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The trapped regime of a free-electron laser is considered in terms of the relativistic quantum-

mechanical Klein-Gordon equation in the presence of the undulator and the laser field. The elec-

tron which is trapped in the wells of the ponderomotive potential occupies discrete equidistant lev-

els. Transitions between these quantum-mechanical levels are shown to lead to the well-known clas-

sical sidebands. As a new feature in spontaneous emission we obtain a low frequency 5~ emitted

slightly off axis, where 5e denotes the shift between the first sideband and the small-signal laser fre-

quency. The low frequency is again classical and constitutes a sideband of the zeroth harmonic
co=0. Under current experimental conditions this low-frequency spontaneous emission is at the

borderline of detectability.

I. INTRODUCTION

The appearance of sidebands to the central signal fre-
quency is considered a major obstacle for high-power
operation of a free-electron laser (FEL}. The sidebands
are generated by electrons oscillating in the wells of the
ponderomotive potential in which they are trapped at
high laser intensity. They were first predicted a number
of years ago, ' then elaborated on and corroborated in nu-
merical simulations, and have recently been observed
in the Compton regime as well as in the Raman regime.
A great deal of progress has been made towards an
analytical understanding of their properties.

All previous work on the sidebands followed one of
several classical approaches. In this paper we will take
up again the quantum-mechanical point of view that was
adopted in Madey's first derivation of the gain. This is
not because there is much that is quantum mechanical
about them, although this may come as a surprise: after
all, our starting point will be the quantized motion of an
electron trapped in one of the wells of the periodic pon-
deromotive potential. The periodic potential gives rise to
allowed and forbidden energy bands as in a solid. Near
the bottom of the wells the overlap of wave functions lo-
calized at adjacent wells is so small that the allowed
bands can for most practical purposes just be considered
as discrete levels. Moreover, the potential not too far
from its bottom is close to a harmonic oscillator, so that
the levels are equidistant to an excellent approximation.
One might then expect that e1ectron transitions between
these quantum levels should give rise to quantum-
mechanical phenomena at least as long as one does not
average over some initial level distribution. It will be
amusing to see that this expectation is wrong. Rather,
the transitions will generate the well-known and com-
pletely classical sideband instability even if it is assumed
that the electron is initially in some definite level. %'e

should mention that the assumption underlying the
description in terms of energy bands, viz. , an infinite ex-
tent of the periodic ponderomotive potential, is very well
justified in practice since its period in space as well as
time is essentially the period of the optIea/ field. In com-
parison to this the length of the undulator is virtually
infinite.

%e shall start by brieAy reviewing Madey's first deriva-
tion of the gain Let us first consider the electron trav-
eling through the undulator in the absence of any laser
field. The electron emits spontaneous radiation or,
equivalently, classical bremsstrahlung, predominantly
into a very narrow forward cone. These photons„once
there, stimulate both emission of additional photons into
the same mode and absorption of photons from this
mode. The rates for emission and absorption are almost
equal except that an electron with specified energy emits
at slightly lower frequencies than it absorbs, because of
the quantum-mechanical recoil. Gain is then proportion-
al to the difference between the rates for emission and ab-
sorption. This difference is proportional to Planck s con-
stant A' (since the recoil is} thus canceling the A' in-
herent in the rate of spontaneous emission, so that the re-
sulting gain is classical. This picture provides all the
basic results of the small-signal regime, see e.g., Ref. 11.
In this paper, we shall extend it beyond the small-signal
regime.

As the laser field grows, the physical picture just out-
lined, viz. , spontaneous emission due to the undulator
field is stimulated by the photons already emitted, is no
1onger justified. Rather„as a next step, one now has to
consider spontaneous emission due to the combined un-
dulator and laser field. %'hile the spontaneous spectrum
in the small-signal regime consists (for circular polariza-
tion and on axis) just of the laser frequency, it now con-
tains besides this original laser frequency additional
upper and lower sidebands which are equally spaced in
this case, where the electron is deeply trapped in the
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wells of the ponderomotive potential. These are exactly
the sidebands well known from the various classical ap-
proaches. ' They originate from oscillations of the
trapped electron inside its confining potential mell. In the
quantum-mechanical description, they stem from the
electron making transitions between the equidistant levels
of the harmonic oscillator by which the lower part of the
ponderomotive potential is well approximated. Gain can
be computed as before: As soon as the sideband modes
are populated with photons further emission into and ab-
sorption from these modes is stimulated, and gain can be
inferred from the difference. Again, as those sidebands
which have positive gain grow and reach a certain inten-
sity, they will modify spontaneous emission and generate
sidebands to the sidebands, etc., until finally a spectrum
without any discernable regular pattern evolves. This has
been observed in computer simulations of the classical
theory.

Not surprisingly„ the higher stages of this hierarchy of
sideband generation become intractable with analytical
methods. In this paper we shall concentrate on the first
stage beyond the small-signal regime, i.e., the generation
of sidebands due to the original laser field after it has
grown strong enough to trap the electrons. In particular,
we shall concentrate on what we call "sidebands to the
zeroth harmonic, " a feature of the spectrum which, al-
though entirely classical, seems to have escaped attention
in the classical description. By this we mean the follow-
ing: the sidebands known from previous work are side-
bands to the left and right of the original (i.e., essentially
the small-signal) laser frequency. However, it turns out
that the zeroth harmonic co=0 develops sidebands, too.
These latter ones originate from purely longitudinal oscil-
lations of the electron in the ponderornotive potential.
Hence, they are only emitted ofF axis, although, due to
the highly relativistic speed of the electron, very close to
the forward direction. Formally, they owe their existence
to the p A term in the interaction Lagrangian (which
does not contribute on the axis). In contrast, the ordi-
nary sidebands come from longitudinal oscillations super-
irnposed on transverse ones and, formally, from the A
term.

The forrnal framework for the program outlined above
is provided by the solutions of the Klein-Gordon equa-
tion in the presence of the undulator and the laser field,
both being treated as prescribed classical fields. Neglect-
ing the electron s spin is an excellent approximation, as
spin-dependent corrections are typically of the order of
(fico/mc y) which is of the order of 10 ' for typical
FEL's. ' We shall here only consider circular polariza-
tion. In the mere presence of the undulator field the solu-
tions of the Klein-Gordon equation are on axis just ex-
ponentials. %'ith the additional presence of the laser field
the solutions are Mathieu functions. Analytic approxi-
mations for these functions are available for all regimes
of their parameters. ' These would, in principle, allow
one to follow the evolution of the sidebands from very
low intensities of the laser field (where they are absent) up
to the deeply trapped regime. However, except for these
two limiting cases, the approximations are unwieldy and
one might be better served with numerical methods. In

this paper, we will be content with the limiting case of
the deeply trapped regime where the Mathieu functions
can be approximated by Hermite polynomials (i.e.„

harmonic-oscillator functions).
In Sec. II we discuss the Klein-Gordon equation of the

present problem and its solution in terms of Mathieu
functions. %'e also present the analytical approximations
which we will use in order to deal with them. In Sec. III
we consider the general matrix element which describes
spontaneous emission due to the combined undulator and
laser field. %e extract the well-known sideband spectrum
and, in addition, the above-mentioned sidebands to the
zeroth harmonic. In Sec. IV we evaluate spontaneous
emission of this zeroth-order sideband. Calculational de-
tails are given in the Appendix. %'e do not, actually, cal-
culate the gain of the various sidebands, but are content
with discussing qualitatively, in Sec. V, some points in
which the calculation differs from the corresponding one
in the small-signal regime. Finally, we summarize our
conclusions.

II. %'AVK FUNCTIONS IN THK PRESENCE
OF THK UNDULATOR AND THK LASER FIELD

In the semiclassical approach to be used we start from
the Klein-Gordon equation

2'2
1 . 8 . e

i ft —e A p
—— i ftV + —A —m, c $ =0 .2 2

c 2 C

tt =tot —(to+Cop)z/c, U =(c+opt)ot coz/c

and the conjugate rnomenta

(4)

coE —(67+top)pc (co+cop)E —cope
Pu= p, ,

= (&)
ftcop(top+ 2to )

' "
fttop(cop+ 2co )

replacing the electron's total energy F. and its axial
canonical momentum p. The variable U plays the role of
time, because the planes U=const are spacelike. The in-
troduction of the variables (4) and (5) is essentially
equivalent to the transition to the cornoving Bambini-
Renieri frame, ' where the resonant electron is at rest.
This becomes clear if one notices that p„=O corresponds
to

pc
E AP+Q)0

The external field is the sum of the static undulator field

Aii =aa [x cos(copz/c )+y sin(topz/c)],

with period A,p
——2irc /top and the laser field

AL ——aL [x costo(t —z /c )+y sinco(t —z/c )],
with wavelength A, =2irc/co propagating in the positive z
direction, and we consider, for simplicity, the case of cir-
cular polarization. In Eq. (1), then, A= AL + A& and
30=0. It is convenient to introduce the dimensionless
variables'
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which is the velocity of the resonant electron.
Equivalently, one can see that du /dt =0 if

The variables U and p„are then chosen so that
(tE —zp )/Pi=up, —up„. The axial canonical momentum

p is understood in the presence of the undulator field so
that

cp =[E —me c —(cup ) ]

In terms of the variables (4) the Klein-Gordon equation
(1) assumes the form

1 c) c) 2 2 le
coo(coo+2co) — +Vr — A Vr

C2 Bu' c)u'
r 1 2

(QL +agr+ 2QL Qgrcosu )—e 2

$2~2

Here the gradient VT is with respect to the two trans-
verse variables xT ——(x,y), and the corresponding trans-
verse canonical momentum will be denoted by
pz ——(p„,p~ ). We will be interested in the case where the
electron initially propagates on axis, pT ——0, then emits a
photon in an arbitrary direction so that the final electron
momentum p'T is not necessarily on axis. However, be-
cause of momentum conservation p'T+Rltr =pr =0 with

the wave vector of the emitted photon. Hence
I Vr I

-h '
I
p'r

I

=
I

it'r
I

and we may neglect the gra-
dient terms even for the final electron, since we consider
intense fields (eau /m, c -1, eaL/m, c —10 ) so that
the gradient terms are comparatively small. Under these
conditions the interaction term in Eq. (7) depends only on
the variable u (the term A VT would depend on U, too) so
that the momentum p, is conserved.

The solution of Eq. (7) is now

P=(2p„LIL„) '~ e " me„(u/2, h2), (8)

where me, is a solution of Mathieu's equation

+A, —2h cos(2$) me„(g, h )=0 .

%'e wiB follow the conventions of Ref. 14. The parame-
ters A, and h 2 are given by

m2, e'
k=4 p, —— (10)

iri coo(coo+2co)

m ~c =m~c +e (Qgr+al ) p

4e a ~QL
2

h
fl coo(coo+ 2co )

%'e notice for later use that k may also be expressed in
terms of the momentum component p„which is propor-
tional to the detuning from resonance:

e 0Lk=4 p„—
R'co, (co,+ 2co )

Elle/ 569 c

fkoo(coo+ 2co )

hco =co —(co+coo)P0,

(13)

(14)

(15)

where Po ——cp/E is the longitudinal velocity of the elec-
tron in the undulator.

The Mathieu functions here take the place of the Jaco-
bian elliptic functions which appear in the classical for-
mulation of the problem. Analytical approximations for
the Mathieu functions are available throughout the entire
range of the parameters A. and h .'3 In general, these
may be quite complicated However, here we will be
satisfied with considering deeply trapped electrons. In
this case, which corresponds to the limit h ~oc, the
Mathieu functions essentially become harmonic-oscillator
functions. The explicit expressions will be given below.
%e first notice that the Mathieu functions have the
Floquet-Bloch expansion

me, ((,h )=e"~ g cz„(h )ei'"~

[(2m+1) +3(2m+1)]+0(m /h ), (17)

with m =[
I
v

I ] the largest integer smaller than
I

v I.
The equidistant harmonic-oscillator levels arise for
m && 1 in a linear expansion of Eq. (17) about a particular
value of m [corresponding via Eqs. (10) and (5) to a par-
ticular electron energy or momentum]. The entire situa-
tion is illustrated in Fig. 1 which depicts the so-called sta-
bility chart. An example of the corresponding levels in
the ponderomotive potential is given in Fig. 2. An esti-
mate of the value of m that corresponds to a trapped
electron is obtained as follows: The quantity eaL /m, c is
rather small, for example, for the Los Alamos experi-
ments it is of the order of 10 . In view of this, Eq. (13)
implies that k, ~ 0 if b coT-1 (T being the undulator tran-
sit time). In any event, we will have that

I
A,

I
«2h .

Equation (17) then says that m ~ h /2 in order to compen-
sate the large negative term of —2A. on the right-hand
side. On the other hand, we will always have that

I p„ I «p, . Hence m -h/2 is a suSciently accurate es-
timate to be used later on.

Here the characteristic index v=v(k, , h ) is a function of
k and h and may be real or complex. The exponentially
growing behavior of the solutions with complex v is unac-
ceptable, and they have to be discarded. In the deeply
trapped regime, where h ~ ao, this leaves us with practi-
cally discrete levels, viz. , the harmonic-oscillator levels
which originate from the parabolic approximation to the
ponderomotive potential [the cosu term in Eq. (7)]. For
real v and h ~ oo, the connection between A, , h and v is
given by 1 6y 17

A, =A,„(h )

= —2h +2(2m + 1)h ——,
' [(2m + 1)2+ 1]
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Again, for Ii ~ oo, the expansion coefFicients in Eq. (16)
may be approximated by' '

' I/O

LT /2 L„ /2
i I d xT I du iI}(u,u, xr)*

lr

c" (h )—= ( —1)" (2m I) —1/2 —(2r+v) /4h
X — $(u, v, xT)=1 . (19)

BU BU

(18)

In order to verify this, the relation

[cz„(h )] =1

where again m = [ ~

v
~ ] and the H are Hermite polyno-

mials. Equations (16},(17), and (18}allow us to deal with
the Mathieu functions in the regime of interest. %e final-

ly notice that the square root in Eq. (8) serves to normal-
ize the wave function i})(u, U, xr ) to unity for constant
"time" U,

is needed.

III. GENERAL DISCUSSION OF THK MATRIX
ELEMENT

%e now proceed to evaluate the matrix element

' 1/2
2p'c

A'0 V
dz I df d xT Qf(Q, v, xT) if (V —V) — ( AL + Aiv}'e fi(Q, U, xr) e

C
(20)

which describes the spontaneous emission of a quantized
photon with frequency 0, wave vector K, and polariza-
tion e by an electron with the wave function iti; (specified
by the momenta p„,pT ——0, and the characteristic index v)
so that the electron in the final state has the wave func-
tion Pf (specified by p„', pT, and v'). The two terms on
the right-hand side (rhs) of Eq. (20) originate from the

p A term and the A term in the interaction Hamiltoni-
an of scalar quantum electrodynamics (see, e.g., Ref. 18;
for the application of scalar @ED to the FEL, see Ref.
19). Before getting into the detailed evaluation of the ma-
trix element let us first evaluate the emitted frequencies 0
for emission on axis in the positive z direction. The line
centers are obtained by integrating over all space and
time. This yields two 5 functions for the u and U com-
ponents implying

p,
' —p„, +[0—(a+P)co]/(coo+2') )=0, (21)

,'(v v')+—p+—[& (rz+P)co —Pcoo]/(ai—0+2~)=0 . (22)

20

FIG. 1. The stability chart of the Mathieu functions. The
I k, h '3 plane is divided into stable and unstable regions accord-
ing to whether v=v(i, ,h ) is real or not. The stable areas are
hatched. For h &~A,, stable behavior predominates, for h ~gA,
the stable regions have shrunk into virtually discrete levels in
agreement with Eq. (17). The straight line A, =2h is the
division line between the predominantly stable and unstable
part of the (A,,h2) plane. It corresponds to the maxima of the
ponderomotive potential (cf. Fig. 2).

II=(a+P)co —(a)0+ 2')(p„' —p„. } . (23)

The possible values of p„' are related to the index m'
characterizing the final level of the electron. Since p,, ~~ 1

and m ~~ 1, we have to an excellent approximation

Here p is any integer, and for a photon emitted via the
coupling term e V in Eq. (20) one has to take u=P=O;
for emission via the term e AI, P=O and a=i or
a= —1; for emission via the e. A~ term &x=0 and
P=+1 or P= —1.

The initial state of the electron is specified by given
values of p, and v. This implies that the electron is in the
mth band (or rather level) with m =[

~

v
~
]. From Eq.

(21) the emitted frequency is
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FIG. 2. The stable bands in the ponderomotive potential —2h 'cos(2() are represented by the hatched areas. The figure illustrates
the transition from virtually discrete levels near the bottom of the potential to an (almost) continuum for k &&2h . The figure is for
h'=30. For the large values of h ', which are of interest in this paper, the sequence of stable and unstable bands is much closer.

p„, —p„= (p„—p„)= (A,
' —A. )

1,2 p l

1—=—(4Ii —m )(m' —m ),
Sp„

where Eqs. (10) and (17) have been used and we only kept
the first three terms on the rhs of Eq. (17). The emitted
frequency then is

(ci)o+2ei)(4h —m )
0=(a+p)a) — -(m' —m ) .

Sp,,

Here the quantity m' —m can have, in principle, arbi-
trary positive or negative integer values. %'e shall see
below, however, that only the even integer values
m' —m=2p actually play a role. In any event, for
a+p=1, which is the case for emission due to the A
term (the case a+p= —1 leads to a negative frequency in
emission and, consequently, does not contribute to emis-
sion; it does contribute to absorption), Eq. (25) specifies a
sequence of equally spaced sidebands on either side of the
original laser frequency co. Although in the present pic-
ture the sidebands are generated by electron transitions
between the discrete levels of a quantized harmonic oscil-
lator, they are identical with the well-known sidebands

obtained from the classical analysis. In fact, the expres-
sion (25) is independent of fi, since

h /p, =2[e aa aL /(m, c )]' (26)

is independent.
For emission due to the p A term we have a+p=0,

and there are sidebands to the "zeroth harmonic*" co=0.
Although these are of classical origin as well, they have
apparently not been noticed in the classical analysis.
Typically, h /p, = 10 —10 ', hence this constitutes
emission into a frequency range very difTerent from the
laser frequency co. %'e notice, that the p. A term does
not produce emission on axis since p' e= —AK @=0 for
K=Kz. Hence, this low frequency radiation is only
emitted o6' axis. In the rest of this paper, we wi11 be
mainly concerned with these "zeroth-order" sidebands.
First, however, we still have to discuss the possible values
of the integer m' which determines the level of the final
electron.

Equation (22) fixes the value of v' for the final electron.
With the frequency 0 substituted from Eq. (25) it now
reads

4h —m phoo
2(v —v')+p — (m' —m )— =0.

Sp„ Q)0+ 26)
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O=(a+P)co —2p co (p=0, +1,+2, ),h

PU
(28)

where a+P equals zero or unity. This is the standard re-
sult for the sideband frequencies' except that the possi-
bility that a =P=0 apparently went unnoticed.

In general, we win have ~ ~~coo, p„, g~1, and m =h /2, so
that the last two terms in Eq. (27) are small corrections.
Let us first consider the case where m'=m, i.e., no side-
bands are emitted and the electron remains in its original
level. Recalling that m = [ ~

v
~ ] we infer that

0 & v —v' & 1. Equation (27) then has the consequence
that p=O and v'=v+0(coo/ro) for P=1, or v'=v for
P =0. Next consider m

' =m —1 corresponding to the
lowest possible upper sideband and the electron dropping
by one level. In this case O~v —v'g2. One can readily
convince oneself that Eq. (27) now requires that p= —1

and v —v'=2 —O(h/p„). As long as h/p„, «1 this can
only be satisfied if the initial state of the electron is such
that the value of v is very close to m + 1. If the electrons
are equally distributed over all available states, only very
few electrons will satisfy this condition. %e therefore
conclude that the sideband corresponding to m '= m —1,
although present in principle, will be strongly suppressed.
Notice, however, that for increasing values of h/p„ this
suppression becomes less effective. The same reasoning
applies for the lowest possible lower sideband
(m'=m +1) and, in fact, whenever m' and m differ by an

odd integer. In contrast, for m ' =m —2 we have
1 & v —v' & 3 and Eq. (27) yields p = —1 and
v —v' =2 —0 (p,

' ). This latter condition is readily
satisfied for almost all electron levels. Again, the same
argument applies whenever m' and m differ by an even
integer. The preceding discussion is illustrated in Fig. 3.
It can be summarized by stating that sidebands will be
observed corresponding to m ' —m =2p with the frequen-
cies

(m+ I}st band

m th band

(rn- l )st band

FIG. 3. This is, in principle, an enlargement of a region of
Fig. 1 where h-'&&A. so that the stable bands are practically
discrete levels. The figure is not to scale, i.e., the extent of the
bands is strongly exaggerated so as to show that the bands actu-
ally consist of levels characterized by a given value of v. In the
mth band, v varies from a lower value of m up to m +1. [We
here ignore mathematical subtleties such as whether me corre-
sponds to v=m in the (m —1)th band or v=m in the mth band.
For these questions which are irrelevant for the present paper
we refer to the literature. ] In view of Eq. (27), transitions such
that m'= m —1 (implying 0& v —v' &..2) are only possible if the
initial state of the electron is very near the top of a band. No
such restrictions apply for transitions such that m '= m —2.

IV. EMISSION OF ZEROTH-ORDER SIDEBANDS

%e now turn to the evaluation of the matrix element
(17) for emission of the zeroth-order sidebands. As men-
tioned before, these are only emitted o8'axis. They origi-
nate from the term proportional to e.(V —V'), so from
now on we shall concentrate on this term. The evalua-
tion is rather straightforward. Hence we just give the re-
sult and relegate some calculational details to the Appen-
dix. %e are only interested in the total rate of emission
into a given sideband, not in the line shape [this would
have the usual (sinx /x ) form]. Hence we may integrate
in Eq. (20) over all space and time. We also sum over the
final states of the electron and the energy and polariza-
tion of the emitted photon within the considered side-
band. The differential rate of emission of the sideband
numbered by p into the solid angle element d QK per unit
"time" L„ then is

2e n'sin'a

i p i [ci)o(~0+2'))] (v' —v —2p)

X[Jz~((m/h)' (v' —~ —2p))] dQK, (29)

and the now angular dependent frequency is

~08=——2p 2
CO

pt; ci)o+ —,tV QP

The exact expression is given in Eq. (A7). For small an-
gles 8«1, the argument of the Bessel functions is [cf.
Eqs. (A6) and (AS)]

] /2
Q?o —

2
4 kP

( v' —v —2p) = —2p
Pt ~o+ —,~ ~1 2
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(ceo——,'8 co) ~

)&(2cocoo) sin 8 dQK,
(c00+ —,'8'c0) i'+ (32)

where p stands for
~ p ~. In view of the factor of

(h/p„)4e+2 the emission of zeroth-order sidebands with

p ~ 1 quickly becomes insignificant. There is no emission
of any sidebands at 8=0 and 80= (2aio/ai)'~ . For angles
8&80 the emitted frequency decreases rapidly. There-
fore, a reasonable quantity to calculate is the nunber of
photons per electron and time L„emitted into the cone
8 ~ 0o. This is, for p = —1,

'2- 6 . 1/2 '

f K8 Nl
dR

e=0 215c Ii p„clio
83ln2—

(33)

The transit tine I.„ for an electron to travel through the
undulator follows from the definition (4) of the variable u,

L„=(CO+ c00)T Cl)poT =2c—00T =26)On Ao/c =41Tn, (34)

where T is the passage time (real time) through the undu-
lator, po~ 1 —1/2yo the axial velocity of the electron,
and n the number of undulator periods. The number of
photons of the lowest zeroth-order sidebands (p= —1)
emitted into the cone 0~80 by one electron traveling
through the undulator finally is

8 P8X =4m ny

The quantity h /p, decides about the order of magnitude
of this expression. It can be estimated from Eq. (26) in
terms of the undulator parameter eaii, /m, c and the cor-
responding quantity eaL/m, c for the laser field. Alter-
natively, with the help of Eq. (28} it may be expressed in
terms of the frequency difterence between the ordinary
laser frequency and the first sideband for 8=0,

1 6co 5') =Q(p = 1, 8 =0)—co .
2 co

The number X, per electron is quite small. For exam-

ple, parameters typical of the Los Alarnos experiments
are n =37, yo=34, and Sco/co-0. 03 for a laser intensity
of 65 M%'. This leads to %&

——1.5&10 ' . During one
macropulse, which contains 2000 micropulses each 36 ps
1ong with a peak current of 40 A, some 2&10' elec-
trons pass through the undu1ator. Hence we can expect
about a dozen of the low-energy photons to be emitted
dur ing each macropulse.

Since m -h/2 and h g~p„ the Bessel function may be
approximated by the leading term of its power-series ex-
pansion so that

2p 4p+ 2
P?l

P 8~/A jg p

V. REMARKS ON THE GAIN
OF THE SIDEBANDS

The computation of the gain of the sidebands is rather
straightforward and follows the outline given in the In-
troduction. The gain of the zeroth-order sideband is of
little interest since owing to its low frequency it mill nor-
mally su@'er comparatively high losses at the mirrors
(which are chosen to yield high refiection for the operat-
ing mode) and since, moreover, it is not strictly emitted
on axis. The gains of the normal sidebands have recently
been evaluated in terms of Jacobi elliptic functions
which take the place of the Mathieu functions in a classi-
cal description. These results are largely analytical, and
we would have little to add to them. %'e therefore skip
the actual evaluation of the gain and will be content with
just a few remarks.

If the gain is to be evaluated as the difference between
the rates of emission and absorption, one is tempted in
analogy with the procedure in the small-signal case first
to identify the quantum recoil. As it turns out, no recoil
becomes visible, i.e, an electron, which occupies a given
level in the ponderomotive potential well, emits and ab-
sorbs exactly the same frequency, in contrast to the
small-signal regime. At second thought, this is not
surprising, since unlike the free electron the bound elec-
tron cannot freely change its momentum but is restricted
to the virtually discrete levels of the periodic ponderomo-
tive potential. It turns out, however, that the rates of
emission and absorption which are now centered at the
same frequency are not equal so that a nonzero gain re-
sults as in the small-signal regime. Several qualitative
features of the gain then emerge in agreement with the
classical theory of Ref. 9: (a) For the electron in a
specified initial level, gain as a function of frequency is
strictly antisymmetric about the original input laser fre-
quency; (b) in particular, the gain at the input frequency
vanishes; (c) gain is predominantly positive on the low-
frequency side of the input frequency; (d) the one-electron
gain for fixed electron energy (i.e., for a given level) can
be written as a derivative with respect to the electron en-
ergy. The gain due to an electron beam with a certain en-

ergy distribution is then (after an integration by parts}
proportional to the derivative of this distribution with
respect to energy.

In previous work the gain in the strong-field regime
was calculated starting from the same Klein-Gordon
equation (1), in the presence of the undulator field (2) and
the laser field (3).' ' ' The presence of sidebands had not
been noticed then, although they were implicit in the ap-
proach. A nonzero gain had been obtained in these ear-
lier papers. The question arises of how this is compatible
with the result of this paper that the gain at the input fre-
quency vanishes. The answer lies in the observation that
in Refs. 14 and 21 the energy loss of the electron was ac-
tually calculated and gain was inferred via energy conser-
vation assuming the presence of just the input laser mode.
If this is taken into account, the two calculations are
compatible, i.e., the energy loss of the electron is due to
the sidebands rather than the central frequency.
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VI. CANC'. USIONS

%'e have extended Madey's first quantum-mechanical
treatment of the free-electron laser, which is based on the
competition between stimulated emission and absorption
as derived from spontaneous emission, into the high-
intensity trapped regime. The procedure lends itself to
an appealing physical picture: spontaneous emission is in

the initial stages just caused by the undulator field. This
yields the sma11-signal regime 1aser mode. The latter
awhile gro~ing starts to alter spontaneous emission. Side-
bands develop. Those which have grown will in turn
inAuence spontaneous emission leading to a more compli-
cated pattern of sidebands. Again those with positive
gain will grow, etc. Thus a hierarchy of sidebands devel-

ops which will ultimately result in a chaotic pattern. In
this paper we have concentrated on the first step beyond
the small-signa1 regime ~here spontaneous emission due
to the combined undulator and (small-signal) laser field is
considered. In this 6rst step the well-known equally
spaced sidebands to the left and right of the original
(sinall-signal} laser frequency are obtained. Two addi-
tional features emerged. (1) For increasing intensity side-
bands should start showing up at half the normal fre-
quency. These can only be emitted by electrons which
are initially very near the top of one of the bands in the
periodic ponderomotive potential. Since only few elec-
trons satisfy this condition, these sidebands should be
suppressed but present. (2) The zeroth harmonic co=0
develops side bands as well, with the same spacing as the
sidebands of the original laser frequency. These side-
bands are due to the p A term in the interaction Hamil-
tonian and, consequently, are emitted slightly off axis.
For present FEL's, this emission is very weak but might
be detectable. The emission rate for the first sideband of
co=0 is proportional to (5'/co), where co is the normal
laser frequency and 5' the normal sideband spacing.
Hence it will rapidly increase with higher intensity, viz. ,
higher values of 5eho. Since the zeroth-harmonic side-
band is emitted oiT axis and in a frequency regime very
diferent from the operating frequency it is very unlikely
that it would be ampli6ed. Hence it ~ould under all cir-
cumstances be observed in spontaneous emission. In a
situation ~here it is suf6ciently intense, it might then be a
valuable diagnostic tool, since it provides information
about the sideband spectrum which is not distorted by
gain.

The calculations in this paper were based on lowest-
order quantum-mechanical perturbation theory. They
started from the discrete level structure of the electron
which is deeply trapped by the ponderomotive potential.
This level structure is not destroyed by any Anite size
erat'ects such as the finite length of the undulator. Never-
theless, transitions between these levels do not lead to any
quantum-mechanical efFects. The effects just mentioned
are classical, as are the sidebands which are familiar from
the classical theory. The same conclusions should also
apply to the motion of electrons in standing-wave fields,
i.e., the situation considered by Kapitza and Dirac. In
this case the electron also experiences discrete levels very
similar to those considered here. Again, the radiation

emitted or absorbed as a consequence of transitions be-
tween these levels should be essentially classical. %'e em-
phasize once more that this conclusion holds even when
the electron occupies a well-dined quantum level. Fi-
nally, we mention that the same pattern of sidebands can
be expected in free-electron devices which exp1oit stimu-
lated Cerenkov radiation, since it can be shown that
they can be described by the same Hamiltonian as the or-
dinary FEL.
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AppKNDIx

In this appendix we will deal with some details of the
evaluation of the matrix element (20). It is convenient to
perform the integration in terms of the variables u and v

rather than z and r The. explicit form (8) of the wave
functions along with the Floquet-Bloch expansion (16) of
the Mathieu functions then enable one to perform all in-
tegrals in terms of 5 functions. One is then left with
quadratic sums of the expansion coefficients cz„(h ):

A = g cz(„)(h )cz„(h-') (A 1)

8 = g 2rcz„, (h )cz„(h ), (A2}

where the integer p occurs in the argument of the 5 func-
tion and specifies the particular sideband. The sums over
r can be carried out in the limit of large h, where the
asymptotic form (18) can be used, by converting the sum
into an integral. The result is

A =aL (x ), (A3)

2h(m+1) L~ i( z)
v' —v —2p

+ —,'(v' —v —2p)L, +'(x ) vL (x )—
(A4)

~here

a=( —1)~(2 m!/m'!)' (&2x ) exp( —x /2),

(co+coo)cosB—co
x =(v' v 2p)/2&h =0- —

v h cog(coo+ 2co}

and m =[
~

v
~ ], m'=[

~

v'
~ ], and the L" are Laguerre

polynomials. The frequency Q now depends on the angle
0 between the wiggler axis and the direction of the emit-
ted photon according to
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cop(cop+ 2co )P0=
co(1 —cos8) —copcos8 —p, [co(1—cos8)+cop]/(h —m /4)

For 8=0, of course, this reduces to the on-axis result (23) with (24). For small angles t'J ~~ 1 and p„&&h, Eqs. (A6) and
(A7) reduce to

k)o ——,tV 6)
X= —P s

PI) No+ T8 63
2

(A10)

Although x ~~1, it is not legitimate to let x =0 in Eqs. (A3) and (A4) since m &&1. Rather, the limit (see, e.g., Ref. 17)
1'

lim L„—=n x J (2&z )
n —~(x: n

has to be used. This leads to the following expression for the square of the matrix element M for Axed p and summed
over the polarization of the emitted photon„

(2m) e L,c sin 8 ~o —~ cos8
;, m ™5(p'r—pT+fix.r)5 p,

' —p„+ fL
ALTL„V[cop(cop+2co)] 0 m" cop( cop + 2co )

(co+cop)cosB co— 1 &h
X 5 —,'(~—v')+ p+ 0 Z ~ (2v m x ) cox —— (co+cop)(m' —m )

cop( cop+ 2co ) x 2 p~
(A 1 1)

where rn' —m =2p. The last factor on the rhs of Eq. (Al 1) can be rewritten as (0 &&1)1&h, 0 m
cox ———(co+cop)(m' —m ) = — 1+

2 p„v'h 4h —m

where the last two terms on the rhs are negligible.

(co+cop)(cop+ t 0 co) h (co+cop)(cop+ &8 co)
+

cop(cop+ 2co ) P cop(cop+ 2co )
(A12)
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