented in Fig. 3:
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steady-state and transient solutions has been noticed, it is
remarkable that the analog appears to be so complete.

C. Oytimixation of anti-Stokes conversion

This section describes a series of calculations designed
to maximize the generation of light at the first anti-Stokes
frequency. As in Sec. III 8, the initial conditions will be
a pump pulse at frequency coo and a copropagating seed
pulse at the Stokes frequency ~

&

——co —~z. The relative
strength of the seed Stokes pulse will be varied to try to
maximize the amount of energy in the generated anti-
Stokes pulse. &e will start with much stronger seed
pulses than in Sec. III 8, and we will follow their develop-
ment through the stages of growth and pump depletion.
For such calculations it appears that less use can be made
of general scaling functions. Therefore, we report the re-
sults of several numerical calculations for speci6c values
of the initial pulse characteristics.

We first present a series of calculations in which per-
fect phase matching is assumed (b,k =0), and the energy
of the Stokes seed is varied. The pump (248 nm) and seed
(276 nm) pulses are both Gaussian with FWHM of 0.589
ns (to =0.5 ns). The density of Hz was 5 amagat, and the
relaxation times were T& ——1.0 ns and T, =2.4 ns. The
pump peak intensity is held constant at 0.2 GW/cm, and
the seed peak intensity is A, times this value. (The ratio of
field envelopes is k'~. ) The calculation included three
fields (pump, Stokes, and anti-Stokes), and the value of A,

was varied from 10 to 10 '. Figure 5 shows that the
maximum conversion efficiency occurs at A. = 1.5%. The
behavior of the conversion efficiency as a function of I,
follows a simple curve related to the analytic results for
the case of negligible pump depletion. This curve is also
shown on the 6gure, and will be discussed in more detail
below.

We also performed a series of calculations in which the
seed pulse has 1.5% of the energy of the pump pulse, and
in which the momentum mismatch hk is varied. Other
characteristics of the pulses were the same as for the cal-
culation previously described. As shown in Pig. 6, the
maximum conversion eSciency occurs for perfect phase
matching, and the eSciency falls o6' rapidly as hk in-
creases.

The results of Fig. 6 present an interesting contrast
with those of Sec. III B. For weak seed pulses ( —10 ),
perfect phase matching led to the minimum rate of
growth of the Stokes and anti-Stokes pulses. For strong
seed pulses ( —1 —2%), perfect phase matching leads to
the maximum conversion of energy to the anti-Stokes
wave. This behavior is less paradoxical than one might
think. For the former case, pump depletion is not a fac-
tor, and the quantity considered is the rate of growth of
the Stokes and anti-Stokes energy for large distances.
Note, however, that for hk =0 Eqs. (26) show that the
level at which the Stokes and anti-Stokes pulse energies
become constant corresponds to an amplification of the
initial Stokes pulse by a factor of [co, /(2cos )] . This fac-
tor is 28.6 for an KrF laser (wavelength of 248 nm) and
the 0-1 vibrational transition in H2. Such an
arnplification of a 1.5% seed is not possible without sub-
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FIG. 5. Behavior of the anti-Stokes conversion eSciency as a
function of the ratio of the peak seed intensity to peak pump in-

tensity. The solid line is the result of the numerical calculations
described in Sec. III C, and the dashed line is the result expected
from the saturation value obtained from the analytic solutions
obtained in Sec. III A.
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FIG. 6. Anti-Stokes conversion eSciency as a function of the
phase mismatch b,k, for the optimum seed strength determined
from the maximum of the solid curve in Fig. 5.

stantial pump depletion. The generation of anti-Stokes
light appears to be most eftective when the initial waves
are perfectly phase matched and an initial rapid genera-
tion and growth of the anti-Stokes wave occurs. Pump
depletion then occurs before the asymptotic limit corre-
sponding to our previous discussion of gain suppression
comes into play. The condition hk =0 is also consistent
with Eqs. (11)and (17), which leads one to expect that the
derivative of the anti-Stokes pulse will be largest, on aver-
age, when there are no oscillations from the exponential
factor.

The amplification factor calculated analytically can be
used to obtain the conversion efficiency for weak seed
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pulses when Ak =0. For the Gaussian pulses considered,
with equal F%HM for pump and seed, the peak intensity
ratio 1, also gives the ratio of initial energies. For k &~1,
Eqs. (26) then show that the final energy of the Stokes
pulse will be a factor of

g(k) =A, [co, j(2arii )]

times larger than the initial energy. If pump depletion is
negligible, this value will also give the conversion
efBciency. %e have plotted this estimate of the conver-
sion ef6ciency in Fig. 5. For large values of A, , the formu-
la breaks down because of the large amount of energy lost
from the pump and also contained in the Stokes wave.
Therefore, we truncated the function at the value of A, for
which the g(A, )=—,', roughly corresponding to an equal

division of energy between Stokes, pump, and anti-Stokes
waves. This simple approach coincides remarkably well
with the value of A, that maximizes the conversion
efticiency in a more detailed calculation.

We note two further points about this simple estimated
j(A, ). Equation (37) gives a result somewhat larger than
the calculations even for cases when pump depletion is
negligible (k, -10 ). This occurs because the oscilla-
tions due to the Bessel functions in Eq. (26) have not fully

damped out. %e ended the numerical calculations after
one meter of propagation. Second, the conversion
efFiciency predicted by the numerical calculations falls o6'

as A, increases past 1.5%. This regime, of course, is com-
pletely beyond the range of the simple formula (3/).
However, the behavior can be qualitatively understood by
noting that for larger seeds, pump depletion mill cut oft
ampli6cation of Stokes and anti-Stokes faster. Since the
anti-Stokes is initially zero and must be generated, it at-
tains a smaller final value in those cases.

The results shown in Fig. 6 have important experimen-
tal implications. The ideal situation of perfect matching,
hk =0, for the pump, Stokes, and anti-Stokes wave vec-
tors corresponds to the vector coupling diagram in Fig. 2.
This situation can be achieved by crossing the pump
beam and Stokes seed beam at the very small angle 8
A typical value of 8

&
would be a few rmlliradians.

Changing the crossing angle would increase the minimum
possible value of hk. A simple calculation of the
minimum possible Ak for each crossing angle of the ini-
tial laser beams leads to the conclusion that this crossing
angle must be very accurately achieved. %e note, howev-
er, that such an estimate might be modified by a more de-
tailed theory that took into account the finite diameter of
the beam and possible focusing erat'ects of the beams.

The calculated conversion e%ciencies as a function of
the distance propagated for three values of hk are shown
in the next series of diagrams. Figures 7 and 8 corre-
spond to the point for Ak =0, hk =0.2 cm ', and
Ak =0.4 cm iri Fig. 6. For Fig. 7, we have also includ-
ed second-order waves (n = —2 and n =2). Perfect
phase matching for waves n = —1, 0, and 1 was assumed,
and the wave vectors for the higher-order waves n = —2
and n =2 were determined according to the prescription
in Sec. II. The other parameters were the same as for the
calculation described in Fig. 5. Slightly less frequency
conversion to the anti-Stokes wave is observed. For the

I
n =+1

I I

20 40 60 So

DISTANCE PROPAGATED {cm)

100

larger values of hk used for Fig. 8, the greatly reduced
growth of the anti-Stokes waves in the absence of phase
matching is clearly exhibited. These calculations includ-
ed only the Stokes, pump, and anti-Stokes waves.

IU. CONCLUDING REMARKS

%e have investigated the interaction of diferent fre-
quency components in a Raman medium. Analytic and

h,k = 0.2 cm-"

0
O

b,k= 0.4cm ~

40 60

DISTANCE PROPAGATED (cm)

I

80 100

FIG. 8. Conversion efFiciency as a function of distance pro-
pagated for calculations at the optimum seed strength but with
phase mismatch Ak between waves.

FIG. 7. Conversion eSciency as a function of distance pro-

pagated for a calculation at the optimum seed strength and per-

fect phase matching. The integers label the order of the corre-

sponding waves: 0 is pump, —1 is Stokes, + 1 is anti-Stokes,

etc. Note the e6'ect of second-order Stokes and anti-Stokes

waves.
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numerical solutions of the one-dimensiona1 Maxwe11-
Bloch equations have been obtained under a variety of
circumstances. The emphasis of the work has been to ex-
amine the coupling of Stokes, pump, and anti-Stokes
pulses as a function of their relative phase matching.

A major result has been the discovery of an analytic
solution describing Stokes —anti-Stokes gain suppression
in the transient case. %e also determined, numerically, a
scaling function that predicts the transient gain
coeScient for the Stokes gain as a function of the
momentum mismatch hk. The momentum mismatch is
determined by the relative angles of the wave vectors
describing the propagation of the three pulses. In an ex-
periment Ak can be related to the crossing angle of the
pump and seed beams. We will investigate in future work
the angular intensity patterns of Stokes and anti-Stokes
radiation that would be expected.

We also attempted to find conditions that led to the

eScient generation of anti-Stokes radiation. For the
cases considered, we observed as much as 40% conver-
sion eSciency to the anti-Stokes. Precise control of the
crossing angles between the pump beam and the seed
Stokes beam would be required to realize this. However,
our estimates are based on solutions to a one-dimensional
wave equation. Recent work by Ritchie has shown a
reduction of the conversion eSciency when transverse
terms in the wave equation are considered. Further
theoretical and experimental investigation of anti-Stokes
generation is needed.
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