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Oscillations in photodetachment cross sections for negative ions in magnetic fields
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Theory is developed for photodetachment of an electron from a potentia1 well in a magnetic field.

The cross section has a maximum as a function of photon energy just above each Landau-level

threshold. If the final-state interaction is erat'ectively negative, there is in addition a Feshbach reso-

nance below each of these thresholds, except the first. 'However, none of these maxima occurs if the

anal-state wave function is antisymmetric with respect to reflection in a plane perpendicu1ar to the

magnetic field direction. The oscillations observed experimentally are attributed to the maxima lo-

cated above the thresholds, not the Feshbach resonances.

I. INTRODUCTION

Photodetachment of electrons from negative ions in
magnetic fields hss attracted considerable interest recent-
ly, because of experiments' showing oscillations in the
near-threshold cross sections. This e8'ect was first ob-
served by Blumberg, Jopson, and Larson. ' Performing
high-rcso1ution photodetachment spectroscopy on sulfur
negative ions in sn ion trap, they discovered oscillations
in the cross section versus laser frequency, with a period
proportional to the magnetic field strength. Blumberg
and co-workers' attributed these features to detachment
into a series of Landau levels of the free electron in the
magnetic field.

Analogous oscillations in photodetachment of elec-
trons from D centers in semiconductors have been ob-
served ' as well, and are similarly understood to be due
to Landau levels of quasifree electrons in the magnetic
field. " Furthermore, several interesting transport phe-
nomena arising from the discrete nature of these levels
have been discovered in solids. "'

A free electron in a magnetic field has an infinite set of
quantized energy levels (Landau levels) for motion per-
pendicular to the field (while motion parallel to the field
is unquantized). The spacing between these levels is ficoH,
where catt 2trvH =——eH/Mc, vH being the cyclotron fre-
quency, H the magnetic field, e and M the charge (abso-
lute value) and mass of the electron, and c the velocity of
light. As a consequence, there is an infinite set of thresh-
olds, separated by energy ficuH, for detachment of an elec-
tron in a magnetic field (ignoring any fine structure of the
ion and atom for the moment). At each threshold, the
density of states of the free electron is singular.

%'hen the final-state interaction, i.e.„between the de-
tached electron and the atom, is ignored, the energy
dependence of the cross section is determined by the den-
sity of states of the free (or quasifree) electron. Theory
derived on this basis (developed for the solid' and for the
gas ' independently) predicts that the cross section a„
for detachment into the Landau state v is infinite at the
threshold (angular) frequency co„and decreases as
(to —co„) ' for laser frequency to ~ co,. The total photo-

detachment cross section, obtained by summing the o „
thus consists of a series of infinite spikes. However, the
result of convolution to account for broadening (e.g., due
to imperfections in the crystal, or Doppler and notional
Stark efFects in the gas) is finite. Such a convolution, us-

ing as free parameters the overall scale of the cross sec-
tions, the origin of the frequency scale, and the ion tem-
perature, has been shown by Blumberg snd co-workers
to give a good fit to their data. '

Subsequent work on the theory has incorporated the
final-state interaction, ' ' i.e., between the electron
and the atom, which had previously been ignored. It hss
been proven' ' that the cross section remains finite near
threshold, given this interaction. A detailed expression
for the cross section has been presented by Gurvich and
Zil'bermints' for the case where the initial state (bound
by a small-radius potential) has zero component of orbital
angular momentum in the direction of the field 8, and
the electric field of the light is perpendicular to H. The
various theories cited above difFer as to the mechanism of
the cross-section oscillations, as well as to their form snd
their precise location.

In the following sections expressions are derived for
the cross sections for photodetachment in a magnetic
field of electrons initially bound by short-range poten-
tials, Arbitrary initial angular momentum and polariza-
tion of light are considered. The results are illustrated by
calculations, comparisons are made with zero-field cross
sections, and the mechanism is discussed.

II. THEORY

%'e consider an electron interacting with a spherically
symmetric potential V in a uniform magnetic field of
strength H. It is convenient to work in cylindrical polar
coordinates p, z, $, with the z axis in the direction of the
magnetic field. The vector potential is given by

Then the Hamiltonian is given by
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V + V+ —X coH+ —AcoH
P

2M a8

where L, is the operator for the z component of orbital
angular momentum, coH and aH are the (angular) cyclo-
tron frequency and the cyclotron radius,

1/2

~a

The continuum wave function 4', ,k of interest for pho-
v

todetachment into the v channel is the one having an out-
going component in only that channel. It is the solution
of the Lippmann-Schwinger integral equation

'p. l, =P, I +GHV'p, k,

where 6& is the outgoing Green's function integra1
operator

and —e and M are the charge and mass of the electron.
The electron's spin is ignored. Its component in the
direction of 8 does not change, so it does not aft'ect pho-
todetachment in this model.

In the absence of a potential, the Hamiltonian has the
following complete set of elgenfunctlons Q„i, having

de6nite orbital angular momentum about the z axis and
even or odd symmetry with respect to reAection through
the z =0 plane:

&
zR „(p)e' (e ' +rr„~e ' ),

2(2m )'

'}m}
1 (im i+n)! p

aH Im I'

GH = GH (E)=[E i e—(%— V—) ]

The solution of Eq. (7) has the same 5-function normali-
zation (6) as g„k . To simplify the notation, we will drop

the subscript k, from wave functions, except where it
adds clarity.

We solve Eq. (7) to lowest order in the small quantities
rolaH and k„ro by a generalization of the method used

by Gurvich and Zil'bermints. ' %e begin with the fol-
lowing ansatz for +„in the region r ~ ro:

V„=M„4„(r), r & ro

where M„ is a constant (i.e. , independent of r) to be deter-
mined, and 4„ is a scattering wave function derived by
dropping the ,'ficoH(—plaH) term from the Hamiltonian,

Eq. (1). Specifically, @„is the solution of the equation

4,=P„+Go VC&„, (10)

,E, ( n;
~

rn—
~
+ 1; p l2aH2 ),

4aH
where Go is the free-particle outgoing Green's function

Go =Go (E)=(E ie A—o)— (1 la)

where, F& is the conAuent hypergeometric function, and
where v stands for the quantum numbers v= Im, n, o„~ I.
The latter take values m =0, +1,+2, . . . ; n =0, 1,2, . . . ;
and o „=+1.The energy spectrum in each channel is a
continuum, with lower bound E, given by

V + 2/~coH

(1 lb)

E„=E „=(—,'m+n+-, '
~

m
~
+ ,')fuuH, -

and k, and the energy E are related by
t /2

The normalization of these wave functions is

(4) and

(.&0—E)$„=0 . (11c)

P„ is the free-particle' continuum wave function, well

behaved at the origin. It has de6nite angular quantum
numbers I and m, where I takes the lowest value for
which P,, and g„have the same symmetry in the neigh-
borhood of the origin, i.e.,

In the problem of interest, the electron is initially
bound by a potential V(r). We assume that both the po-
tential and the amplitudes of the bound-state wave func-
tions have negligible amplitudes outside of some radius

ro, ro/aH ~~1. This shouM be valid for potentials and

one-electron wave functions that model the binding of an
electron in a negative ion, for magnetic 6eld strengths of
a few T or less. (aH ——2)&10 cm when H= 1 T.) Thus,
the last term in &, Eq. (1), may be neglected for the ini-

tial bound state, which therefore has definite values of
both the orbital angular momentum and its z component.
We also assume that k„ro «1 and

~ P ~

&&1. This
latter quantity is defined by Eq. (27).

Im t, o„y ——+1
~m ~+1,

(12a)

The normalization of P„ is chosen such that P,, ap-
proaches g„at small r in the following sense:

(lm
~ $,, )-(lm

~ g, , ) as r~0,

where the (lm
~

) notation implies a scalar product of the
normalized spherical harmonic ~t~ lm )= F, with the ket

~
), in which integration is performed over solid angle,

the result being a function of a radial variable r. Thus,
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jI(k r)Yi (0 $),
' ]/2

i 2$„=8,k (14)
the left-hand side of the resulting equation by the use of
(10), and rearrange to give

[P,, (G—H
—Go) V4,]M„=@„, r & r„.

2M
2 (E——,

' m iricgn )

1 /2 Taking the scalar product of
~

Im) with both sides of this
equation and solving gives

and where
(lm

~
(GH —Go) V4„}
(Im

~ P„)
(17)

/m
/

1, o„y ——+1
X '.

ik~H, 0'~y = —1

/m f+n
(2l+1}!!

To solve for M„, substitute {9) into the Lippmann-
Schwinger equation (7) for 4„. Then eliminate 4„ from

I

The right-hand side of the above equation is to be evalu-
ated in r ~ ro, in which region it is independent of r, to
lowest order in ro/aH and k, ro.

Next, we derive an approximation for 6@—Go, valid

to lowest order in ro/aH and k, ro Re. presenting GH,
Eq. (8), in a basis of Landau wave functions gives the fol-
lowing expression for the kernel of the Green's function:

e ik(.z —z')

Gz(E, r, r')= z
ge' '~ ~'gR „(p)R „(p')f dk

=i g(2~) 'e' '~ ~'gR „(p)R „(p')
IPt Pl k,*

To simplify the notation, we use the same symbol for the
Green's function and its kernel throughout. %'e need
only the mm matrix element of 60, which is obtained by
dropping a factor (2m) 'exp[im(jk P')]—from the sum-
mand in the above expression. Thus,

exp( ik'„~ z ——z'
~

)
(GH) =i

z gR „(p)R „(p')
f2

where k„defined by Eq. (5), is taken to lie on the positive
imaginary axis when E ~E . Next, separate the right-
hand side of (19) into two terms, (G, ) containing the
sum over the open channels and the first closed channel
(for given rn), and (G2) containing the sum over the
rest of the closed channels.

In (G2), replace R by the following, which is ob-
tained from a series expansion ' for the conAuent hyper-
geometric function:

R „(p)

(n+]m /)!
n!(n+ —'

I
m

I +
One finds that a large number of closed channels contrib-
ute to (G2), and that the summand does not change
rapidly with n. Therefore, one can replace the sum by an
integration. Defining a new variable,

(2n+
~

m
~

+1)'"
P=

QH

the sum over n is approximated by —,'aH times an integral
with respect to p . Next, replace C by unity. This is
exact when

~

m
~

=0, 1, and the error is only of the order
(m/n) otherwise, which is negligible, as most of the in-

tegral comes from large n. Finally, one can show that the
lower limit of the integral can be replaced by zero, with
negligible error. The result is that (Gz) is approximat-
ed by

.M exp( —ik,*, ~z —z'
~

)
i „, I, p dpJ

~ ~

(pp», .i

(pp')

(2n+
(

m
~
+1) '~z

XJ! !+.{(2n+
~

m
~

+1)'~ p/aH),

Ao ——1, A, =O, 32= —,'( im i
+1),

(j+1)AJ+,=(j+ (
rn

~
)3, , —(2n+

~
m [ +l)A,

where

where k, is a function of p [see Eqs. (4) and (5)]. Now,
the above expression is precisely ' the m, m com-
ponent, (Go), of the Green's function defined by Eq.
(11). Therefore, we have

(Gn) —(Go)

exp( ik„' )z —z'
~

)—
=i g R „(p)R „(p')—

r ~ro, r'~ro (21)
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where X is the value of the Landau radial quantum
number of the first closed channel for given m and F..

The above result is now used to evaluate Eq. (17) for
M . In the case o.„=—1, the exponential in 6& —60,
Eq. (21), may be replaced by i—k;,

~

z —z' ~. (The lead-
ing term, unity, does not contribute to M, ) It can then
be shown that the second term on the right-hand side of
Eq. (17) is g~ l. Therefore, to lowest order in ro/aH and

k„ro, M, =1 when 0 = —1.
In the case o, =+1, the exponential in GH —Go may

be replaced by unity. Then, when R „(p') is replaced by
its small-p form, Eq. (17) contains the following integral:

fd r'Y&' (O', P')r'V(r')4, ,(r') . (22)

Now, from the definition of 4, it follows that

4„-t sin(k r —In /2)+ f,"k exp[ i (k —r —I m/2)] j
' 1/2

2 V
X — i, Fl (8,$) as r oc, (23)k'+'r

where f& is the scattering amplitude of the I partial wave,

exp(2ii), ) —1

fl(k )=
2&k

where gl is the phase shift at wave number k . Substitu-
tion of Eq. (23) into the Lippmann-Schwinger equation
(10) {with Go expanded in a spherical-wave basis ) gives
the relation

i(k )=— PPl

A' (2l + 1)!!8„

X r'F&~ 8', 'r'V r'4, r' . 25

Therefore, the integral (22) is given by

lri (21+1)!!8„
fl'(k ) .

2Mk 21

The resulting expression for M, is

M =
V

i 21/2Pe y
/m /n'

(k „aH) «T„y =+1 (26a)

(2
~

m
~
+ 1)!!f,

21/2 2~m ~+l k2,'m',
Q~ m

Note that M, varies with m, o „,and E, but is indepen-
dent of n The rat.io f, ,

(k )/k, may be replaced
by its k =0 limit, —a; ~, when a. . . the

~

m
~

-wave

scattering length, exists,
Note that P is a function of k . Gurvich and

Zil'bermints' give a result corresponding to (26) and (27)
for 0„~=1, but having —a

~
~

in place off
~

~

k
%hen o;

~

exists, the two results are, of course,
equivalent. On the other hand, there can in principle be
cases where the potential decays too slowly at large r for
the scattering length to exist, but is small enough in r ~ ro
(for some ro small relative to aH) for the above results
(26) and {27) to be vahd. Note that Eq. (27) is not re-
quired to be evaluated at k =0, since the minimum
value reached by k, i.e., at the (m, 0, 1) threshold, is

(!m
i
+1)' /aH.

The cross section for detachment into state vk, from
initial state p by absorption of a photon of polarization e
1s given by

where ~ and c are the angular frequency of the radiation,
and its speed, respectively, D is the dipole operator, and

j vk„) is the final-state wave function having an outgoing

f
&Imk

4 ck
(29)

where the wave function
~

Imk ) has an outgoing com-
ponent in only the I, m channe1, and is normalized to
5I5 5(k —k' ).

Now, the two di6'erent kinds of final-state wave func-
tions are proportional to each other in r «ro in the fol-
lowing sense:

(im
i
vk, , ) =M B„k ' '(Im

i
Imk ), r &ro, (30)

in which the factor M comes from Eq. (9), and the other
factors come from the ratio of (Im

~
4,k ) to

v

(Im
~

Imk ). The matrix elements in the above two
cross-section formulas are related in the same way.
Therefore, the matrix elements can be eliminated, giving
the following expression for the relation between photo-
detachment cross sections with and without a magnetic
field:

[M„B„f

2 o'Imk

k2I+1
V foal

where, for given v= Im, n, cr„j, I is chosen according to
Eq. {12). Using the Wigner threshold law for the field-

free cross section,

I

component in only the v channel, i.e., 4'„k .
In the absence of a magnetic 6eld, the cross section

o& '& for photodetachment into the l, m channel is given
m

by



OAKLEY H. CRAVfFORD

(32)

A. Cross sections for 0 ~
= + 1 6nal states

For the case o, = + 1, 8 is independent of energy, so
the cross section, Eq. (33)„goes as

f
M,,

f
k, '. Since

k,, = [2(co—co „)/coH ]' /ciH, the frequency dependence
of the cross section is given by

cT,, -(co—co „) ' fM,, f', (34)

1 iP'—
n'=0

fm f+n'
El

ie —1
" —1/2

fm f+N
m Pf

QP~~ —6)
' —1/2

fm f+n'
+p

n'=0

(35)
Note that the final-state interaction influences the cross

section through only the factor p, which appears only
in M, . If the final-state interaction is ignored, putting
p =0, then, from the above equations, M, , =l, and the
cross section cr, is pro, portional to (co —co„} 'c, for
ru ~ co„. This is consistent with earlier work. " Howev-
er, it is clear from Eq. (35) that when p &0 the behavior
of 0., is modified when cu is close to any threshold.

At energies close to the (m, n, 1 ) threshold, the terms in
Eq. (35) that contain p ((co —co „.)/coH) ', n'&n, are
of order p, which is negligible compared with unity by
assumption. Therefore, the n'&n terms may be neglect-
ed in this case, giving

(co —comn }
0 '2 (36)

fm f+n

Thus, the cross section for detachment into channel
Im, n, 1I rises from its threshold (at co=co „) with an
(co —co „)' dependence, goes through a maximum, and
then over to an (co —co „) ' behavior, with increasing
frequency. The maximum occurs at a frequency

fm f+n
(37)

which is very close to the threshold (
f p f

«1). As the
calculations below will illustrate, the cross section is very
large at the maximum, compared with normal zero-field
values.

For frequencies just above an n' ~ n threshold, o has
the

f
M„

f
frequency dependence, with

we get the final result,

~,,„=g,.fa„M,, f'k;, ',
with 8,, and M„calculable from Eqs. (16) and (26), re-

spectively. Features of this expression will be explored
below.

2
~mn'

fM„ f t 2
fm f+n'

p coH +co —co

Thus, o. is zero at every threshold, i.e., at every co „,but
only at its own threshold co „does it have the large peak
above threshold. Note that the above expression is in-
dependent of the sign of p

Next, consider the behavior of the system at frequen-
cies close to, but below a threshold frequency co ~ . Sup-

pose p & 0, which is the case when the interaction in the
final state is efFectively attractive. In this neighborhood,
according to Eq. (35), there is a value E„ofthe energy

(38)

fm f+N
(39)p

for which the real part of M, ,
' =M „', vanishes, indepen-

dent of n, while the imaginary part is a sum over n
' ~ X,„.

For energies close to F.„the energy dependence of o, is
that of

f
M„ f, Eq. (35), which takes the Breit-Wigner

form
fm f+N

p iricoH

(& —&, ) +(—,'y)
where the width y is given by

fm f+N

(40}

N —i fm f+n~
y, g „, (N n')—

n'=0
Note that y is much smaller than the energy separation
E ~ —E„, between closed channel and resonance,

which, in turn, is ggkmH.
Consider now the bound the quasibound states that

occur only in the presence of the magnetic field when p
is positive. If the Hamiltonian is truncated by removing
the open channels, and the definition (9}of M is extend-
ed analytically to the first closed channel,
v=

f m, N, + 1 I (and this could be any channel of this
symmetry, depending on the total energy), then M ~, is

m

given by Eq. (35), but without the imaginary part, and is
singular at the energy E„gi e vbny (39). This, together
with Eq. (9), implies that a bound state of the same sym-
metry I m, +1 I occurs at this energy. In the full Hilbert
space (including the open channels), this state is quasi-
bound for X & O„since it can decay into open channels,
but it is a true bound state for X =0. The binding ener-

gy of the state located just below the threshold of the
f m, n, 1 I channel is thus given by

(41)

fm f+n
(42}

Comparison with (37} shows that the peak and the reso-
nance (or bound state) associated with any I m, n, 1 f

threshold have their maxima symmetrically located about.
the threshold energy.
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In summary, for any m, the cross section o.~„] is zero
at each I m, n ', 1 j threshold, has a maximum just above
its own threshold, and (if P pO) has an additional max-
imum below each [m, n', 1 j (n'&n ) threshold. The large
peak in o just above its threshold has a similar origin as,
and the same form as, the low-energy peak in s-wave elas-
tic scattering from a potential that supports a low-energy
bound or virtual state. In the case of a magnetic field,
where the free motion is confined to one dimension, a
zero-energy bound state occurs in the absence of a poten-
tial. The effect of the final-state interaction upon the
photodetachment cross section 0., close to its own thresh-
old is (as previously discussed'") to decrease the cross sec-
tion close to threshold, thereby moving the peak up in en-
ergy by an amount equal to the binding or virtual binding
energy. The peak below each threshold (when P & 0) is
a Feshbach resonance, which decays into all open chan-
nels of the same symmetry.

The above formulas for M, and for the binding ener-
gies have been given previously by Gurvich and
Zil'bermints. ' A diFerent value,

z f Vdr RcoH,
1 M

(43)
2m% aH

where the integral extends over all space, has been de-
rived ' for the binding energy of the state associated
with the IO, O, 1 j channel. The latter result is valid only
for sufficiently small V. More precisely, (43) is
equivalent to (42) if and only if ao exists and is given by
the Born approximation, which is accurate for

~
uo j ((1. On the other hand, it can be shown (starting

from the single-channel treatment ) that (43) is the value
of the binding energy that follows from the close-
coupling Hamiltonian (where only one or a few channels
aie included) when rro exists and

~ Po ~

((1. /ccordjng-
ly, when

~
ao

~

does not exist or is not small, the close-
coupling treatment is subject to error near threshold.

B. Cross sections for o „„=—1 final states

For o„=—1 states, the factor
~
M,B,,

~

ik„' in Eq.
(33) is proportional to k,„so the cross section o„goes
simply as (co —co, )'~ . Here we have assumed, as in the
discussion of the o = + 1 case, that the zero-field photo-
detachment cross section o I goes as k + . In the
present case I =

~

m
~
+ 1. " The large peaks found in the

0., =+1 case do not appear, nor does the final-state in-

teraction aFect the cross section in this case. This is be-
cause a magnetic field does not give rise to bound or vir-
tual states of the 0. = —1 symmetry.

where v= [m, n, o„~ j with m =m;+q and
(1 +m,. +q+1)=( —1) ' ' . In this section calculations of o. will

be presented and compared with the field-free photode-
tachment cross section oI ' from the same initial state.
In cr' ' one uses I =I, —1 (but if I; —1(

~

m ~, then
I =I, +1).

The calculations of 0. are simple, requiring only the
sum over open channels of (i~ ~

B,M,.
~

k„' [Eqs. (44)
and (33)], using Eq. (16) for 8, and Eq. (26) or (35) for
M, , when values of the parameters gI and a,

~

[or
P (k~ )] are available.

Figure 1 shows cr (solid curve) and o ~ ' (dashed curve)
for detachment from a Iio state (I, , m; ) =(1,0) by a q =0
photon. The origin of the frequency scale is the zero-field
photodetachment threshold. The strength of the magnet-
ic field is 1.07 T, wherein the cyclotron frequency
vH ~H/2~ is 30 GHZ, R&H 4 56——xl.o 682/a-o, and

aH ——468ao, where ao is the Bohr radius. We have as-
sumed the s-wave scattering length ao to be —1 ao, so
Po=1.51)&10 . We have taken the zero-field cross sec-
tion to be equal to aoko. The figure covers a frequency
range of 3vH (or an energy interval of 3fi~H), and in-

cludes the thresholds of the n =0, 1, and 2 channels
(m =O, o„~=+1). The behavior of the cross sections
very near the various thresholds is not resolved in this
figure, which therefore has the appearance of a sum of
partial cross sections that go as (co —co „) '~, as predict-
ed by Blumberg et aI. ' Note that the cross section os-
cillates about the zero-field cross section. If the former is
averaged over a rectangular frequency distribution of
width vH, centered at, say v„ the result is (to lowest or-
der in the small quantities) equal to the zero field-cross
section at frequency v, . Plots of o for detachment from

p+] states with q= —rn; are the same as the cr shown in

Fig. 1 except that they are shifted in frequency by
—m; VH /2.

Figure 2 shows a portion of the a. calculation discussed
above, on a greatly expanded frequency scale, whose ori-

l5

I

x0
i
V
Lll
Co

CO
CO

O
K

III. CAI.CUI.ATIQNS

The total cross section 0 for photodetachment in a
magnetic Seld for given initial-state angular momentum
quantum numbers I, ,m;, aad given polarization index (or
quantum number for photon angular momentum com-
ponent in the H direction) q, is given by

Ã,„—i

&v&
vn=0

p
30 60

RELATlVE FREQUENQY {6Hz)

FIG. I. Total cross section for photodetachment from a p
state (I;,m; = l,0) by a photon having polarization index q =0
vs light frequency, in a 1.07-T Beld (solid curve) and in zero Aeld
(dashed curve). The origin of the relative frequency scale is the
zero-field detachment threshold. The atomic unit of cross sec-
tion is ao ——2.80& 10 ' cm .
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FIG. 2. Total cross section for photodetachment from a p
state (I;,m; =1,0) by a photon with polarization index q =0 vs

light frequency, in a 1.07-T field. The origin of the relative fre-
quency scale is the threshold for detachment into the
(m, n) =(0, 1) Landau level. This plot shows the structure of the
45-GHz feature of Fig. 1 on a greatly expanded frequency scale.

be the correct value for H . The dashed curve in the
figure is the zero-field photodetachment cross section
cr', o'k for the same frequency and polarization.

As in Fig. 1, the abscissa is the light frequency, relative
to the threshold frequency at zero field, i.e., (A'co —3 )/h,
where A is the electron aSnity. The figure shows that
the detachment cross section o. has an abrupt change in

slope at each threshold, where the slope is in fact infinite,
due to the k,, dependence. One also sees that o does not
deviate much from the Aeld-free cross section, and that
the two are very close, when averaged over a frequency
range vH.

Detachment from an s state with light having polariza-
tion index q =+1 (i.e., by polarized light propagating
along the direction of H) gives ir„=+1 final states. In
this case, 0 (which has been plotted previously'"' ) has
features similar to those shown in Fig. 1, but [assuming
comparable magnitudes of V(r)] the peaks lie much
closer to the thresholds than when m =O. %hen q = —1,
o. oscillates about o', o'.

IV. DISCUSSION

gin is the threshold of the n =1 channel. The sharper
peak is the resonance, while the broader feature begin-
ning at the threshold is the peak in the n =1 channel.
Note that the scale of the ordinate has been contracted
by a factor of 50 to accommodate this peak. Similar
features appear at each threshold, except at the n =0
one, where the resonance does not appear.

The behavior of a a'„=—1 cross section is illustrated
in Fig. 3, which gives the total cross section cr (solid
curve) for photodetachment from an s state in a 1.07-T
field, by photons having polarization index q = —1. The
parameter g, o is assumed to be 871ao, which happens to
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FIG. 3. Total cross section for photodetachment from an s
state by a photon having polarization index q = —1 vs light fre-
quency, in a 1.07-T field (solid curve) and in zero field (dashed
curve). The origin of the relative frequency scale is the zero-
field detachment threshold. The atomic unit of cross section is
ao ——2.80&10 ' cm . The absence of maxima in the solid
curve is associated with odd reflection symmetry (o„~= —1) of
the final-state ~ave function.

Simple formulas are derived for cross sections for pho-
todetachment of electrons from a potential well in a mag-
netic field. Arbitrary values of the initial angular
momentum and the photon polarization index are treat-
ed. The potential in the exit channels is assumed to be
small in r p ro (for some ro small relative to aH ), but it is
not required that the

~

m
~

-wave scattering length a
~

~
exist. %'hen the final-state interaction is effectively at-
tractive, the total photodetachrnent cross section o.

displays a pair of maxima symmetrically displaced about
each threshold. The lower-frequency one (missing from
the first threshold) is a Feshbach resonance. The other
maximum is contributed by the cross section of the newly
opened channel, and occurs regardless of whether the
final-state potential is attractive, repulsive, or zero. This
peak, which is due to the existence of a near-threshold
bound state or virtual state in that channel, has a close
analogue in the feature sometimes called a low-energy
resonance or zero-energy resonance in s-wave elastic
scattering. The cross section o oscillates about the zero-
field cross section o' ', and the average of o. over a rec-
tangular distribution of full width vH approximates 0' '

(except for a frequency shift, depending on initial and
final quantum numbers m; and m).

The oscillations observed experimentally are due to the
maxima that are located just above thresholds, not to the
Fesh bach resonances. The Feshbach resonances, al-
though having the larger cross sections, are narrow and
contribute negligibly to o when the latter is convoluted
to account for a realistic experimental resolution. The
remainder of this section is devoted to comparisons with
previous theory and with experiment.

The close-coupling method has been the one most used
in discussing the wave functions of the continuum states
that are populated in photodetachment in a magnetic
field. The wave function is written as a sum over func-
tions u„(z)R „(p)(2m) ' exp(imP), n =0, 1,2, . . . , for
a given m, and the Schrodinger equation is reduced to a
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set of coupled equations for the unknown functions u„(z),

+ V„„(z) F.—„u„(z)d
2M dzi

V„„(z)u„(z), n =0, 1,2, . . . (45)

with

V„„.(z)= J dPPV((P +z )' )Rm~(P)R „.(P) . (46)

These equations have been studied by Clark' using a
square-well potential of depth Vo and radius ro, ~here

2 2P'0 —Z
V„„(z)=—Vo z, i

z
i
(ro

20O

for any pair of levels, as long as n and n' are much less
than (ralaH ) . Thus, there are a great number of chan-
nels coupled together. Of these, a large group have all of
their V„„.(whether off diagonal or diagonal) approximate-
ly equaling each other and being of the same order of
magnitude as the difference fmH between channel ener-
gies. This presents a discult problem. Clark infers that
the cross-section maxima observed in photodetachment
may be due either to Feshbach resonances or to "quasi-
Landau" resonances analogous to what occur in photo-
ionization in a magnetic field. If the latter, the maxima
would be located above the thresholds by an appreciable
amount, e.g. , by about (Ref. 15) 0.1 fuoH in the case of
S

Larson and Stoneman assume an attractive potential
(that is too weak to bind an electron in the absence of a
field), solve the one-dimensional Schrodinger equation
[Eq. (45), neglecting V„„ for n '&n] for an

[m, n, o„j= [O, n, 1 ) channel, and calculate cr„In spite.
of the diaculties in principle cited above, the conclusions
drawn from this single-channel treatment agree qualita-
tively in most respects with the present theory. The cross
section is of the form shown in Eq. (36), exhibiting a max-
imum above threshold, but the displacement of the peak
from threshold is different„corresponding to the different
value of the binding energy [see Eq. (43)] of the bound
state. The bound state is recognized as being the origin
of a Feshbach resonance in the n'~n channels. It was
pointed out in Sec. III that those results agree closely
with ours only when the potential is small enough for the
Born approximation for the (field-free) scattering length

ao to be accurate. Comparison with the present theory
shows that the effect of inclusion of the closed channels
(beyond the first one) is to improve the description of the
bound, quasibound, and virtual states. However, to affect
this improvement within the conventional framework of
close-coupling computation would be impractical because
of the large number of closed channels that make compa-
rable contributions.

This critique of the applicability of the close-coupling

method is directed toward photodetachment from atoms
in the gas, with magnetic 6eld strengths less than 10 T,
so that the cyclotron radius aH and energy AcoH are, re-
spectively, large relative to atomic dimensions and small
relative to atomic binding energies. However, for much
larger magnetic field strengths (or perhaps in a solid with
small enough effective mass and large enough dielectric
constant ), only a few channels need be considered, so
close-coupling calculations are appropriate. Such calcu-
lations have been reported, for example, for scattering
from a screened Coulomb potential in a 2 g 10 -T field.

The results presented here agree with those of Gurwich
and Zil'bermints' where comparison is possible. Those
workers assume the existence of the

~

m
~

-wave scatter-
ing length c~~ j. Under that assumption, the @ay 1

continuum wave functions given here are the same as
theirs, as is the energy dependence of the cross section for
photodetachment from an s state by circularly polarized
light propagating in the direction of the field.

Comparison with existing experiments' ' on S and
Se requires extension of the theory to accommodate
magnetic fine structure. Each Landau threshold is re-
placed by a set of thresholds due to the Zeeman effect on
the ion and atom. (This Zeeman structure has been
resolved in the case of Se .) Let us assume that the
cross sections predicted for Landau levels (in the absence
of fine structure) are divided among the fine-structure
states in such a way that the features associated with
Landau-level thresholds are reproduced at the various
fine-structure thresholds. (This is what is predicted2
when the final-state interaction potential is ignored. )

Then, the present theory implies that observation of
effects of the Anal-state electron-atom interaction requires
resolution (on an energy scale) on the order of PoficoH or
less. Assuming that the scattering length ao is of the or-
der of ao, and the magnetic field is 1 T, Poz= 10 5. Since
vH here is 30 GHz, the necessary resolution is 10 kHz.
Since that resolution is not yet achievable, shifts of the
maxima in o from the thresholds should not be observed.
Larson and Stoneman conclude that their S data con-
tain a strong indication of a shift upward from threshold,
which is in conflict with the present theory as applied to
systems containing Ane structure. It would be interesting
to see the results of measurements of yet higher resolu-
tion on this system. Krause has reported on a beam ap-
paratus under construction for high-resolution measure-
rnents of magnetic field effects in photodetachment.
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