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The interference between difkrent values of the total angular momentum of photofragmentation,
and its behavior in the high-J limit, are discussed using the semiclassical angular momentum theory
of G. Ponzano and T. Regge [in Spectroscopic and Group Theoretical Methods in Physics, edited by
F. Bloch et al. (North-Holland, Amsterdam, 1968)]. Taking the angular momentum of an unob-

served part as a quantization axis reveals an interesting aspect of the interference in the high-J limit.
The result indicates that a high-J limit does not necessarily correspond to a "classical" limit. The
relation bet@veen the representation of angular momentum transfer and of total angular momentum

is also obtained in the high-J limit in the same may. This relation completes the quantum derivation

of classical results for the polarization of Auorescence excited by photodissociation.

I. INTRODUCTION

Interference is often regarded as a quantum
phenomenon. This interference deri ves from the
quantum-mechanical superposition principle for proba-
bility amplitudes. Incoherence between alternative pro-
cesses is usually assumed in the classical limit. For exam-
ple, anisotropies (alignment, orientation) of interest to us
here for 6uorescence in photofragmentation are usually
obtained by simple averaging over alternative values I of
the total angular momentum in the high-J limit, which is
usually regarded as a classical limit. Anisotropies from
transitions parallel or perpendicular to a molecular axis
are also simply averaged to obtain their net effect.

However, different values of the total angular momen-
turn interfere with each other in quantum-mechanical
formulas for anisotropies. This interference derives from
the incompatibility of the total angular momentum basis
set with the anisotropy of a photofragment, let us say, A.
In other words, the commutation relations between the
total J and the anisotropy operators 3(J„),
—J„,(J„)„.. . , for the photofragment A do not van-

ish. This interference is of purely geometrical nature
since no dynamical interaction couples them. It seems to
produce no spectacular eFect in contrast to interference
between bound and continuum states, which produces the
profound resonance effect. Its presence seems only to
add more terms to calculations, making it more diScult
to extract useful dynamical information. Consideration
of the classical limit is then important. Further
simplification of phoiodissociation in the classical limit is
provided by the independence of its dynamics on the
magnitudes of angular momenta whose values become
very large.

As the result of Ref. 3 implies, it is not trivial to intro-
duce incoherence in the classical limit of quantum formu-
las. Actually, there are several fundamenta1 questions
unanswered so far. Do interference terms between
diferent values of the total angular momentum disappear
in the high-J limit? If they do, in what way~ If they do
not, in what situations' A further important question

arises from the work of Fano and Dill, who separated an
anisotropy by an incoherent sum over alternative angular
momentum transfers regardless of the angular rnomen-
tum value. The representation of angular momentum
transfer and of the total angular momentum seem thus to
be related somehow in the high-J limit beyond their
recoupling transformation. How are they related? A
theoretical tool to use in answering these questions has
been developed by Ponzano and Regge and utilized re-
cently by Lee. In their semiclassical theory of the 6j
coeScient, the highest 3nj coefBcient appearing in this
paper, they showed that the square of the volume of a
tetrahedron (which is the geometrical realization of the 6j
coefficient) corresponds to a "kinetic energy" in the usual
semiclassical theory. It may be used as a criterion for
whether some value of the angular momentum belongs to
the classically allowed or forbidden ranges based on its
positive or negative value. From this kind of considera-
tion the quantum-mechanical derivation of the classical
result for the degree of Auorescence polarization in pho-
tofragmentation processes is completed, which has been
the motivation of this study. %e hope that our results
may elucidate the transition from quantum to classical
processes and clarify the role of quantum effects in the
dynamics of photodissociation.

In Sec. II we describe the semiclassical theory of Pon-
zano and Regge which mill serve as a basic method for
the later sections. Section III discusses the interference
between different values of the total angular momentum
and its unimportance in the classical limit for anisotro-
pies of an observed photofragment and for the angular
distribution of the relative motion of fragments. Classi-
cally allowed angular momentum transfers and the quan-
tum derivation of the classical results for fluorescence po-
larization are considered in Secs. IV and V, respectively.

II. CLASSICALLY ALLOWED AND FORBIDDEN
VALUES OF ANGULAR MOMENTUM

IN THE CLASSICAL LIMIT

Ponzano and Regge have developed a very detailed
semiclassical theory of the 6j coeScient in terms of the
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geometrical parameters of s tetrahedron. Its edges corre-
spond to six angular moments in the 6j coeScient with
lengths equal to the semiclassical values, e.g. , I~I + —,'.
Their theory hss not found much application so far.
However, its application to an electron-atom collision hss
been recently discussed in Refs. 6 and 8. %'ith its help, a
structure analogous to the classical model (the so-called
rolling-ball model ) in the quantum formula is identified
and the signNcsnce of the propensity rule is stressed in
intermediate- snd high-energy electron-atom collisions.
This paper provides another application.

According to Ref. 5, s 6j coefBcient can be expressed
as a product of amplitude snd phase functions,

a 6 c

f g cos g Jhk8hk +-
12m V

when Vi ~ 0, (1)

where V is the volume of the tetrahedron snd 8&& is the
angle between the outer normals of the tetrahedron faces
which intersect along j&k, jl,k represents the semiclassical
replacement of (a, b, . . . ) with (a + ,', b +—,', .—.. ). Notice
that its amplitude is expressed here in terms of the
volume of the tetrahedron instead of the physical
momentum appearing in the usual semiclassical theory.
By analogy, it may be said that s particular value of the
angular momentum belongs to a classically forbidden
range when it produces a negative value for the square of
the volume (which can be calculated by the Cayley deter-
minant only by knowing the lengths of the edges as in
Henon's formula for the area of a triangle).

In the following discussion, we encounter the case
where a, b, d, and e become very large while c and f
remain small. Here c and f represent opposite edges of
the tetrahedron, Reference 10 introduced for this case
the transformation

~r =(a +b +d +e)/2, r=(a +b —d —e)/2,

rl=(a li +d —e)—/2, g=(a -b —d +e)/2 .

Permutations snd Regge transformstions" of indices of
the 6j coefII][cient which leave its value unaltered change
only the sign of values of (o,r, g, rI), without changing
their absolute values. This sign ambiguity in the
definition (2) is removed in later sections by choosing the
total angular momentum quantum number J snd J' as a
and b Here only cr. can run to infinity while w, g, and g
are restricted by the values of c and f. Calculation in this
case shows that the square of the volume becomes nega-
tive when cr~00 unless g=O (see Appendix). Thus the
values of a, b, d, and e (or o, r, g, and g) belong to a clas-
sically allowed range in the high-J limit oooo only
when q=0.

Whether a value is classically forbidden or allowed can
also be judged from the calculation of angle between two

opposite angular momentum vectors in the tetrahedron
as in Ref. 6,

c-f=(cr+1)il+rj .

Now, if q is an integer &0, the right-hand side of (3) goes
to infinity with e, while c.f &

I
c

I I

f
I

if the angle be-

tween e and f is real. Thus a given value of the angular
momentum belongs to the classically forbidden range
when the value of cr makes the angle complex. (Note that
the angle between two angular momentum vectors which
form a triangle with one other angular momentum vector
cannot be complex. ) When rl =0, only certain real values

of angles between c and f are allowed in the high-J limit
o'~ oo and are determined by the values of r and g. The
square of the volume of the tetrahedron approaches
[(&+—,') —g ][(f+ ,') —r—]sr as 0 ~oo. Then, from

Eq. (1), the closer the magnitude of
I
r

I
(or

I g I
) is to f

(or c), the larger the value of the 6j coefficient [using the
more accurate Airy function formula instead of (1) in the
classical limit cr ~ oo when g=O will not change the re-
sult].

III. INTKRFKRKNCK BET%'KKN DIFFERENT
VALUES OF THE TOTAL ANGULAR

MOMENTUM

Total angular momentum, including that of the pho-
ton, is conserved in photodissociation. %e thus need to
consider only processes whose initial and 6nal total angu-
lar moments are equal. However, if we consider the pho-
tofragment angular distribution characterized by a pa-
rameter P or the anisotropies of the photofragment
fluorescence, interference terms appear between diferent
values of the total angular momentum. The presence of
these interference terms does not confiict with the conser-
vation of total angular momentum. This interference is
possible because anisotropy measurements select eigen-
states of operators which do not commute with J, and
because all J eigenstates are degenerate in energy. Nor-
mally, we expect that such interference terms should be
of no importance in the classical limit since they are in-
trinsically quantum mechanical. This ides will be tested
in this section.

Let us consider the photodissociation of an AB mole-
cule (not necessarily diatomic) into fragments A and B,

h v(jph)+ AB (J„ii)~[A (J~ )+B](p),
~here j~h, J„z, and J„denote the angular momentum
quantum numbers of the photon„A8, and A, respective-
ly: p denotes the momentum of the relative motion of A

and 8. 8 is assumed to have Jz ——0 for the time being.
The expectation value of the response of s detector D~ of
a speci6c state of A may be expressed in the total angular
momentum representation [see Eqs. (18.24) and (19.3) of
Ref. 12],

&«J~ I
I
~(J)

I J,h J~a)(J~ I
I
~(J')

Ij ph J~a )'
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where K stands for the 2 -pole moment of a pair of rotational states (J,J') of the whole system; p„ii and p „represent
the initial density matrices of AB and photon states, respectively. The matrix element

may be expanded in terms of the separate multipole moments of the photofragment 3 and the relative motion of the
photofragments ( A, B) [Eq. (18.17) of Ref. 12],

l

((Jq/)J
~
Dg

~
(Jq/)J'}Il ' ——[(2/+l)(2K+1)(2J+1)(2J'+1)]' g (J„~Dq ( J„)(/" J„ / J' {Sx

A E 0 K

J„J /

=(—1)" [(2J+1)(2J'+I)]'"(J~ID~ l

J~)g'' J J K
'

(6)

The above equation shows that the interference between
different values of the total angular momentum is caused
by the presence of the anisotropy (i.e., of the nonzero 2-
pole moment) of the whole system and by its inffuence on
the observables of interests. (Only K=O plays an active
role in the total photofragmentation cross section, which
does not include any interference between different J and
J'. ) A single sum over / occurs in (5) when the angular
distribution of photofragments is not observed thus al-
lowing only Ki ——0 (and /'=/) for the multipole moments
of

~

/m)(/'m' ~.
Let us now consider the high-J limit where J~ and J

become large. The behavior of the 6j coefficient in this
limit has been considered in Sec. II. Only the values of J
and J' which satisfy the relation g =0, i.e.,
J~ +J' =J +J~, were shown to yield the positive values
of the squared volume of the tetrahedron corresponding
to the 6j coefficient in (6), thus belonging to the classical-
ly allowed range. Thus in the high-J limit only J =J'
provides nonvanishing terms, showing the unimportance
of interference between difFerent values (J&J') of the an-
gular momentum. A more intuitive explanation might be

I

I

that in the high-J limit, the order of multipole moment K
is much smaller than J and J', and that the system looks
isotropic; in fact, this remark is not relevant to the van-
ishing of interference terms in the high-J limit.

If B has a nonzero value (Jii&0) of the angular
momentum but still is not observed in experiments, we
would have the same results as above except that (1) / in
the density matrix D~ and in the scattering matrices in
(5) and (6) are replaced by (Ja/)JUo where J„o is defined
as JUo ——Jz+/ and represents an unobserved angular
momentum, (2) there is one more summation over the
values of J„o in (5), and (3) the / appearing in the 6j and
9j coefficients in {6)is rePlaced by J„o. This change does
not affect the result that only an incoherent sum over J
survives in the high-J limit, but produces some depolari-
zation.

The angular distribution of a relative motion of pho-
tofragments ( A, B) for the system (4) is described, in the
absence of Auorescence analysis, by the expectation value
&D~) of the detector operator D =

~
p)(p

~

of momen-
tum eigenstates

&Dl, & = g g ([(J~Ja)JUo/]J I Dl, I [(J~Ja)JUO/']J')g"'((i' J~a)J'
I a~a/ill I (iti J~a)J)'"g( —I)' "~

E,Q J,J', l, l'

X((Jw Js)JUo/ l
~(J) Ii rl JAB)«J~ Ja )Juo/'

I
~(J') {illJ~a)' .

The density matrix of D in (7) may be expanded in the same way as in (6)

l J JUO
([(J~Ja»uo/]J I Di, I [(J~Ja»UO/']J')'g '=( —I) "' [(2J+I)(2J'+ I)]'"(/

I Dp I
/')g ' J

For the 6j coefficient in (8), only those values of /, /', J,
and J' which satisfy l —l'=J—J' are classically allowed.
Only these give nonzero contributions to the sums in (7)
as (/, /, J,J )~ ce. (Il1 t11e photodlssoclatlon 111to two
heavier fragments, large values of the relative angular
momentum quantum numbers frequently dominate. ) The
sums g, g, .gJ QJ. may be transformed into

g„where

Now there are still interference terms having ~&0.
%'e note here that different l appear and interfere to

yield the observed multipole moments of the relative
motion of ( A, B), in contrast to the previous case of frag-
ment orientation and alignment v here only a single value
is usually allowed for the angular momentum of the frag-
ment A. We also note that for the electric dipole pho-
tofragmentation procysses the nonzero

~

J —J'
~

equals
K. The proof of this is as follows: The angular distribu-
tion of photofragmentation allows only the even values 0
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and 2 of A' for its 2 -pole moments. The parity restriction
I + l'+E=even in

allows only even values of
f
i —i' ~, whereby r can be 0

or 2. If r equals 2, the triangular relation K &
~

i —i'
~=

~

~
~

tells us that it equals the multipole moment K.
Thus when there are two kinds of degenerate quantities

like l and J, the values of the total angular momentum
belonging to the P and 8 branches interfere in the high-J
limit. The Q branch fails to interfere with other branches
in the dipole transition. Interestingly, the P and 8
branches have identical alignment, orientation, line
strength, and so on in the high-J limit.

If the high-J limit corresponds to a classical limit, the
survival of the interference terms in this limit seems to
contradict the common-sense notion that interference is a
purely quantum phenomenon. For the angular distribu-
tion of the relative motion of photofragments, the unit A

of j» limits b J to at most 2'(
~

EJ
~

&K» & 2J»). Thus
AJ58 is an order of fi, showing that a classical situation
is not obtained here in the high-J limit. On the other
hand, the unit R of j h cannot seem to con6ne the values
of the total angular momentum to the quantum regime
for the observation of the anisotropies of the fragment A.
%e 6rst note that the direct observation of anisotropies
of the fragment A may not be possible due to the nega-
tive energy of the state of A. Its anisotropies may be ob-
served from angular distribution of the fluorescence in-
tensity instead. For the light which is regarded as a wave
in the classical limit, the relation Lfh8-fi may no
longer be used as a criterion for whether a given process
belongs to the quantum or classical regime. %e failed to
give the full account of this phenomenon at this stage.

A. Commutator and incoherence

As said before, the interference between difFerent
values of total angular momentum for the anisotropy of a
photofragment A is derived from the incompatibility be-
tween the operators J and J„,which has manifested it-
self into the nonzero value of the commutator [J,J„].
However, we note that the unimportance of interferences
does not mean that the commutator vanishes. Neverthe-
less, they are closely related.

For the anisotropy measurement of the fragment A,
the total angular momentum is defined as J=Jz+JUo.
In this case,

[J,J„]=2ifiJ„&(JUo .

If J~ and JUo are parallel to each other, the commutator
becomes zero. This condition is met when J=J~+JUo,
which yields Jz —J=J„—J'=+JUo or Jz —J
=J' —J„=EJUo (the latter is not the physical solution).
Therefore the vanishing of the commutator yields a much
stricter condition than g=O„ i.e., J~ —J=J~ —J'. If the
commutator is zero, only a single value of the total angu-
lar momentum will appear in the formula for the aniso-
tropies of the fragment A. Especially, the zero of the
commutator (10) restricts its value to either J„+JUo or

8. JU~ as a quantization axis

A simple situation occurs when JUo is taken as a
quantization axis. It provides not only the correlation be-
tween (J,J„,K, K„)and JUo but also sheds light on the
unimportance of interference terms in the high-J limit.

The angle between J„and JUo can be obtained from
the triangle that they form with J in the vector model. In
the classical limit,

J —Jq
Jq JUo~

JUo
when J~~,

whereby the projection quantum number Mz known
as a Lande g factor' of J„on Juo is given by
M„=J„[(J—J„)/J„o]. Even though the unobserved

JUo orients randomly in space, its angle with J„ is not
random and has the deSnite value for a given total angu-
lai momentum quantum number. Likewise, we have the
projection quantum number M of J on Juo given

by M =J[(J—Jg )/JUo ]. This yields the projection
quantum numbers Qz ——JA (J' —J) and Q =J2—J'2

+Jz (J' —J) of the multipole moment operators Kz and
K from the relation Q =M —M'. On the other hand, we
have K =K„and Q =Q„owing to the failure to observe
the photofragment 8 and the relative motion of A and 8,
as explicitly shown in (6), whereby J„(J' —J)
=J —J' +J„(J'—J) or J =J'. Thus both Q„and Q
vanish in the high-J limit. In the vector notation,
K„.JUo ——K.JUo ——0. This alternatively implies a
minimal correlation' between observed (K„,K) and
unobserved JUo.

This alternative derivation ofJ =J' reveals another as-
pect of incoherence between difFerent values of the total
angular momentum, i.e., that there exists a "dynamic"
symmetry axis on which the projection values Q of mul-
tipole moment operators are zero (the word "dynamic" is
used here since the projection axis JUo processes about a
space fixed quantization axis). This aspect will repeat in
another situation in the Sec. VI.

In the angular distribution measurement of the relative
motion of fragments (A, B), in the absence of fluores-
cence analysis, the projection value of the multipole mo-

J„—JUo for a given value of J„and JUo. On the other
hand, q=O, the incoherence condition for the anisotro-
pies in the fragment 3 yields an incoherent sum over al/
values of angular momentum, indicating the failure to ob-
serve some information. ' Absence of the analysis of
both JUo and the relative motion between photofrag-
ments brings about such a loss of information for the an-
isotropies of a fragment A. The high-J limit itself bears
no direct relation to the loss of information because of its
irrelevance to the measurement. However, a decrease in
the amount of loss of information may result with in-
crease of J as some angular momentum couplings become
classically forbidden. In the most extreme case of a
complete loss of information, all the difFerent values
of the angular momentum would be equally popu-
lated [in the language of density matrix, pzst I I,
=k, i&st,st(2J+1) 'l.
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ment operator K on JUO is no longer zero in the high-J
liiillt and giveil froiil (3) by

K JUo

final state

(D. &=«(D.P.PaP ) . (13)

where g=(J +J' —/ —I')/2 & JUo and ~ is defined in (9).
Thus the survival of interference terms in the high-J limit
brings about the nonzero projection value of multipo1e
moment K on JU or the spatial correlation between ob-
served K and unobserved JUz larger than minimal.

Thus the condition K JUo ——0 is a necessary and
su/Scient condition for the uanishing of coherent terms
among difFerent J. EC=O brings about a zero of K J„o
and is a sufhcient but not a necessary condition for an in
coherent sum.

Projection of multipole moment operator on J con-
sidered in the above calls for caution. For example, J„
cannot be taken as a quantization axis for K since the
presence of its counterpart in adjoint space with which it
forms K„prevents us from having a unique projection
value of K. For JUo, this problem has not taken place
due to the zero value of its multipole moment K„o. The
fact that K is a vector in Liouville space' '7 while J is a
vector in the Euclidean space of the vector model
brought about this strange situation. However, the prob-
lem may arise even in case of the presence of the unique
projection axis such as whether the projection can be
made within Euclidean geometry. As we saw in Sec. II,
sometimes such a projection can only be made by allow-
ing the complex angle between K and the axis in Euclide-
an space which we never encounter in the case of projec-
tion of the angular momentum vector in Euchdean space
onto an axis in its own space.

IV. ANGULAR MOMENTUM TRANSFERS
IN THE HIGH-J LIMIT

A. Density-matrix formalism in the angular momentum

transfer representation

Now we may want a type of representation that ex-
pands the interpretation of noninterference from the clas-
sical limit to the case of small angular momentum quan-
tum numbers. The angular momentum transfer represen-
tation was introduced by Fano and Dill exactly in this
way. It separates observed and unobserved variables.
Equality of the angular momentum quantum numbers j,
and j,' results from the vanishing of all multipole mo-
ments of unobserved variables. %'e shall illustrate this
statement using the density-matrix formalism in the an-
gular momentum transfer representation developed in
Ref. 18.

Anisotropies of the photofragment A for the system (4)
can be calculated with the density matrix p~ pzp& of the

Using the scattering matrix for the photofragmentation,
the final density matrix can be obtained from the initial
density matrix p~&p &,

(D~ ~=tr(Dw~pwappP (14)

&«(J~ai)Jr I P~a I (J~ai)J )"'

&& I (J~i
I &(Ji) I J~aJ pi )

I

'
~ (15)

The E=O index represents the isotropy resulting from
averaging over the variables of the unprepared part pzz
unable to transfer any multipole moment to the prepared
or observed part D„p &. The only contribution to DQ ppQ
consists of the incoherent sum over the angular momen-
tum transfer quantum numbers in (1S).

The incoherent sum over angular momentum transfer
quantum numbers simplifies the discussion about pho-
tofragmentation dynamics greatly since we can talk about
it as an average over separate angular momentum
transfer "processes. " The geometrical aspects of photo-
dissociation for a given momentum transfer process
are completely contained in the density
matrix [(J,j„„)j, ~

D „P „~ (J„j i, )jt']' ' regardless of
detailed dynamical information contained in

~
(J„l ( S(j, )

~ J„aj i, )
~

(lack of anisotroPy in P~a
simplifies the discussion). For example, the problem of
whether photofragmentation takes place parallel or per-
pendicular to the direction of the electric vector of the
linearly polarized incident light can be answered from the
sign of the density matrix. We can discuss (,D ) in a
similar fashion, but since there is not much new physics,
we will not present it here.

8. Angular momentum transfers in the high-J limit

From the previous discussion, we learned that observ-
ables are given by an incoherent sum in the angular
momentum transfer representation. Now we have two
representations, both of which provide an incoherent sum
in the high-J limit for the anisotropies of a fragment A.
Note, however, that they are related by a recoupling
transformation

From a straightforward manipulation of angular momen-
turn algebra, (14) can be written in terms of matrices of
the observed or prepared parts, D~ p z, and of the unob-
served part p~z of operators

&D~ &= X «J~Jpi )J ID~Ppi I (J~jpi )ji)'"

((jpi J~ )Jt(J~aiV~ I (J,i,J~a»(iJ~ »)'"=l(2J+1)(adjt+1)1'"(—1)
jta Jaw

For a given value of the total angular momentum, three
values of angular momentum transfer, J„+1and J~, are
allowed with the probability amplitudes given by (16). If
all the three values of angular momentum transfer appear

with significant magnitude in the high-J limit, there will
be interference terms rejecting the coherence of different
values of the angular momentum transfer contradicting
the discussion in Sec. I'I)t'A. Actually only one of them
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will contribute significantly, belonging to a classically al-
lowed range.

In the classical limit of large J, J„,J~z, and j„the 6j
coctIIC1cnt In (16) Is clRsslcally allowed ollly for tllc values
of angular momenta satisfying the relation Jz +J„&
=I+j, . Thus for a given branch of the total angular
momentum, on1y a single value of j, belongs to the classi-
cally allowed range and vice versa,

1'

J~z —1, P branch J~+&
J = JAS, Q branch j, = J„

J4~+1, R branch

A one-to-one correspondence relation similar to (17) will
also hold for the angular distribution measurement of the
relative motion between photofragments ( A, B), even
though interference terms between dift'erent values of the
total angular momentum survive in this case in the high-J
limit. This implies that the two representations are corn-
pletely correlated in the high-J limit. Geometrically, the
scalar product J j, approaches +Jj, in the high-J limit so
that J and j, are parallel or antiparallel to each other.
Or, J and j, have identical projections but for the sign.

How fast two other branches become unimportant can
be seen by considcnng the scalar product of / j„h and the
transformation (2) with ((a, b, d, e ) replaced by
~J~B J~ Jj&

o =(J+JA+j, +JAs )/2,
v'=(J —J„+j, —JAS )/2,

I) =(J +J„—j, J„JI)/2, —

&=(J —JA ji+JAS }/2—

From (3), the scalar product I j h is given by

I j „=(0+1)I)+rg .

The case of unit value of j h was considered extensively in
Ref. 6, which shows that I)&0 is classically forbidden for
almost all values of o.. Thus the incoherent sum over the
total angular momentum quantum numbers is obtained
rapidly for a dipole transition.

3h' '(JA, JAf)AOP=
4+6' (JA, JAf )AO

(22)

where H'"(JA, JAf } is a function that depends only on
the values of J„and J„f and appears a coemcient of the
alignment in the Auorescence intensity formula Af
denotes the state of the fragment A after the Auores-
cence. Putting into (22) the values of h' '(J„,J„f) (see
Table I of Ref. 1), which are —

—,
' for the P and R

branches and 1 for a Q branch in the high-J limit, and
making use of (17) which replaces the values of j, by
those of J, we get the degree of polarization —,

' for (P
&

or
R &, P& or R t ) and —

—,
' for (Q I, PI or 8

&
) or (Pt or

RI, Q&) and —,
' for (QI, Q&). This is exactly the same re-

sult as the classically derived degree of polarization (e.g.,
the table of MacPherson, Simons, and Zare }.

VI. RESULT AND DISCUSSIOIV

transition dipole moments are perpendicular to J for the
P and R branches and parallel to it for the Q branch. If
both absorption and fluorescence take place by the P or 8
branches, the angle cK w111 be given by &/4 since the tran-
sition dipole moments for both processes will rotate in
the plane perpendicular to J without correlation (in the
high-J limit, the rotation time of the molecule will be
much faster than the absorption and emission time of
light). Then the value of polarization is given by —,. If
one of the processes belongs to a J' or R branch and the
other to a Q branch, the angle a becomes Ir/2 Th. en the
polarization is given by ——,. Similarly, the remaining
case with both absorption and emission following the Q
branch leads to a=0 and hence P = —,

' (if interference
terms survived in the high-J limit, we should have calcu-
lated the degree of polarization for those).

From the quantum-mechanical formulas, it is straight-
forward to get the alignment value for a given angular
momentum transfer process for the photodissociation by
linearly polarized light. In particular, their values in the
classical limit are given by —, for the parity favored

j, =J„+1and ——", for the parity unfavored j,=J„.' The
alignment A 0 and the d» gree of polarization P are related
by

Now 1et us consider the quantum derivation of the
classical polarization P of Auorescence,

Jt —Ij
P

I~(+J,
In the classical theory of light interacting with matter,
the polarization P of light emitted after photodissociation
by linearly polarized incident light is obtained from the
angle o, between the dipole moments of absorption and
fluorescence

3 cos cL —1P=
cos 0!+3

According to the group-theoretical argument, these

%e have found that interference between diferent
values of angular momentum does not always disappear
in the high-J limit. Additional interpretation appears to
be called for. However, details for how interference
terms behave as the angular momentum quantum num-
bers become large have been answered by applying the
Ponzano-Regge semiclassical theory of angular momen-
tum. Several interesting aspects of the behavior of the in-
terference terms were found in the high-J limit.

Besides the interferences discussed so far, there are
other interesting interferences such as the one between
transitions parallel and perpendicular to a molecular axis
for a diatomic molecule (or a plane for a nonlinear tria-
tomic one). The interference for the diatomic molecule
case is already discussed in Ref. 3. In order to have only
incoherent sums, Ref. 3 considered the anisotropies of the
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Auorescence from a rotational-state-unresolved fragment.
Let us explain this a little in detail here since Ref. 3 did
not explain clearly how the interference terms disappear
in the high-J limit.

The relation of the scattering matrix for the photo-

ionization of a diatomic molecule (in the angular momen-
tum transfer representation) in the space-fixed frame ap-
pearing in Eq. (15) to that in the body frame can be ob-
tained by following the procedure similar to Eqs.
(19)—(22) of Ref. 4:

I
() ~ Ja l

I
~(jt ) I ~~a J~ai, i, )

I
'=(2J~ +1)(2J~a+1)

ph is

'I

jp~ j l JAa

~ph ~A ~ph ~ ~AB ~ ~AS

jpa Jl
(l ~ll

I

~
I ~~as i ~ i, )

ph A ph

x(k„lA, '
I
S

I Aqaj i, A, 'i, ),

where A, 's denote the projection quantum numbers of the
corresponding angular momentum onto the molecular
axis. Among them A. A and A.» can also be the projec-
tion quantum numbers of the electronic orbital momenta
of 3 and AB molecules" which are explicitly included to
the indices of S matrix in Eq. (15) for clarity. In Eq. (15),
anisotropies of a photofragment A are obtained from the
universal alignment or orientation functions, i.e., the
part of density matrices weighted by the scattering ma-
trices of (23). In the high-( J„,J&a,j, I limit (For a given
l), these universal anisotropies become independent of
J„. Thus J„-dependent terms comes only from (23).2'

In a JA-unresolved experiment, the sum over JA,

jpv jf
~A ~h ~A ~h(2J~+1)

p

limit does not necessarily bring about the results antici-
pated classically, some additional theory appears ta be
called for.
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APPENDIX

(24)

yields 6, From their invariance under space rota-
ph' ph

tion, scattering matrices in the body frame in (23) yield
and kA+k'=A, A+A. '~, whereby

equals A, '. thus interference terms between transitions
parallel and perpendicular to the molecular axis disap-
pear in the high-J limit in the J„-unresolved Auorescence
measurement of A. From this result, projections of mul-
tipole moments of both (l, l) and (j „,j~„)on the molecu-
lar axis become zero in the high-J limit. Zero projection
values of multipole moments were also encountered in
the Sec. V. In this case, J„plays a similar role to that of
JUQe

Further studies on interference between dN'erent chan-
nels will be of interest since this interference is derived
from dynamical coup/ing. The simplest case of only two-
channel coupling was considered by Dill. As the high-J

The volume of the tetrahedron corresponding to the 6j
coefficient in Eq. (1) is calculated from the Cayley deter-
minant by

j
f(c )=288V =det d

e
—2

f 2 g 2 2

0 b a 1

2 0 2
1

—2 —2 0

(Al)

where ja, b, . . . I represents the semiclassical replace-
ment of ja, b, . . . I with ja+ ,', b+ —,', . . . I. T—he above
equation shows that f (c ) is a quadratic equation in c,

f(c )=&(c ) +8(c )+C .

The coefficients of (A2) can be easily calculated from the
differentiation of (Al) with respect to c evaluated at
c =0 and given by
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23=
(t)c ),2 o

8 = = —2[f f —(a '+b +d +e
Bc 2

O

+(a —e )(b —d )],
C =f (cZ=O)

In terms of new quantum numbers,

l44 yZ —Zf 2[—2+f 2
(
—2+ 2+ gZ+ ~2 ) ]

+c (cr —g )(r —2) )

+f 2($2 ~2)( —2 rZ)

+(—2 2 2(2)( —2 2 (2+ 2) (A5)

= —2[f (b2 —a )(d' —e )

+(a 2 —b 2+d 2 —e 2)(a 'd 2 —b e )] .

where 0 is the usual semiclassical replacement of o with
cr + l. In the high-J limit cr ~ ao, we get

By substituting (A3) into (A2), we get the simple form of
(Al)

—0' when g~O
144V ~ '

(f r)—(c —g ) when z)=O,
(A6)

—144V =c f [c +f (a +b —+d +e )]

+—2( —2 2)(b 2 d 2)

+f 2(b 2 —2)(d 2 —2)

+( 2 bz+d —2 ——2)( —zd 2 b 2-2) (A4)

which directly shows that the squal'e of the volume of the
tetrahedron becomes negative when q&0 in the high-J
limit 0.~ oo. This strange case can be solved mathemati-
cally with the same geometrical formulas for a tetrahed-
ron in Euclidean space by simply allowing complex
values for the angles.
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