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Fundamental treatment of molecular-dynamics ensembles
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In microcanonical molecular dynamics the conservation of total momentum implies that the tra-
jectories generate an ensemble with constant total momentum. %"e present the exact statistical
mechanics of this microcanonical molecular dynamics ensemble. Using the adiabatic invariant
phase volume to de6ne the entropy, exact formulas, containing thermodynamic response functions,
are derived for the microcanonical molecular dynamics ensemble and a numerical comparison of
these formulas is made with fluctuation formulas which are valid in the thermodynamic limit and
often used in molecular dynamics. No signi5cant difference is found between the results calculated
using the different formulas for a system of 432 particles; however, for simulations with small
numbers of particles or small-cluster studies, the differences could be important.

I. INTRODUCTION

Molecular dynamics has become an important tech-
nique for studying the N-body problem in statistical
mechanics. In the traditional form of molecular dynam-
ics one has a fixed number N of atoms occupying a 6xed
volume V and interacting through a potential energy U.
The system of atoms is described by the Hamiltonian &,

&=+p, /(2m )+U,

where p, is the momentum of particle a. One solves for
the motion of the atoms using Newton's laws, which are
generated from this Hamiltonian. For many apphca-
tions the potential depends only on the particle coordi-
nates and possibly the system volume; the system energy
E =IV and total linear momentum M=gp, are four in-
tegrals of the motion.

The equilibrium statistical-mechanics ensemble
describing the system with these four integrals of the
motion is a special case of the microcanonical or EVX
ensemble; the EVE microcanonical ensemble describes a
system of N particles in a volume V with total energy E.
For our system the additional constants of the motion
represented by the total momentum M means that we
are dealing with the EV'N ensemble. The fact that
molecular dynamics generates an ensemble which is a
special case of the microcanonical ensemble with con-
stant total momentum was recognized in the paper by
Lebowitz, Percus, and Verlet' and has been stressed by
%'ood who named the ensemble the molecular-dynamics
ensemble, a terminology which we shall employ in this
paper. As will be discussed in detail later there are now
several new forms of molecular dynamics which give rise
to their respective molecular dynamics ensembles.

Recent work on the molecular dynamics ensemble was
initiated by Lado; he showed, among other things, how
to calculate exactly the density of states to(E, V,N, M)
for an ideal gas in the molecular-dynamics ensemble. In
a later paper, %'allace and Straub also discussed the
molecular-dynamics ensemble.

The primary purpose of the present paper is to give
the details of the exact statistical mechanics of the
molecular dynamics, ELM, ensemble. In Sec. II we
give a brief review of the statistical mechanics of the
EVN ensemble in order to establish our notation. Sec-
tion III contains the definition and discussion of the
ELM ensemble. Included is the derivation of exact
formulas used to determine thermodynamic response
functions and a numerical comparison of results ob-
tained with these formulas and the thermodynamic 1imit
formulas widely used in molecular dynamics. Section IV
contains a discussion of other microcanonical (constant
total momentum) molecular-dynamics ensembles. Final-
ly in Sec. V we present our conclusions. All of our dis-
cussions involve classical statistical mechanics, although

many of the results have corresponding formulas in
quantum statistical mechanics.

II. SUMMARY OF THK KVN KNSKMBLK

For a system of X particles occupying a volume V and
described by the Hamiltonian %(q,p} the phase-space
volume is defined by

4(E, V,N)= f e(E %}d q d —p/CJv,

where E is the system energy, 8 is the step function
dc5ned so that the integral is only over the phase space
inside the energy surface &=E, and Cz is a constant.
The fundamental connection with statistical mechanics
is given by relating the adiabatic invariant phase volume
4 to the thermodynamic entropy via the Boltzmann re-
lation

S(E, VN)= kla4n.

Expressions for various thermodynamic quantities follow
by combining Eq. (2.2) and the difFerential thermo-
dynamic relation
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TdS =dE+Pdv .

For example, the thermodynamic relations

(2.3)

(2.4)

for any phase-space function A(q, Ji), and the density of
states co(E, V, X) is given by

co= f 5(E &—)dq d p/Cz, (2.9)

(2.10)

P/T = (2.5)

can be used to calculate expressions for the temperature
and pressure. Combining Eqs. (2.4) and (2.5) with Eq.
(2.2) we obtain the statistical-mechanics relations

If the potential energy U depends on the spatial coor-
dinates only then the momentum integrals in 4 and co

can be carried out by using the formulas for a sphere of
radius [2m(E —U)]' of 3N dimensions as done by
Munster to yield

4=f (E—U) e(E—U)d q/[Col'{3N /2+1)],

ks T=4/co

P= —&Ba/Bv&,

(2.6)

(2.7)

(2.11)

~= f {E—U)'""-'e(E —U)d'"q/[C, l (m/2)],

(2.12)

where the angular brackets indicate the microcanonical
average value over the energy shell

& &(qp)&= f &(qp)5(E —%)d' qd'~p/{coCN) {2.8)

where CO=C&l(2@m) ~~ and I is the gamma func-
tion. Similarly the ensemble average of any dynamical
variable which depends only upon the spatial coordi-
nates can be reduced from Eq. (2.8}to the form

& a &= f a(E U)'—"" 'e(E-U}d—'"q/[~C, r(3X/2)] . (2.13)

As an example, if A is the kinetic energy E =E—U in

Eq. (2.13},we obtain

&X&=3Wk, T/2,

where we have used Eq. (2.6). Using Eq. (2.5) along with
Eq. (2.11) for 4 we obtain the equation of state

1 1 BC0

ks T co BE
(2.6')

(2.14')

I =Xk, T/V &BU/BV & . — (2.15)
x-' -'BT

v Bv
(2.15')

1n4 —lnu
N

0(N 'in%) . (2.16)

As recently shown by Pearson, Halicioglu, and TiBer
various exact formulas, containing thermodynamic
response functions, may be derived using thermodynam-
ic relations and Eqs. (2.11) and (2.12). We shall illustrate
the derivation of such formulas for the EV'N ensemble
later.

The definition of the entropy in terms of phase volume
4 [Eq. (2.2}]foBows from the adiabatic invariance of the
phase volume; this is presented in detail in Munster and
Seeker. After the entropy is introduced by Eq. (2.2)„
one shows that in the thermodynamic limit the entropy
can also be calculated by using kzlmo since

These equations lead to the customary EVX ensemble re-
lations [Eqs. (2.6}, (2.14), and (2.15)] in the thermo-
dynamic limit. Note that the temperature T in the—%f/k~ T
canonical ensemble probability density, e, is
defined by Eq. (2.6'), where co is associated with the
thermal reservoir. If kslnco were used for the entropy
definition in this paper, then various formulas in Sec. III
of this paper mould be modi5ed. %e have chosen to use
the phase volume 4 to de6ne the entropy since 4 is an
exact adiabatic invariant and its relationship to the en-
tropy is, therefore, also exact. On the other hand, if co is
used to define the entropy then one is implicitly assum-
ing the thermodynamic limit, Eq. (2.16).

III. THE MOLECULAR DYNAMICS ELM KNSKMSLK

To compare the tmo dilerent de5nitions of the entro-
py, me give the following examples cox responding to
Eqs. (2.6), (2.14},and {2.15}obtained by using the expres-
sions S=kslnco (Ref. 7):

For the ELM ensemble one has the additional con-
straint of constant total momentum as discussed previ-
ously. In this case the phase volume is modi6ed to the
form
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4(E, V, N, M) ksT=4/co . {3.6)

=f e(E %—)5 M'—gp, 'd qd3Np /C

S(E,V, N, M )=kgln4 . (3.2)

Using the Laplace transform of the step function and the
Fourier expansion of the 5 function, the momentum in-
tegrals can be carried out in Eq. {3.1). After taking the
inverse Laplace transform of the result, the following ex-
pression for 4 is obtained:

' 3(N —1)/2
Me(E, V X,M)= J E — —U

2%m

xeE —U—d q
M 3N

2%m

where Co =C~N ~ j(2n m )" "~ . Then the phase
space density co =B4/BE is

' 3(N —1)/2 —1

M
co(E, V, N, M)= I E — —U

2%m

(3.1)

where CN is a constant. The connection bet@veen the en-

tropy and the phase volume is again given by
Boltzmann*s relation

The average of the kinetic energy K=E—U can be ob-
tained from Eq. (3.5) and has the value

(3.7)

Notice that for M=O the average kinetic energy in the
EVNM ensemble di(Fers from the EVX result Eq. (2.14)

by X —1 replacing X. Since molecular dynamics calcu-
lations are normally carried out with M=O this means
that one should use the relation

to relate the temperature and kinetic energy. Thus, for a
given kinetic energy the temperature is slightly higher
than would be obtained using Eq. (2.14). Of course, this
small difference is not of practical importance in most
simulations.

The equation-of-state equation in the EV'N ensemble
can be obtained from the thermodynamic equation (2.5)
using the Boltzmann expression for the entropy and Eq.
(3.3) for 4. In order to take the volume derivative of 4
it is convenient to scale the coordinates via q'=q/V'
in Eq. (3.3) which puts 4 in the form

3(N —1)/2

Mxe E— —U d'"q
2%m

M 2xeE — —Ud q
3N

2%m x f C,I [3(N —1)/2+1] j
-' . (3 9)

x IcoI [3(N —1)/2]j ', (3.4)

and the average of any dynamical variable A (q) in the
EV'N ensemble has the form

' 3/N —1)/2 —1

x Ia)COI [3(N —1)/2]j (3.5)

Equations (3.3)—{3.5) should be compared with Eqs.
(2.11)-(2.13) in Sec. II; one difFerence in these equations
is that the dimension of the sphere is reduced by 3 in the
EV'N ensemble phase volume and density-of-states for-
rnulas as compared to the EVN formulas.

It is important to note that even in the limit when the
total momentum is chosen to have the value zero, Eq.
(3.1) does not reduce to the EVN expression Eq. (2.1).
Thus, the EVX and EV'N ensembles produce difkrent
results in this limit.

The thermodynamic relation Eq. (2.4) leads to the
same relation for the temperature as in the EVN ensem-
ble

Using Eq. (2.5) with this form for 4 leads to the equa-
tion of state

I =zk, T /V —&BU/BV & . (3.10)

A. Heat capacity

Using the thermodynamic relation

I /O„= (3.11)

Notice that this is the same as the EVN result given by
Eq. (2.15). Sometimes one sees Eq. (3.10) with N re-
placed by N —1 in molecular dynamics papers; however,
as we have shown here, the correct expression for the
pressure in the ELM ensemble is Eq. (3.10).

Using the methods developed in Ref. 7 we can derive
exact formulas containing various thermodynamic
response functions in the EV'N ensemble. These for-
mulas may be used in molecular dynamics to calculate
the relevant thermodynamic response functions. In the
thermodynamic limit these exact formulas may be relat-
ed to often used Auctuation formulas involving the same
response functions. %'e shall present three such formu-
las: for the constant volume heat capacity Cz, the
Gruneisen parameter y, and the adiabatic bulk modulus
8, .
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along with Eqs. (2.6} and (3.3), for 4, we find the exact
formula for the heat capacity in the EV'N ensemble

k /C„=1 —[1—2/3(X —1)](E)(E '), (3.12a}

where (K ) is the average of the inverse kinetic ener-

SY.

8. Gruneilen yarameter

Using the thermodynamic relation y=V(t)P/BE)i
and our statistical-mechanics formulas we obtain the for-
mula for the Griineisen parameter

y = [1—3(E—1)/2]

(3.12b}

For the bulk modulus 8, = —V(t)P/dV}, we obtain
the formula

—(T3(N —1)—1)

~y ~ —1 2g —1

(3.12c}

D. General remarks and numerical calculationl

If the factors of N —1 are replaced by N in Eqs.
3.12(a)-3.12{c) these formulas are the same as the exact
formulas obtained in Ref. 7 for the EVN ensemble. In
the thermodynamic limit, N~ oo, Eqs. 3.12(a)-3.12(c) of
the EV'N ensemble go over into the following fluctua-
tion formulas' for the thermodynamic response func-
tions:

Nk~/CP= —,
' —N((E ) —(K) )/(E)2, (3.13a)

y" =-,' ~ (X j
—(E)( j +, (3.13b)

Xk~ T
g ce

$ y

(3.13c)

where the oc superscript indicates the thermodynamic
limit. The thermodynamic limit formulas [Eqs.
3.13(a)-3.13(c)] are the same in both the EVN and
EVNM ensembles.

In recent simulations of sodium enough data were
saved on tape to give a detailed comparison of the re-
sults obtained with Eqs. 3.12(a)-3.12(c) and with Eqs.
3.13(a)-3.13(c) without doing any further molecular-
dynamics calculations. The calculation used a system of
432 atoms arranged in a bcc lattice. The molecular-
dynamics run was of duration 17.13 ps (25000 itera-
tions). The potential used to model the interaction be-
tween sodium atoms was a pseudopotential model con-
structed by Price, Singwi, arid Tosi. ' For these calcula-
tions we used EVNM molecular dynamics with M=O.
The comparison of results obtained using Eqs. (3.12) and
{3.13)-along with the experimental values" 'i is shown
in Table I. These results show, as we expected, that
there is no practical difFerence between Eqs. (3.12) and
(3.13) for this molecular-dynamics simulation.

IV. OTHER MICRQCANONICAI. MQLECULAR-
DYNAMICS ENSEMSI.ES

In the EVNM ensemble not only the volume but also
the shape and size of the system are held rigid. If the
system has the shape of parallelepiped spanned by the
vectors a, b, and c, then we deSne a matrix h by
h =(a„b,c). The microcanonical molecular-dynamics
ensemble describing the system is the EhNM ensemble.
All the previous discussion relating to the EV'N en-
semble is also valid for the EADEM ensemble. Moreover,
the EADEM ensemble may be employed to discuss the
statistical mechanics of anisotropic solids, e.g., the elas-

TABLE i. Comparison of the heat capacity, Gruneisen parameter, and bulk modulus calculated for
sodium at 300 K using Eqs. (3.13}(exact) and Eqs. (3.12) (thermodynamic limit) slang with the experi-
mental values. The system consists of 432 atoms arranged in a bcc lattice interacting through a pseu-
dopotential. The time over which these quantities were calculated was 17.13 ps and the system densi-

ty was 0.97 g/cm'. The experimental value of C~ is obtained by using the C~ value from Ref. 11 to-
gether with S~ and y from Ref. 12.

Exact [Eqs. (3.13)]
Limit [Eqs. (3.12}]
Experimental

C& (J/K mol)

27.32+2.42
27.12+2.4S
25.99+0.12'

1.2S+0.16
1.25+0.16
1.2720.04

B, (kbar)

60.14+0.83
61.30+0.64
677+06 '

'Reference 11~

bReference 12.
'Reference 13.
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tic properties of anisotropic solids. The EhN ensemble
has been introduced in Ref. 3,

Over the past years molecular-dynamics methods have
been developed to deal with constant pressure (Ander-
sen'") and constant stress (Parrinello and Rahman' ).
These new ensembles are microcanonical ensembles with
the enthalpy replacing the energy as the constant of the
motion. Thus, we have Andersen's HPN ensemble and
the HtN ensemble of Parrinello and Rahman; here t is
the thermodynamic tension tensor of the theory of finite
elasticity. When a microcanonical form of molecular
dynamics is used the total momentum is held constant,
usually having the value zero, and therefore one gen-
erates a microcanonical molecular-dynamics ensemble.
The relevant statistical formulas for any of these new mi-

crocanonical ensembles can be developed along the same
line as presented in Sec. III for the EVNM ensemble.
Thus, for example, we could work out the statistical
mechanics of the HPNM and HtNM ensembles. The
exact treatment of the HPN ensemble using the methods
of Ref. 7 was presented by Ray and Graben. '6 We will

leave the working out of the relevant statistical formulas
for the HPNM and HtNM ensembles to the interested
reader.

V. CONCLUSIONS

In microcanonical molecular dynamics the conserva-
tion of the total momentum implies that the trajectories
generate a molecular-dynamics ensemble with constant

total momentum. We have developed the detailed sta-
tistical mechanics for the EV'N ensemble and com-
pared it with the usual EVX ensemble results. In this
paper we have used the phase volume to define the en-
tropy since this choice does not involve any discussion of
the thermodynamic limit and allows one to derive exact
expressions for thermodynamic response functions. As
we have shown, factors of X —1 appear in various sta-
tistical formulas in the EV'N ensemble. In the limit
that the momentum is equal to zero the EVNM ensem-
ble does not reduce to the EVN ensemble. This means,
for example, that the actual temperature in molecular-
dynamics simulations, which are carried out with zero
momentum, should be determined by Eq. (3.8) which
gives a slightly higher temperature than the EVN result,
Eq. (2.14). In actual simulations this diff'erence would
probably not be of much importance; however, one
should be aware of the correct results and for simula-
tions of small clusters the N —1 factors could be of im-
portance.

%'e have also derived exact formulas for several ther-
modynamic response functions for the EVNM ensemble
and compared these to the exact EVN results and the
the fluctuation formulas obtained in the thermodynamic
limit. As Table I illustrates, the difFerences between the
exact EV'N formulas and the equations obtained in the
thermodynamic limit are not of practical importance for
the system investigated. However, again one should be
aware of the correct expressions.
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