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Mode-partition noise and intensity correlation in a two-mode semiconductor laser
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The intensity-noise characteristics of a nearly single-longitudinal-mode semiconductor laser are
analyzed by adopting a takeo-mode model. An approximate solution of the resulting Langevin rate
equations is used to obtain an analytic expression for the enhancement of the main-mode intensity
noise caused by mode partition. %'e also obtain analytic expressions for the autocorrelation and
cross-correlation functions which are used to discuss noise vanances in the two modes. In particu-
lar„ the cross-correlation function is related to the mode-partition coe5cient, a measure of an-

ticorrelation between the two modes that is useful to analyze the system performance. Our results
show explicitly how the intensity correlation is a@ected by the mode-suppression ratio and other de-

vice parameters.

I. INTRODUCTION II. LANGKVIN EQUATIONS

The performance of an optical communication system
employing multimode semiconductor lasers is strongly
inffuenced by mode partition, a phenomenon which
enhances the intensity noise of individual longitudinal
modes even though the total intensity noise remains rela-
tively small. ' ' Although it has been realized that
mode-partition noise is due to an anticorrelation among
the longitudinal modes, the evaluation of the intensity-
correlation coefficients is generally difficult for a mul-
timode semiconductor laser owing to the complexity of
the problem. As a result, the efkct of mode-partition
noise on the system performance is analyzed' by intro-
ducing a phenomenological parameter known as the
mode-partition coeScient k. Since the dependence of k
on the laser parameters is not known, it is treated as a
fitting parameter or determined experimentally. ' Re-
cently attempts have been made" ' to measure and
evaluate k for distributed feedback lasers in order to
quantify the importance of mode-partition noise for
single-frequency lightwave systems operating at 1.55
pm. '"

The objective of this paper is to consider the noise
characteristics of a nearly single-longitudinal-mode semi-
conductor laser by adopting a two-mode model. This al-

lows us to obtain an analytic expression for the intensity-
noise enhancement of the dominant mode cause by mode
partition. Our approach is similar to that of Henry
et al. except that we consider the rate equations for the
main and side modes on the same footing without using
the process of adiabatic elimination. The inclusion of
only two modes allows us to obtain the analytic forms for
both the autocorrelation and cross-correlation functions.
The latter can be used to obtain an expression for the
mode-partition coe%cient k. Our results show that
mode-partition coeScient depends on the damping rate
of side-node fluctuations that is affected by the
nonlinear-gain suppression' ' occurring due to phe-
nomena such as spectral hole burning.

In the Langevin formulation of the laser-noise
analysis' ' the rate equations governing laser dynamics
are supplemented with fluctuating noise sources. In the
case of a two-mode laser the resulting Langevin equations
are

P=(G) —yi)P+R, +F (t),
S=(G, —y, )S+R„+F,(t),
N =I /q y, N (—G, P +Gi—S)+F„(t),

where I' and S are the number of photons in the main
mode and the side mode, respectively, and X represents
the number of carriers (electrons or holes) inside the ac-
tive region of the semiconductor laser. %e emphasize
that I' and S are used simply as a dimensionless measure
of the mode intensities in the semiclassical description
adopted here. The rate of spontaneous emission 8, is
assumed to be the same for the two modes as the mode
separation is generally much smaller compared to the
width of the spontaneous-emission spectrum. G~ and y,
represent the rate of stimulated emission (net gain) and
the cavity decay rate (net loss) for the main mode while

62 and y2 are the corresponding quantities for the side
mode. In (3) I is the injected current and y, is the carrier
recombination rate near threshold. In general y, is a
function of X to account for the processes such as Auger
recombination. The Langevin noise sources F~(t), F, (t),
and F„(t) are responsible for fluctuations in P, S, and N,
respectively. In the MarkoSan approximation they
satisfy

where i,j =p, s, and n. The di6'usion coefticients D, - are
given by '
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D =R, I', D„=R, 5, D, =O,

D„„=R,(P+S)+y,N, D „= R—, P, D,„= R—,pS,

where I', 5, and N denote the average values.
To complete the description, the dependence of the

mode gains 6, and Gz on I', 5, and X should be known.

Assuming that the gain varies linearly with N, we take

Gi ——A (N —No) —piiP —Hi2S,

Gg ——A (N —No ) —p»S 82,P——56,
where A is the gain coeScient, No is the carrier popula-
tion required for transparency, and 56 is the reduction in
the side-mode gain due to gain roll ofF. The dependence
of the gain on the photon populations P and S is due to
nonlinear phenomena such as spectral hole burning
which result in gain saturation. For a two-mode
laser, it is important to include both the self-saturation
and cross-saturation terms governed by P;, and H,j
(i,j =1,2), respectively. In particular, as seen below,
cross saturation enhances considerably the decay rate of
side-mode fluctuations.

The Langevin equations (1)—(3) are solved in the
quasi-linear approximation' wherein Eqs. (1)—(3) are
linearized in terms of small fluctuations p(t), s(t), and
n (t) occurring around the steady-state valuesP, S, and

respectively. This leads to the following set of
Langevin equations (for brevity, the overbar is omitted
for steady-state variables):

This procedure results in the following set of algebraic
equations:

(I ~+ico)p+(8, 2P)s —( AP)n =F

(I, +ico)s+(82,S)p —( AS)n =F,—,

(I „+ico)n+6,p+G, s =F„.
Equations (17) and (18) are readily solved to obtain

(I",+ico)F& 8,2P—F, + AP(1,. +i co 8,—2S)it

(I z+ico)(1, +i co) 8~28—»PS

(I z+ico)F, 82~SF—&+ AS(I z+ico 82,—P)n
5=

(I z+ico)(I, +ico) 8&28—2~PS

{17)

(20)

(21)

By substituting P and s in (19), we obtain n in terms of the
three Langevin forces. The use of n in (20) and (21) then
provides P and s in terms of F~, F„and F„. Since the re-
sulting expressions are cumbersome, we simplify them by
making the following approximations: (i) F„can be
neglected; (ii) the terms proportional to 8,2 and 82, can be
neglected in (20) and (21); and (iii) 6, and G2 can be ap-
proximated by 6 = A (N No) =y—, in (19). These ap-
proximations amount to keeping the dominant contribu-
tion to the intensity noise; the contribution of neglected
terms is estimated to be —1% or less as long as
S /P ~ 0.2. The approximate result for p and s is

I n+'co — GAP
D(co) ~ D (co)(l r +i co)

)
1 F GAS

I, +ico ' D(co)(I, +ico)

P = —I p+( AP)n —(8&2P)s+F~(t),

s = —I,s +( AS)n —(Hz, S)p +F,(t),
n = r„n ——G,p —6 s+F„(t),

w~ere

D(co)=(I „+ico)(I"q+ico)+GAP

=(Qua+co iI z )(Q—z co+i I z ) —.
(24)

I p
——R,p/P +13))P,

I, =R„/S+P»S,
I"„=y,+(dy, /dN)N+ A (P+S)

(13)

(14) Q„=[(GAP+1 „Ip) —I a ]'
1.„=(r„+I,)/2 . (27)

In (25) we have introduced the angular frequency QR and
the decay rate I & of relaxation oscillations by defjning

are the decay rates of the fluctuations p, s, and n, respec-
tively. Note that I and I, are enhanced by the
nonlinear-gain mechanism. Note also that cross satura-
tion leads to a direct coupling between the main and side
ITlodcs.

III. MODE-PARTITION NOISE

In this section we obtain the intensity-noise spectra for
flUctuatlons 1n thc 1nd1vldual mode 1ntcnsltlcs I and 5 as
well as for the total intensity P +S. For this purpose, the
Langevin equations {10)—(12) are solved in the Fourier
doITla1n Using

The relative intensity noise (RIN) for the main and side
modes is obtained by using (22) and (23) and by noting
that

(F;(co)Fj~(co)) =2Dcj. (E,J =p, s)

with D;~ given by (6). The result is

( ip(co) i
')

p2

2R,p(I „+co ) s
P (D(co)

~
(I +co )(I +co ) P

p (t)= J p(co)exp(icot)1 co
27T oo

and similar relations for other time-dependent quantities.

(
i
s(co)

i

')
g2

28, s1+—
S(l, +co )

~

D(co)
~
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TABLE I. Parameter values for a 1.55-pm InGaAsP laser operating at 2 m% with a mode-

suppression ratio of 100.

Number of photons in the main mode
Number of photons in the side mode
Number of carriers in the active region
Recombination rate of carriers
Decay rate of 1Tlaln "mode photons
Rate of spontaneous emission
Gain coelcient
Threshold gain
Nonlinear-gain parameter
Decay rate of main-mode Auctuations
Decay rate of side-mode Auctuations
Decay rate of carrier Auctuations
Frequency of relaxation oscillaiions
Decay rate of relaxation oscillations

Pe
71
R,p

6

I pr
I„

1.03' 10'
1.03 ~ 10'
1.91~ 10'
4.70X 10 s
6.75g10" s-'
1.35 X 10' s
7.50)(10' s

6.75' 10" s-'
5.40' 10' s

5.63X10' s

1.36&10' s

1.70& 10 s

3.64 GHz
3.67', 10' s-'

where we have used GAP =Ilz from (26). The term in-

side the large parentheses represents the enhancement in
RIN of an individual mode caused by mode partition. As
expected, the enhancement depends on the mode-
suppression ratio exhibited by the device.

We have evaluated (29) and (30) using typical parame-
ter values for a 1.55-pm InGaAsP laser. The strongly
index-guided laser has active-layer dimensions of
250X2&0.2 pm and an internal loss of SO cm '. The
carrier recombination rate y, is calculated using a nonra-
diative recombination time of 10 ns, the spontaneous
recombination coeScient of 1X10 ' cm'/s, and the
Auger recombination coeScient of 5g 10 cm /s. The
inclusion of nonlinear-gain terms in (8) and (9) requires
that in general four parameters governing self-saturation
and cross-saturation should be specified. For simplicity,
we assume that p» p22 ——p and 8i2 ——8z, ——8. This
amounts to neglecting a small asymmetry in the non-
linear gain. ' ' The cross-saturation parameter 8 in gen-
eral depends on the mode separation. For a mode separa-
tion of &2 nm, 8=p. Here we assume that 8=p. The
value of p is estimated using a nonlinear-gain suppression
of about 1% per mW of the output power. In particular,
the nonlinear-gain parameter e of Ref. 16 is taken -to be
m=2 &(10 ' crn . Table I lists the parameter values for a
laser operating at 2 m%' with a mode-suppression ratio of
100.

The RIN for the main and side modes is shown in Fig.
1 for three values of the intensity ratio S/P. For
5/I' =10, the side-mode contribution to the main-
mode RIN is negligible. The corresponding curve in Fig.
1 shows the expected behavior for a single-roode laser to-
gether with the relaxation-oscillation peak at m=0~.
For S/P ~10 the efFect of a weak side mode is to
significantly enhance the low-frequency noise (ca &&Qz );
RIN is enhanced by more than 25 da for 5/I' =0.01.
This enhancement can be seen in (29) where the enhance-
ment factor at low frequencies is (Qz/I „I,) (S/P).
Since Qz ~~I „and I „even a small increase in 5/I' re-
sults in a considerable enhancement of RIN.
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FIG. 1. Relative-intensity-noise (RIN) spectra for the main
mode (upper figure) and the side mode (lower figure) for three
values of the relative side-mode power 5/I'. The semiconductor
laser is assumed to operate continuously at 2 m% with parame-
ters given in Table I.
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The RIN spectrum for the side mode in Fig. 2 has
qualitatively difFerent features compared to those shown
in Fig. 1. These can be understood by noting that the
enhancement term in (30) is relatively small. The RIN
spectrum is therefore approximately Lorentzian with a
width —I, . As seen from (14), I, has two distinct con-
tributions arising from spontaneous emission and
nonlinear-gain suppression. For S/I' =10, the contri-
bution of spontaneous emission dominates, and
I, =.A,~/S —1 THz; as a result, RIN remains constant
on the frequency scale of Fig. 1 (co « I", ). For
S/P & 10, the nonlinear-gain contribution to I, starts
to dominate; this results in the high-frequency drop oft'

seen in Fig. 1. Note that in Fig. 1 the low-frequency
noise first increases and then decreases as the side mode
grows. This can also be understood from (14) and (30).
For S/P & 10, I, =R, /S, and RIN cr S. However, I,
becomes proportional to S for S/I' ~ 10, and therefore
RINccS . The second term in (30) is responsible for
the slight enhancement near the relaxation-oscillation
frequency.

%e now consider the RIN for the total intensity in
both modes. Using (22), (23), and (6)„we obtain
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The total RIN as a function of the frequency was calcu-
lated using (31) and was found to be nearly independent
of the mode-suppression ratio S/P. The RIN spectrum
nearly coincides with the main-mode RIN curve for
S/P =10 in Fig. 1 for all values of S/P &0.1. As one
may expect, the selective enhancement of the main-mode
noise is due to anticorrelation between the two modes.
This can be seen more clearly by calculating the cross-
spectral density given by

I ~ +lQ) Qg
(p(co)s '(co)) = —2R, S I, +ice /D /2

FIG. 2. Autocorrelation functions for the main made (upper
Sgure) and the side mode (lower Sgure) as a function of v for
several values of S/I'.

cross saturation, the ratio 8/P was varied. Since (29) and
(30) are independent of 8, the exact solutions (20) and (21)
were used to calculate the RIN spectra. The RIN
changed by less than a few percent as 8/P was varied in
the range 0—2. The negligible dependence of the RIN on
8 justifies our approximations made in the derivation of
the analytic solutions (29) and (30).

O~
+ D(I, +co )

The second term in (32) provides the dominant contribu-
tion. Negative values of the cross-spectral density imply
anticorrelation between the two modes.

The efFect of nonlinear gain on the RIN spectra was in-
vestigated by changing the parameter P. An increase in 13

reduces the height of resonance peak in Fig. 1 because of
a faster decay of relaxation oscillations. If the nonlinear-
gain efFects are neglected by setting P=O, the peak height
in Fig. 1 increases by about 10 dB. To study the effect of

IV. INTENSITY AUTOCORRKLATION

( ) = (p (r +r)p (r) ) /P',

C„( )=( (r+ ) (r))/S' .

(33)

(34)

From the %iener-Khinchin theorem, the autocorrela-
tion function is related to the Fourier transform of the

The solution (22) and (23) for intensity Iluctuations can
be used to obtain autocorrelation functions for the main
and side modes defined (in the normalized form) by
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spectral density, i.e.,

(~)=—I exp(iso~)d~,
- & ~p(~)~')

2m — P'

C„(r)= —
2

exp(ivor)dr .
- &I.-( )~')

2' oc

(35)

We can evaluate C~z(r) and C„(r) using (29) and (30)
and performing the integration using the method of con-
tour integration. By closing the contour in the upper
half-plane, we note that the contour encloses three simple
poles located at ~=i I",„m=0& +i I z, and
m= —0&+i I z. Since the algebra, although tedious, is
straightforward, we write the Anal result given by

A,,
~ exp( —I x r ) Qa + I „—I ii + 2i Qa ra

Cpp(&) = ' « "
. exp(in' r)

R R+i ii

a exp( —r, r) b exp( —r~r)'P r, + 2r, (37)

exp( —r, r) S a exp( —r, r)
C„(~)=

b exp( —I xg)

~
n, +i(r„+r, ) ~'~ n„+i(r„-r, ) ~'

'

QR exp(l QR T)
b =Re

(QR

+iris'

)[nit +i (rit +r )][Qii +i (rii r )]
(40)

I pa+ —1+—
P I",

and Re stands for the real part of the expression in
parentheses.

Equations (37) and (38) show the autocorrelation func-
tion consists of three exponentially decaying terms. The
terms decaying as exp( —I „r) are due to the contribu-
tion from relaxation oscillations while side-mode Auctua-
tions contribute as terms proportional to exp( —r, r).
The last two terms proportional to S/P in (37) and (38)
vanish if each mode fluctuates independently of the other.
In general, however, the two modes are coupled, and the
autocorrelation depends on the mode-suppression ratio.
Figure 2 shows the dependence of Czz(r) and C„(r) on
the intensity ratio S/P. Note that C~~(r) increases with
an increase in S/P and shows an oscillatory structure re-
lated to relaxation oscillations. By contrast, C„(7) does
not oscillate and decreases rapidly with an increase in
S/P.

As seen from (33) and (34), the autocorrelation func-
tions provide noise variance for v =0, i.e.,

0~/P =Cz„(0), o, /S =C„(0)
where 0.

~ and o., represent the noise variance for the
main and side modes, respectively. %e can obtain simple
analytic expressions for them if we assume that all decay
rates are small in comparison to Qa. Using (37) and (38)
in (41), we obtain

'2

(42)
P

(43)

where we have replaced 2I & by I~ by noting that
I „&&r~ in (27). It is important to realize that I and

I, themselves depend on P and S as shown in (13) and
(14).

As one may expect, the main-mode noise 0 increases
with the growth of the side mode. By contrast, the
noise-to-signal ratio o, /5 for the side mode decreases
rapidly with an increase in S/P. It can be shown that
for a weak side mode oscillating independently of the
main mode, Auctuations obey an exponential distribution,
a characteristic signature of chaotic light. For such a dis-
tribution C„(0)=1. As seen in Fig. 2, C„(0)approaches
1 for only very weak side modes such that S/P ~ 10
The physical mechanism behind this departure is the
nonlinear gain. For S/P &10, I", =R, /S. It then fol-
lows from (43) that cr, /5= 1. However, the dominant
contribution to a, /S decreases as S ' for S/P~0. 05
since I, =P22S from (14). Although 0, has been mea-
sured, the contribution of the nonlinear gain remained
unidentified because of the finite filter bandwidth (or a
relatively large sampling window) that also results in a
reduction of o, /S. Further, the nonlinear-gain effects

are expected to be less important for the ridge-waveguide
structure employed in the experiment.
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As mentioned earlier, mode-partition noise is a mani-
festation of anticorrelation between the two modes. A
normalized measure of this anticorrelation is provided by
the cross-correlation function defined as

C„(~)=(p(r +~)s(r))/PS

(p(co)s '(co) )
exp(i ~r)d r, (44)

where the cross-spectral density is given by (32). The in-
tegration can be performed using the method of contour
integration. The result is

Cq, (r) = exp( —I,r )Q„

I,[Qit+(I R
—I, ) ]

2 exp( —I „~)
Im

Q„exp( i Qii r )

Q~ +I, —I ~ +2iQ~ I"~

exp( I —a ~) Q„[Q„+i (r„—I „)]exp(iQ„r)
+ Re

2I ~ (Q„+iI „)[Q„+i(I'„+I, )]

Figure 3 shows the variation of C~, with ~ for three
values of the ratio S/P; the oscillatory structure is due to
the contribution of relaxation osciHations governed by
the last two terms in (45).

The value of the cross-correlation function at ~=0 is
related to the mode-partition coeScient' k by the simple
relation

A: = —C, (0) .

If we use (45) and make the simplifying approximation
that Qz ~gI & and I „we obtain

R, I,'-pr, ' 2r,
Equation (47) provides a simple analytic expression for
the mode-partition coeScient in a two-mode laser. It
difFers from a previous estimate" obtained assuming an
exponential distribution for the side-mode intensity. It
can be reduced to that if (i) we neglect the second term in
(47) arising from relaxation oscillations and (ii) neglect
the contribution of the nonlinear gain to I, , Under these
approximations, I, =8,„/S, and (47) reduces to
k =S/P. %'hen the nonlinear-gain contribution to I,
dominates (S/P &0.05), we can approximate I, =p22P
and I ~ =p„P using (13) and (14). Using these values in
(47) p=p» =p2z and I R = I /2 we obtain

r g r0 W 1 W

t
T V' 0 '

~ % f
)

~

the Langevin rate equations using a two-mode model.
This has allowed us to obtain analytic expressions for the
spectral densities and the correlation functions associated
with the two modes.

We have obtained simple analytic expressions for the
noise variances 0~ and o, of the main and side modes.
These results show that o, /S deviates significantly from
1, a value expected if the side-mode intensity has an ex-
ponential distribution corresponding to that of chaotic
light. %e have also obtained a simple expression for the
mode-partition coe5cient by relating it to the cross-
correlation function. In the absence of the nonlinear-gain
contribution, our result reduces to that obtained previ-
ously. The analysis presented here emphasizes that
mode-partition noise depends on the mode-suppression
ratio as well as on the nonlinear-gain parameters. The
relatively small values of the mode-partition coeScient
imply that mode-partition noise should not be a limiting
factor for the performance of single-frequency lasers as
long as side modes are suppressed by about a factor of
100. This is consistent with previous experimental and
theoretical results. ' '

-0.005- S/P =O.
O~&

We can estimate the mode-partition coeScient k using
(47) and Table I. For a mode-suppression ratio of 20 dB,
k =0.09 but becomes 0.14 when the side-mode suppres-
sion is 10 dB. Such values of k are consistent with the ex-
perimental measurements on distributed-feedback
lasers. '

VI. CQNCI. USIGNS

-0.02

0.2
ma l ~ a ~ a i a a ca l sat ~

0.4 0.6 0.8
TIMF (ns)

In order to analyze the erat'eci of a weak side mode on
the noise characteristics of a dominantly single-
longitudinal-mode semiconductor laser, we have solved

FIG. 3. Cross-correlation function C~, (z) as a function of ~
for three values of S/P. The oscillatory structure is due to re-
laxation oseillations.
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